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Abstract

Traditional biosurveillance algorithms detect disease outbreaks by looking for peaks in a univariate
time series of health-care data. Current health-care surveillance data, however, are no longer sim-
ply univariate data streams. Instead, a wealth of spatial, temporal, demographic and symptomatic
information is available. We present an early disease outbreak detection algorithm called What’s
Strange About Recent Events (WSARE), which uses a multivariate approach to improve its time-
liness of detection. WSARE employs a rule-based technique that compares recent health-care data
against data from a baseline distribution and finds subgroups of the recent data whose proportions
have changed the most from the baseline data. In addition, health-care data also pose difficulties
for surveillance algorithms because of inherent temporal trends such as seasonal effects and day of
week variations. WSARE approaches this problem using a Bayesian network to produce a baseline
distribution that accounts for these temporal trends. The algorithm itself incorporates a wide range
of ideas, including association rules, Bayesian networks,hypothesis testing and permutation tests
to produce a detection algorithm that is careful to evaluatethe significance of the alarms that it
raises.

Keywords: anomaly detection, syndromic surveillance, biosurveillance, Bayesian networks, ap-
plications

1. Introduction

Detection systems inspect routinely collected data for anomalies and raise an alert upon discovery
of any significant deviations from the norm. For example, Fawcett and Provost (1997) detect cellu-
lar phone fraud by monitoring changes to a cell phone user’s typical calling behavior. In intrusion
detection systems, anomalies in system events might indicate a possible breach of security (Warren-
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der et al., 1999). In a similar manner, we would like to tackle the problem of early disease outbreak
detection, in which the disease outbreak can be due to either natural causes or a bioterrorist attack.

One of the challenges for early disease outbreak detection is finding readily available data that
contains a useful signal (Tsui et al., 2001). Data sources that require definitive diagnosis of the
disease, such as lab reports, can often be obtained several days to weeks after the samples are sub-
mitted. By that point, the outbreak may have already escalated into a large scaleepidemic. Instead
of waiting for definite diagnostic data, we can monitor pre-diagnosis data, such as the symptoms
exhibited by patients at an Emergency Department (ED). In doing so, we risk increasing the false
positive rate, such as mistakenly attributing an increase in patients exhibiting respiratory problems
to an anthrax attack rather than to influenza. Nevertheless, we have a potential gain in timeliness
of detection. This type of surveillance of pre-diagnosis data is commonly referred to assyndromic
surveillance(Mostashari and Hartman, 2003; Sosin, 2003).

In our syndromic surveillance infrastructure, we have real-time access toa database of emer-
gency department (ED) cases from several hospitals in a city. Each record in this multivariate
database contains information about the individual who is admitted to the ED. This information
includes fields such as age, gender, symptoms exhibited, home zip code, work zip code, and time
of arrival at the ED. In accordance with the HIPAA Privacy Rule (45 CFR Parts 160 through 164,
2003), personal identifying information, such as patient names, addresses, and identification num-
bers are removed from the data set used in this research. When a severe epidemic sweeps through
a region, there will obviously be extreme perturbations in the number of ED visits. While these
dramatic upswings are easily noticed during the late stages of an epidemic, the challenge is to detect
the outbreak during its early stages and mitigate its effects. We would also like to detect outbreaks
that are more subtle than a large scale epidemic as early as possible.

Although we have posed our problem in an anomaly detection framework, traditional anomaly
detection algorithms are inappropriate for this domain. In the traditional approach, a probabilistic
model of the baseline data is built using techniques such as neural nets (Bishop, 1994) or a mixture
of naive Bayes submodels (Hamerly and Elkan, 2001). Anomalies are identified as individual data
points with a rare attribute or rare combination of attributes. If we apply traditional anomaly detec-
tion to our ED data, we would find, for example, a patient that is over a hundred years old living
in a sparsely populated region of the city. These isolated outliers in attribute space are not at all
indicative of a disease outbreak. Instead of finding such unusual isolated cases, we are interested in
finding anomalous patterns, which are specific groups whose profile is anomalous relative to their
typical profile. Thus, in our example of using ED records, if there is a dramatic upswing in the
number of children from a particular neighborhood appearing in the ED withdiarrhea, then an early
detection system should raise an alarm.

Another common approach to early outbreak detection is to convert the multivariate ED database
into a univariate time series by aggregating daily counts of a certain attribute orcombination of
attributes. For instance, a simple detector would monitor the daily number of peopleappearing in
the ED. Many different algorithms can then be used to monitor this univariate surveillance data,
including methods from Statistical Quality Control (Montgomery, 2001), time series models (Box
and Jenkins, 1976), and regression techniques (Serfling, 1963). This technique works well if we
know beforehand which disease to monitor, since we can improve the timelinessof detection by
monitoring specific attributes of the disease. For example, if we are vigilant against an anthrax
attack, we can concentrate our efforts on ED cases involving respiratory problems. In our situation,
we need to perform non-specific disease monitoring because we do not know what disease to expect,
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particularly in the case of a bioterrorist attack. Instead of monitoring health-care data for pre-defined
patterns, we detect any significant anomalous patterns in the multivariate ED data. Furthermore,
by taking a multivariate approach that inspects all available attributes in the data, particularly the
temporal, spatial, demographic, and symptomatic attributes, we will show that such an approach can
improve on the detection time of a univariate detection algorithm if the outbreak initially manifests
itself as a localized cluster in attribute space.

Our approach to early disease outbreak detection uses a rule-based anomaly pattern detector
called What’s Strange About Recent Events (WSARE) (Wong et al., 2002, 2003). WSARE operates
on discrete, multidimensional data sets with a temporal component. This algorithm compares recent
data against a baseline distribution with the aim of finding rules that summarize significant patterns
of anomalies. Each rule is made up of components of the formXi = V j

i , whereXi is theith attribute
andV j

i is the jth value of that attribute. Multiple components are joined together by a logical
AND. For example, a two component rule would beGender= Male AND Home Location= NW.
These rules should not be interpreted as rules from a logic-based system in which the rules have
an antecedent and a consequent. Rather, these rules can be thought of as SQL SELECT queries
because they identify a subset of the data having records with attributes that match the components
of the rule. WSARE finds these subsets whose proportions have changed the most between recent
data and the baseline.

We will present versions 2.0 and 3.0 of the WSARE algorithm. We will also briefly describe
WSARE 2.5 in order to illustrate the strengths of WSARE 3.0. These three algorithms only differ in
how they create the baseline distribution; all other steps in the WSARE framework remain identical.
WSARE 2.0 and 2.5 use raw historical data from selected days as the baseline while WSARE 3.0
models the baseline distribution using a Bayesian network.

2. What’s Strange About Recent Events

    November 2003
Su Mo Tu We Th Fr Sa 
                   1
 2  3  4  5  6  7  8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

    December 2003
Su Mo Tu We Th Fr Sa 
    1  2  3  4  5  6
 7  8  9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Figure 1: The baseline for WSARE 2.0 if the current day is December 30, 2003
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The basic question asked by all detection systems is whether anything strange has occurred in
recent events. This question requires defining what it means to be recent and what it means to be
strange. Our algorithm considers all patient records falling on the current day under evaluation to be
recent events. Note that this definition of recent is not restrictive – our approach is fully general and
recent can be defined to include all events within some other time period such as over the last six
hours. In order to define an anomaly, we need to establish the concept ofsomething being normal.
In WSARE version 2.0, baseline behavior is assumed to be captured by rawhistorical data from
the same day of the week in order to avoid environmental effects such as weekend versus weekday
differences in the number of ED cases. This baseline period must be chosen from a time period
similar to the current day. This can be achieved by being close enough to thecurrent day to capture
any seasonal or recent trends. On the other hand, the baseline periodmust also be sufficiently distant
from the current day. This distance is required in case an outbreak happens on the current day but
it remains undetected. If the baseline period is too close to the current day,the baseline period
will quickly incorporate the outbreak cases as time progresses. In the description of WSARE 2.0
below, we assume that baseline behavior is captured by records that arein the setbaselinedays.
Typically, baselinedayscontains the days that are 35, 42, 49, and 56 days prior to the day under
consideration. We would like to emphasize that this baseline period is only usedas an example; it
can be easily modified to another time period without major changes to our algorithm. In Section 3
we will illustrate how version 3.0 of WSARE automatically generates the baseline using a Bayesian
network.

We will refer to the events that fit a certain rule for the current day asCrecent. Similarly, the
number of cases matching the same rule from the baseline period will be calledCbaseline. As an
example, suppose the current day is Tuesday December 30, 2003. Thebaseline used for WSARE
2.0 will then be November 4, 11, 18 and 25 of 2003 as seen in Figure 1. These dates are all from
Tuesdays in order to avoid day of week variations.

2.1 Overview of WSARE

Parameter Name Description Default value
maxrule components Maximum number of compo-

nents to a rule
2

numrandomizations Number of iterations to the ran-
domization test

1000

αFDR The significance level of the
False Discovery Rate

0.05

baselinedays (WSARE 2.0
only)

Days to be used for the baseline35, 42, 49, and 56 days prior
to current date

environmentalattributes
(WSARE 2.5 and 3.0)

Attributes that account for tem-
poral trends

Not applicable

numbaselinesamples
(WSARE 3.0 only)

The number of sampled records
from the baseline Bayesian net-
work

10000

Table 1: The main parameters in WSARE
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Report p−value and rule

Find the best scoring rule

using baseline and recent

datasets

Calculate p−value for best

scoring rule using randomization

test

Use FDR to find significant days

Create baseline from

selected days from

historical data

Create baseline using

all historical data that

match environmental

attributes

Learn Bayesian network

from all historical data

Sample baseline from

learned Bayesian network

Running WSARE for one day Running WSARE for a history of days

WSARE 2.0
WSARE 2.5

WSARE 3.0

Figure 2: A schematic overview of the steps involved in the WSARE algorithms

We will begin this section with an overview of the general WSARE algorithm followed by
a more detailed example. Figure 2 gives a pictorial overview of the three WSARE algorithms
discussed in this paper. Note that the three algorithms differ only in how they create the baseline
while all of the other steps remain identical. Table 1 describes the main parameters used by the
WSARE algorithms.

WSARE first finds the best scoring rule over events occurring on the current day using a greedy
search. The limit to the number of components in a rule is set to the parametermaxrule components,
which is typically set to be 2 for computational reasons although in Section 2.5 we describe a greedy
procedure forn component rules. The score of a rule is determined by comparing the eventson the
current day against events in the past. More specifically, we are comparing if the ratio between
certain events on the current day and the total number of events on the current day differ dramati-
cally between the recent period and the past. Following the score calculation, the best rule for that
day has its p-value estimated by a randomization test. The p-value for a rule is the likelihood of
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finding a rule with as good a score under the hypothesis that the date and the other attributes are
independent. The randomization-based p-value takes into account the effect of the multiple testing
that occurs during the rule search. The number of iterations of the randomization test is determined
by the parameternumrandomizations. If we are running the algorithm on a day-by-day basis we
would end at this step. However, if we are looking at a history of days and we want to control for
some level of false discoveries over this group of days, we would need the additional step of using
the False Discovery Rate (FDR) method (Benjamini and Hochberg, 1995) todetermine which of
the p-values are significant. The days with significant p-values are returned as the anomalies.

2.2 One Component Rules

In order to illustrate this algorithm, suppose we have a large database of 1,000,000 ED records over
a two-year span. This database contains roughly 1370 records a day.Suppose we treat all records
within the last 24 hours as “recent” events. In addition, we can build a baseline data set out of all
cases from exactly 35, 42, 49, and 56 days prior to the current day. We then combine the recent
and baseline data to form a record subset calledDBi , which will have approximately 5000 records.
The algorithm proceeds as follows. For each dayi in the surveillance period, retrieve the records
belonging toDBi . We first consider all possible one-component rules. For every possible attribute-
value combination, obtain the countsCrecent andCbaseline from the data setDBi . As an example,
suppose the attribute under consideration isAge Decilefor the ED case. There are 9 possible values
for Age Decile, ranging from 0 to 8. We start with the ruleAge Decile= 3 and count the number of
cases for the current dayi that haveAge Decile= 3 and those that haveAge Decile6= 3. The cases
from five to eight weeks ago are subsequently examined to obtain the countsfor the cases matching
the rule and those not matching the rule. The four values form a two-by-twocontingency table such
as the one shown in Table 2.

2.3 Scoring Each One Component Rule

The next step is to evaluate the “score” of the rule using a hypothesis test inwhich the null hypothesis
is the independence of the row and column attributes of the two-by-two contingency table. In effect,
the hypothesis test measures how different the distribution forCrecent is compared to that ofCbaseline.
This test will generate a p-value that determines the significance of the anomalies found by the rule.
We will refer to this p-value as thescorein order to distinguish this p-value from the p-value that
is obtained later on from the randomization test. We use the Chi Square test for independence of
variables whenever the counts in the contingency table do not violate the validity of the Chi Square
test. However, since we are searching for anomalies, the counts in the contingency table frequently
involve small numbers. In this case, we use Fisher’s exact test (Good, 2000) to find the score for
each rule since the Chi Square test is an approximation to Fisher’s exact test when counts are large.
Running Fisher’s exact test on Table 2 yields a score of 0.025939, which indicates that the count
Crecent for cases matching the ruleHome Location= NW are very different from the countCbaseline.
In biosurveillance, we are usually only interested in an increase in the number of certain records.
As a result, we commonly use a one-sided Fisher’s exact test.
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Crecent Cbaseline

Home Location= NW 6 496
Home Location6= NW 40 9504

Table 2: A Sample 2x2 Contingency Table

2.4 Two Component Rules

At this point, the best one component rule for a particular day has been found. We will refer to
the best one component rule for dayi asBR1

i . The algorithm then attempts to find the best two
component rule for the day by adding on one extra component toBR1

i through a greedy search.
This extra component is determined by supplementingBR1

i with all possible attribute-value pairs,
except for the one already present inBR1

i , and selecting the resulting two component rule with the
best score. Scoring is performed in the exact same manner as before, except the countsCrecent

andCbaselineare calculated by counting the records that match the two component rule. The best
two-component rule for dayi is subsequently found and we will refer to it asBR2

i

SupposeBR1
i has as its first component the attribute-value pairC1 = V1. Furthermore, letBR2

i ’s
components beC1 = V1 andC2 = V2. Adding the componentC2 = V2 to BR1

i may not result in a
better scoring rule. During our search for the best scoring two component rule, we only consider two
component rules in which adding either component has a significant effect. Determining if either
component has a significant effect can be done through two hypothesistests. In the first hypothesis
test, we use Fisher’s exact test to determine the score of addingC2 = V2 to the one component rule
C1 = V1. Similarly, in the second hypothesis test, we use Fisher’s exact test to score the addition of
the componentC1 = V1 to C2 = V2. The 2-by-2 contingency tables used by the two hypothesis tests
are shown in Table 3.

Records from Today withC1 = V1 andC2 = V2 Records from Other withC1 = V1 andC2 = V2

Records from Today withC1 6= V1 andC2 = V2 Records from Other withC1 6= V1 andC2 = V2

Records from Today withC1 = V1 andC2 = V2 Records from Other withC1 = V1 andC2 = V2

Records from Today withC1 = V1 andC2 6= V2 Records from Other withC1 = V1 andC2 6= V2

Table 3: 2x2 Contingency Tables for a Two Component Rule

Once we have the scores for both tables, we need to determine if they are significant or not. A
score is considered significant if the result of a hypothesis test is significant at theα = 0.05 level.
If the scores for the two tables are both significant, then the presence of both components has an
effect. As a result, the best rule overall for dayi is BR2

i . On the other hand, if any one of the scores
is not significant, then the best rule overall for dayi is BR1

i .

2.5 n Component Rules

Let BRk−1
i be the bestk−1 component rule found for dayi. In the general case of finding the bestn

component rule, the procedure is analogous to that of the previous section. GivenBRk−1
i , we produce

BRk
i by greedily adding on the best component, which is found by evaluating all possible attribute-
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value pairs as the next component, excluding those already present in components ofBRk−1
i . Starting

with BR1
i , we repeat this procedure until we reachBRn

i .
In order to determine if the addition of a component is significant, we should in theory test all

possible combinations of then components. In general, we need 2
b n

2c
∑

i=1

(n
i

)

such tests. Having this

many tests is clearly computationally intensive asn increases. As an approximation, we resort to
testing if adding thenth component is significant with respect to then−1 other components. The
two significance tests are as shown in Table 4, whereCn =Vn refers to the last component added and
C1 = V1, . . . ,Cn−1 = Vn−1 refers to the conjunction of the previousn−1 components. As before, if
both of the Fisher’s exact tests return a score less thanα = 0.05, then we consider the addition of the
rule component significant. Due to this step, the probability of having a rule withmany components
is low because for each component added, it needs to be significant at the 95% level for both of the
Fisher’s exact tests.

Records from Today withC1 = V1, . . . ,Cn−1 = Vn−1 andCn =
Vn

Records from Other withC1 = V1, . . . ,Cn−1 = Vn−1 andCn =
Vn

Records from Today withC1 = V1, . . . ,Cn−1 = Vn−1 andCn 6=
Vn

Records from Other withC1 = V1, . . . ,Cn−1 = Vn−1 andCn 6=
Vn

Records from Today withC1 = V1, . . . ,Cn−1 = Vn−1 andCn =
Vn

Records from Other withC1 = V1, . . . ,Cn−1 = Vn−1 andCn =
Vn

Records from Today with¬(C1 = V1, . . . ,Cn−1 = Vn−1) and
Cn = Vn

Records from Other with¬(C1 = V1, . . . ,Cn−1 = Vn−1) and
Cn = Vn

Table 4: 2x2 Contingency Tables for an N Component Rule

2.6 Finding the p-value for a Rule

The algorithm above for determining scores is prone to overfitting due to multiplehypothesis test-
ing. Even if data were generated randomly, most single rules would have insignificant p-values but
the best rule would be significant if we had searched over 1000 possiblerules. In order to illustrate
this point, suppose we follow the standard practice of rejecting the null hypothesis when the p-value
is < α, whereα = 0.05. In the case of a single hypothesis test, the probability of a false positive
under the null hypothesis would beα, which equals 0.05. On the other hand, if we perform 1000
hypothesis tests, one for each possible rule under consideration, then the probability of a false posi-
tive could be as bad as 1− (1−0.05)1000≈ 1, which is much greater than 0.05 (Miller et al., 2001).
Thus, if our algorithm returns a significant p-value, we cannot acceptit at face value without adding
an adjustment for the multiple hypothesis tests we performed. This problem canbe addressed using
a Bonferroni correction (Bonferroni, 1936) but this approach would be unnecessarily conservative.
Instead, we use a randomization test. Under the null hypothesis of this randomization test, the date
and the other ED case attributes are assumed to be independent. Consequently, the case attributes in
the data setDBi remain the same for each record but the date field is shuffled between records from
the current day and records from five to eight weeks ago. The full method for the randomization
test is shown below.

Let UCPi = Uncompensated p-value i.e. the score as defined above.
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For j = 1 to 1000
Let DB( j)

i = newly randomized data set

Let BR( j)
i = Best rule onDB( j)

i

Let UCP( j)
i = Uncompensated p-value ofBR( j)

i onDB( j)
i

Let the compensated p-value ofBRi beCPVi i.e.

CPVi =
# of Randomized Tests in whichUCP( j)

i < UCPi

# of Randomized Tests

CPVi is an estimate of the chance that we would have seen an uncompensated p-value as good
asUCPi if in fact there was no relationship between date and case attributes. Note that we do not
use the uncompensated p-valueUCPi after the randomization test. Instead, the compensated p-value
CPVi is used to decide if an alarm should be raised.

The bottleneck in the entire WSARE procedure is the randomization test. If implemented
naively, it can be extremely computationally intense. In order to illustrate its complexity, suppose
there areM attributes and each attribute can take onK possible values. In addition, let there beNT

records for today andNB records for the baseline period. Note that typically,NT is 4 to 20 times
smaller thanNB. At iteration j of the randomization test, we need to search for the best scoring rule
over DB( j)

i . Assuming we limit the number of components in a rule to be two, searching for the
best rule using a greedy search requires scoringKM + K(M −1) rules. Scoring a rule requires us
to obtain the entries for the two by two contingency table by counting overNT +NB records. Thus,
each iteration of the randomization test has a complexity of(KM +K(M−1))∗ (NT +NB). With Q
iterations, the overall complexity of the randomization test isO(QKM(NT +NB)).

One of the key optimizations to speeding up the randomization test is the techniqueof “racing”
(Maron and Moore, 1997). IfBRi is highly significant, we run the full 1000 iterations but we stop
early if we can show with very high confidence thatCPVi is going to be greater than 0.1. As an
example, suppose we have gone throughj iterations and letCPV j

i be the value ofCPVi on the
current iterationj (CPV j

i is calculated as the number of times so far that the best scoring rule on the
randomized data set has a lower p-value than the best scoring rule over the original unrandomized
data set). Using a normality assumption on the distribution ofCPVi , we can estimate the standard
deviationσCPVi and form a 95% confidence interval on the true value ofCPVi . This is achieved using

the intervalCPV j
i ± 1.96σCPVi√

n . If the lower half of this interval, namelyCPV j
i − 1.96σCPVi√

n , is greater
than, say 0.1, we are 95% sure that this score will be insignificant at the 0.1level. On a typical data
set where an outbreak is unlikely, the majority of days will result in insignificant p-values. As a
result, we expect the racing optimization to allow us to stop early on many days.

2.7 Using FDR to Determine Which p-values are Significant

This algorithm can be used on a day-to-day basis or it can operate over ahistory of several days
to report all significantly anomalous patterns. When using our algorithm on aday-to-day basis,
the compensated p-valueCPVi obtained for the current day through the randomization tests can
be interpreted at face value. However, when analyzing historical data,we need to characterize
the false discovery rate over the group of days in the history, which requires comparing theCPVi

values for each day. Comparison of multipleCPVi values in the historical window results in a
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second overfitting opportunity analogous to that caused by performing multiple hypothesis tests
to determine the best rule for a particular day. As an illustration, suppose wetook 500 days of
randomly generated data. Then, approximately 5 days would have aCPVi value less than 0.01 and
these days would naively be interpreted as being significant. Two approaches can be used to correct
this problem. The Bonferroni method (Bonferroni, 1936) aims to reduce the probability of making
one or more false positives to be no greater thanα. However, this tight control over the number of
false positives causes many real discoveries to be missed. The other alternative is Benjamini and
Hochberg’s False Discovery Rate method, (Benjamini and Hochberg, 1995), which we will refer to
as BH-FDR. BH-FDR guarantees that the false discovery rate, which is the expected fraction of the
number of false positives over the number of tests in which the null hypothesisis rejected, will be no
greater thanαFDR. The FDR method is more desirable as it has a higher power than the Bonferroni
correction while keeping a reasonable control over the false discoveryrate. We incorporate the
BH-FDR method into our rule-learning algorithm by first providing anαFDR value and then using
BH-FDR to find the cutoff threshold for determining which p-values are significant.

3. WSARE 3.0

Many detection algorithms (Goldenberg et al., 2002; Zhang et al., 2003; Fawcett and Provost, 1997)
assume that the observed data consist of cases from background activity, which we will refer to as
the baseline, plus any cases from irregular behavior. Under this assumption, detection algorithms
operate by subtracting away the baseline from recent data and raising analarm if the deviations
from the baseline are significant. The challenge facing all such systems is toestimate the baseline
distribution using data from historical data. In general, determining this distribution is extremely
difficult due to the different trends present in surveillance data. Seasonal variations in weather and
temperature can dramatically alter the distribution of surveillance data. For example, flu season
typically occurs during mid-winter, resulting in an increase in ED cases involving respiratory prob-
lems. Disease outbreak detectors intended to detect epidemics such as SARS, West Nile Virus and
anthrax are not interested in detecting the onset of flu season and would be thrown off by it. Day
of week variations make up another periodic trend. Figure 3, which is takenfrom Goldenberg et al.
(2002), clearly shows the periodic elements in cough syrup and liquid decongestant sales.

Choosing the wrong baseline distribution can have dire consequences for an early detection
system. Consider once again a database of ED records. Suppose we are presently in the middle
of flu season and our goal is to detect anthrax, not an influenza outbreak. Anthrax initially causes
symptoms similar to those of influenza. If we choose the baseline distribution to beoutside of the
current flu season, then a comparison with recent data will trigger many false anthrax alerts due to
the flu cases. Conversely, suppose we are not in the middle of flu seasonand that we obtain the
baseline distribution from the previous year’s influenza outbreak. The system would now consider
high counts of flu-like symptoms to be normal. If an anthrax attack occurs, it would be detected
late, if at all.
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Figure 3: Cough syrup and liquid decongestant sales from (Goldenberg et al., 2003)

There are clearly tradeoffs when defining this baseline distribution. At one extreme, we would
like to capture any current trends in the data. One solution would be to use only the most recent data,
such as data from the previous day. This approach, however, placestoo much weight on outliers
that may only occur in a short but recent time period. On the other hand, wewould like the baseline
to be accurate and robust against outliers. We could use data from all previous years to establish the
baseline. This choice would smooth out trends in the data and likely raise alarmsfor events that are
due to periodic trends.

In WSARE 2.0, we made the baseline distribution to be raw data obtained from selected his-
torical days. For example, we chose data from 35, 42, 49, and 56 daysprior to the current day
under examination. These dates were chosen to incorporate enough dataso that seasonal trends
could be captured and they were also chosen to avoid weekend versus weekday effects by making
all comparisons from the same day of week. This baseline was chosen manually in order to tune
the performance of WSARE 2.0 on the data set. Ideally, the detection system should determine the
baseline automatically.

In this section, we describe how we use a Bayesian network to representthe joint probability
distribution of the baseline. From this joint distribution, we represent the baseline distributions from
the conditional distributions formed by conditioning on what we termenvironmental attributes.
These attributes are precisely those attributes that account for trends in the data, such as the season,
the current flu level and the day of week.

3.1 Creating the Baseline Distribution

Learning the baseline distribution involves taking all records prior to the past 24 hours and build-
ing a Bayesian network from this subset. During the structure learning, wedifferentiate between
environmental attributes, which are attributes that cause trends in the data, and response attributes,
which are the remaining attributes. The environmental attributes are specifiedby the user based
on the user’s knowledge of the problem domain. If there are any latent environmental attributes
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that are not accounted for in this model, the detection algorithm may have some difficulties. How-
ever, as will be described later on in Section 4, WSARE 3.0 was able to overcome some hidden
environmental attributes in our simulator.

While learning the structure of the Bayesian network, environmental attributes are prevented
from having parents because we are not interested in predicting their distributions, but rather, we
want to use them to predict the distributions of the response attributes. In general, any structure
learning algorithm can be used in this step as long as it follows this restriction. In fact, the structure
search can even exploit this constraint by avoiding search paths that assign parents to the environ-
mental attributes.

We experimented with using hillclimbing to learn the Bayesian network structure and found it
to be both slow and prone to being trapped in local optima. As a result, we developed an efficient
structure search algorithm called Optimal Reinsertion based on ADTrees (Moore and Lee, 1998).
Unlike hillclimbing, which performs a single modification to a directed acyclic graph(DAG) on each
step, Optimal Reinsertion is a larger scale search operator that is much less prone to local optima.
Optimal Reinsertion first picks a target nodeT from the DAG, disconnectsT from the graph, and
efficiently finds the optimal way to reinsertT back into the graph according to the scoring function.
The details of this algorithm can be found in (Moore and Wong, 2003).

We have often referred to environmental attributes as attributes that causeperiodic trends. En-
vironmental attributes, however, can also include any source of information that accounts for recent
changes in the data. For example, suppose we detect that a botulism outbreak has occurred and
we would still like to be on alert for any anthrax releases. We can add “Botulism Outbreak” as
an environmental attribute to the network and supplement the current data withinformation about
the botulism outbreak. Incorporating such knowledge into the Bayesian network allows WSARE to
treat events due to the botulism outbreak as part of the baseline.

Once the Bayesian network is learned, we have a joint probability distributionfor the data.
We would like to produce a conditional probability distribution, which is formed by condition-
ing on the values of the environmental attributes. Suppose that today is February 21, 2003. If
the environmental attributes wereSeasonandDay o f Week, we would setSeason= Winter and
Day o f Week= Weekday. Let the response attributes in this example beX1, ...,Xn. We can then
obtain the probability distributionP(X1, ...,Xn | Season= Winter, Day o f Week= Weekday) from
the Bayesian network. For simplicity, we represent the conditional distribution as a data set formed
by sampling a large number of records from the Bayesian network conditioned on the environmental
attributes. The number of samples is specified by the parameternumbaselinesamples, which has
to be large enough to ensure that samples with rare combinations of attributes will be present. In
general, this number will depend on the learned Bayesian network’s structure and the parameters
of the network. We chose to sample 10000 records because we determinedempirically that this
number is a reasonable compromise between running time and accuracy on our data. We will refer
to this sampled data set asDBbaseline. The data set corresponding to the records from the past 24
hours of the current day will be namedDBrecent.

We used a sampled data set instead of using inference mainly for simplicity. Inference might be
faster than sampling to obtain the conditional probabilityP(X1, . . . ,Xn | Environmental Attributes),
especially when the learned Bayesian networks are simple. However, if inference is used, it is
somewhat unclear how to perform the randomization test. With sampling, on the other hand, we
only need to generateDBbaselineonce and then we can use it for the randomization test to obtain
the p-values for all the rules. In addition, sampling is easily done in an efficient manner since
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environmental attributes have no parents. While a sampled data set providesthe simplest way
of obtaining the conditional distribution, we have not completely ignored the possibility of using
inference to speed up this process. We would like to investigate this direction further in our future
work.

3.2 Dealing with New Hospitals Coming Online

WSARE 3.0 assumes that the baseline distribution remains relatively stable, with the environmental
attributes accounting for the only sources of variation. However, in a real life situation where data
are pooled from various EDs around a city, new hospitals frequently comeonline and become a new
source of data to be monitored. These new data sources cause a shift from the baseline distribution
that is not accounted for in WSARE 3.0. For example, suppose a children’s hospital begins sending
data to the surveillance system. In this case, WSARE 3.0 would initially detect an anomalous
pattern due to an increase in the number of cases involving children from thepart of the city where
the children’s hospital is located. Over time, WSARE 3.0 would eventually incorporate the newly
added hospital’s data into its baseline.

In general, this problem of a shifted distribution is difficult to address. We approach this issue
by ignoring the new data sources until we have enough data from them to incorporate them into the
baseline. Our solution relies on the data containing an attribute such asHospital ID that can identify
the hospital that the case originated from. HIPAA regulations can sometimes prevent ED data from
containing such identifying attributes. In this case, we recommend using WSARE 2.0 with a recent
enough baseline period in order to avoid instabilities due to new data sources. Whenever the data
includes aHospital ID attribute, we first build a list of hospitals that provide data for the current
day. For each hospital in this list, we keep track of the first date a case camefrom that particular
hospital. If the current day is less than a year after the first case date, we consider that hospital
to have insufficient historical data for the baseline and we ignore all records from that hospital.
For each hospital with sufficient historical records, we then build a Bayesian network using only
historical data originating from that particular hospital.

In order to produce the baseline data set, we sample a total of 10000 records from all the hospital
Bayesian networks. Let hospitalh havenh records on the current day and suppose there areH
hospitals with sufficient historical data for the current date. Then letNh = ∑H

h=1nh. Each hospital
Bayesian network contributes 10000∗ nh

Nh
number of samples to the baseline data set. As an example,

suppose we have 5 hospitals with 100 records each. Furthermore, assume that we can ignore the
fourth hospital’s records since its first case is less than a year prior to thecurrent date. We are then
left with 4 hospitals with 100 records each. After we build the Bayesian network for each hospital,
we sample 2500 records from the Bayesian network belonging to each of the four hospitals.

4. Evaluation

Validation of early outbreak detection algorithms is generally a difficult task due to the type of data
required. Health-care data during a known disease outbreak, either natural or induced by a bioa-
gent release, are extremely limited. Even if such data were plentiful, evaluation of biosurveillance
algorithms would require the outbreak periods in the data to be clearly labelled.This task requires
an expert to inspect the data manually, making this process extremely slow. Consequently, such
labelled data would still be scarce and making statistically significant conclusions with the results
of detection algorithms would be difficult. Furthermore, even if a group of epidemiologists were to

1973



WONG, MOORE, COOPER ANDWAGNER

be assembled to label the data, there would still be disagreements as to when anoutbreak begins
and ends.

As a result of these limitations, we validate the WSARE algorithms on data from a simulator
which we will refer to as the city Bayesian network (CityBN) simulator. The CityBN simulator
is based on a large Bayesian network that introduces temporal fluctuationsbased on a variety of
factors. The structure and the parameters for this Bayesian network arecreated by hand. This
simulator is not intended to be a realistic epidemiological model. Instead, the modelis designed to
produce extremely noisy data sets that are a challenge for any detection algorithm. In addition to
simulated data, we also include WSARE output from ED data from an actual city. Due to the fact
that epidemiologists have not analyzed this real world data set for known outbreaks, we are only
able to provide annotated results from the runs of WSARE.

4.1 The CityBN Simulator

The city in the CityBN simulator consists of nine regions, each of which containsa different sized
population, ranging from 100 people in the smallest area to 600 people in the largest section, as
shown in Table 5. We run the simulation for a two year period starting from January 1, 2002 to
December 31, 2003. The environment of the city is not static, with weather, flu levels and food
conditions in the city changing from day to day. Flu levels are typically low in the spring and
summer but start to climb during the fall. We make flu season strike in winter, resulting in the
highest flu levels during the year. Weather, which only takes on the valuesof hot or cold, is as
expected for the four seasons, with the additional feature that it has a good chance of remaining the
same as it was yesterday. Each region has a food condition of good or bad. A bad food condition
facilitates the outbreak of food poisoning in the area.

NW (100) N (400) NE (500)
W (100) C (200) E (300)
SW (200) S (200) SE (600)

Table 5: The geographic regions in the CityBN simulator with their populations in parentheses

Date

Day of
Week

Weather Flu Level Region Food
Condition

Previous
Flu Level

SeasonWeather
Previous Previous Region

Food Condition

Previous Region
Anthrax Concentration

Region Anthrax
Concentration

Figure 4: City Status Bayesian Network

We implement this city simulation using a single large Bayesian network. For simplicity,we
will describe this large Bayesian network in two parts, as shown in Figures 4and 5. The subnetwork
shown in Figure 4 is used to create the state of the city for a given day. Given the state of the city,
the network in Figure 5 is used to generate records for individual patients.

We use the convention that any nodes shaded black in the subnetwork areset by the system and
do not have their values generated probabilistically. Due to space limitations, instead of showing
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eighteen separate nodes for the current and previous food conditionsof each region in Figure 4, we
summarize them using the generic nodesRegion Food ConditionandPrevious Region Food Condition
respectively. This same space saving technique is used for the currentand previous region an-
thrax concentrations. Most of the nodes in this subnetwork take on two to three values. For
each day, after the black nodes have their values set, the values for the white nodes are sampled
from the subnetwork. These records are stored in the City Status (CS) data set. The simulated
anthrax release is selected for a random date during a specified time period. One of the nine re-
gions is chosen randomly for the location of the simulated release. On the date of the release, the
Region Anthrax Concentrationnode is set to have the value ofHigh. The anthrax concentration
remains high for the affected region for each subsequent day with an 80% probability. This prob-
ability is chosen in order to ensure that enough individuals in the simulation arebeing infected by
anthrax over an extended period of time after the attack.

Heart
Health

Activity
Outside

System
Immune

Actual
Symptom

Has Anthrax

Has Food
Poisoning

Disease

Has Sunburn

Has Allergy
Has Cold

Has Flu

REPORTED
SYMPTOM

ACTION DRUG

Region
Anthrax

Concentration

DATE

FLU LEVEL DAY OF WEEK SEASON WEATHER

REGION

Has Heart
Problems

AGE

GENDER

Region

Region
Food

Grassiness

Condition

Figure 5: Patient Status Bayesian Network

Table 6: Examples of two records in the PS data set

Location NW N
Age Child Senior
Gender Female Male
Flu Level High None
Day of Week Weekday Weekday
Weather Cold Hot
Season Winter Summer
Action Absent ED visit
Reported Symptom Nausea Rash
Drug None None
Date Jan-01-2002 Jun-21-2002

The second subnetwork used in our simulation produces individual healthcare cases. Figure 5
depicts the Patient Status (PS) network. On each day, for each person ineach region, we sample
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the individual’s values from this subnetwork. The black nodes first have their values assigned from
the CS data set record for the current day. For the very first day, theblack nodes are assigned a
set of initial values. The white nodes are then sampled from the PS network.Each individual’s
health profile for the day is thus generated. The nodesFlu Level, Day o f Week, Season, Weather,
Region Grassiness, andRegion Food Conditionare intended to represent environmental variables
that affect the upswings and downswings of a disease. TheRegion Grassinessnodes indicate the
amount of pollen in the air and thus affect the allergies of a patient. We choosethese environmental
variables because they are the most common factors influencing the health ofa population. Two
of the environmental variables, namelyRegion GrassinessandRegion Food Condition, are hidden
from the detection algorithm while the remaining environmental attributes are observed. We choose
to hide these two attributes because the remaining four attributes that are observed are typically
considered when trying to account for temporal trends in biosurveillancedata.

As for the other nodes, theDiseasenode indicates the status of each person in the simulation.
We assume that a person is either healthy or they can have, in order of precedence, allergies, the
cold, sunburn, the flu, food poisoning, heart problems or anthrax. Ifthe values of the parents of
theDiseasenode indicate that the individual has more than one disease, theDiseasenode picks the
disease with the highest precedence. This simplification prevents individuals from having multiple
diseases. A sick individual then exhibits one of the following symptoms: none, respiratory prob-
lems, nausea, or a rash. Note that in our simulation, as in real life, different diseases can exhibit the
same symptoms, such as a person with the flu can exhibit respiratory problemsas could a person
with anthrax. The actual symptom associated with a person may not necessarily be the same as
the symptom that is reported to health officials. Actions available to a sick person included doing
nothing, buying medication, going to the ED, or being absent from work or school. As with the CS
network, the arities for each node in the PS network are small, ranging fromtwo to four values. If
the patient performs any action other than doing nothing, the patient’s health care case is added to
the PS data set. Only the attributes in Figure 5 labelled with uppercase letters arerecorded, result-
ing in a great deal of information being hidden from the detection algorithm, including some latent
environmental attributes. The number of cases the PS network generates daily is typically in the
range of 30 to 50 records. Table 6 contains two examples of records in thePS data set.

We run six detection algorithms on 100 different PS data sets. Each data setis generated for
a two year period, beginning on January 1, 2002 and ending December 31, 2003. The detection
algorithms train on data from the first year until the day being monitored while thesecond year is
used for evaluation. The anthrax release is randomly chosen in the periodbetween January 1, 2003
and December 31, 2003.

We try to simulate anthrax attacks that are not trivially detectable. Figure 6 plotsthe total count
of health-care cases on each day during the evaluation period while Figure 7 plots the total count of
health-care cases involving respiratory symptoms for the same simulated data set. A naive detection
algorithm would assume that the highest peak in this graph would be the date ofthe anthrax release.
However, the anthrax release occurs on day index 74,409, which is clearly not the highest peak in
either graph. Occasionally the anthrax releases affects such a limited number of people that it is
undetected by all the algorithms. Consequently, we only use data sets with morethan eight reported
anthrax cases on any day during the attack period.

The following paragraphs describe the six detection algorithms that we run on the data sets.
Three of these methods, namely the control chart, moving average, and ANOVA regression algo-
rithms, operate on univariate data. We apply these three algorithms to two different univariate data
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Figure 6: Daily counts of health-care data
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Figure 7: Daily counts of health-care data involving respiratory symptoms

sets – one data set is composed of total daily counts and the other of daily counts of cases involving
respiratory symptoms. The remaining three algorithms are variations on WSARE.

The Control Chart Algorithm The first algorithm used is a common anomaly detection algo-
rithm called a control chart. This detector determines the mean and variance of the total number of
records on each day in the PS data set during the training period. A threshold is calculated based on
the formula below, in whichΦ−1 is the inverse to the cumulative distribution function of a standard
normal while the p-value is supplied by the user.

threshold= µ+σ∗Φ−1(1− p-value
2

)

If the aggregate daily counts of health care data exceeds this threshold during the evaluation
period, the control chart raises an alarm. We use a training period of January 1, 2002 to December
31, 2002.

Moving Average Algorithm The second algorithm that we use is a moving average algorithm
that predicts the count for the current day as the average of counts from the previous 7 days. The
window of 7 days is intended to capture any recent trends that might appear in the data. An alarm
level is generated by fitting a Gaussian to data prior to the current day and obtaining a p-value for
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the current day’s count. The mean and standard deviation for the Gaussian is calculated using data
from 7 days before the current day.

ANOVA Regression A simple detector that accounts for environmental factors is ANOVA re-
gression, which is simply linear regression supplemented with covariates forthe environmental
variables. We include 6 covariates for the days of the week, 3 for the seasons and one for the
daily aggregate count from the previous day. ANOVA regression is a fairly powerful detector when
temporal trends are present in the data, as was shown in (Buckeridge etal., 2005).

WSARE 2.0 WSARE 2.0 is also evaluated, using a baseline distribution of records from 35,
42, 49 and 56 days before the current day. The attributes used by WSARE 3.0 as environmental
attributes are ignored by WSARE 2.0. If these attributes are not ignored, WSARE 2.0 would report
many trivial anomalies. For instance, suppose that the current day is the first day of fall, making
the environmental attributeSeason= Fall . Furthermore, suppose that the baseline is taken from
the summer season. If the environmental attributes are not ignored, WSARE2.0 would notice that
100% of the records for the current day haveSeason= Fall while 0% of the records in the baseline
data set match this rule.

WSARE 2.5 Instead of building a Bayesian network over the past data, WSARE 2.5 simplybuilds
a baseline from all records prior to the current period with their environmental attributes equal to the
current day’s. In our simulator, we use the environmental attributesFlu Level, Season, Day o f Week
andWeather. To clarify this algorithm, suppose for the current day we have the following values
of these environmental attributes:Flu Level= High, Season= Winter, Day o f Week= Weekday
andWeather= Cold. ThenDBbaselinewould contain only records before the current period with
environmental attributes having exactly these values. It is possible that no such records exist in the
past with exactly this combination of environmental attributes. If there are fewer than five records in
the past that matched, WSARE 2.5 can not make an informed decision when comparing the current
day to the baseline and simply reports nothing for the current day.

WSARE 3.0 WSARE 3.0 uses the same environmental attributes as WSARE 2.5 but builds a
Bayesian network for all data from January 1, 2002 to the day being monitored. We hypothesize
that WSARE 3.0 would detect the simulated anthrax outbreak sooner than WSARE 2.5 because
3.0 can handle the cases where there are no records corresponding tothe current day’s combination
of environmental attributes. The Bayesian network is able to generalize from days that do not
match today precisely, producing an estimate of the desired conditional distribution. For efficiency
reasons, we allow WSARE 3.0 to learn the network structure from scratch once every 30 days on
all data since January 1, 2002. On intermediate days, WSARE 3.0 simply updates the parameters
of the previously learned network without altering its structure. In practice, we expect WSARE 3.0
to be used in this way since learning the network structure on every day may be very expensive
computationally.

4.1.1 RESULTS

In order to evaluate the performance of the algorithms, we plot an Activity Monitoring Operating
Characteristic (AMOC) curve (Fawcett and Provost, 1999), which is similar to an ROC curve. On
the AMOC curves to follow, the x-axis indicates the number of false positivesper month while the
y-axis measures the detection time in days. For a given alarm threshold, we plot the performance
of the algorithm at a particular false positive level and detection time on the graph. As an example,
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suppose we are dealing with an alarm threshold of 0.05. We then take all the alarms generated by
an algorithm, say WSARE 3.0, that have a p-value less than or equal to 0.05.Suppose there are two
such alarms, with one alarm appearing 5 days before the simulated anthrax release, which would be
considered a false positive, and the other appearing 3 days after the release, making the detection
time 3 days. If we run the detection algorithms for 1 month, then we would plot a point at (1,3).

We then vary the alarm threshold in the range of 0 to 0.2 and plot points at each threshold value.
For a very sensitive alarm threshold such as 0.2, we expect a higher number of false positives but
a lower detection time. Hence the points corresponding to a sensitive threshold would be on the
lower right hand side of the graph. Conversely, an insensitive alarm threshold like 0.01 would result
in a lower number of false positives and a higher detection time. The corresponding points would
appear on the upper left corner of the graph.
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Figure 8: AMOC curves comparing WSARE 3.0 to univariate algorithms operating on total daily
counts from the CityBN simulator

Figures 8 to 10 plot the AMOC curve, averaged over the 100 data sets, withan alarm threshold
increment of 0.001. On these curves, the optimal detection time is one day, as shown by the dotted
line at the bottom of the graph. We add a one day delay to all detection times to simulate reality
where current data is only available after a 24 hour delay. Any alert occurring before the start of the
simulated anthrax attack is treated as a false positive. Detection time is calculated as the first alert
raised after the release date. If no alerts are raised after the release, the detection time is set to 14
days.

Figures 8 and 9 show that WSARE 3.0 clearly outperform the univariate algorithms when the
univariate algorithms operate on the total daily counts and also when the univariate algorithms
operate on the daily counts of cases involving respiratory symptoms. In Figure 10, WSARE 2.5
and WSARE 3.0 outperform the other algorithms in terms of the detection time and false positive
tradeoff. For a false positive rate of one per month, WSARE 2.5 and WSARE 3.0 are able to detect
the anthrax release within a period of one to two days. The Control Chart, moving average, ANOVA
regression and WSARE 2.0 algorithms are thrown off by the periodic trendspresent in the PS data.
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Figure 9: AMOC curves comparing WSARE 3.0 to univariate algorithms operating on cases in-
volving respiratory symptoms from the CityBN simulator
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Figure 10: AMOC curves for WSARE variants operating on CityBN data

We previously proposed that WSARE 3.0 would have a better detection time thanWSARE 2.5
due to the Bayesian network’s ability to produce a conditional distribution fora combination of
environmental attributes that may not exist in the past data. After checking the simulation results
for which WSARE 3.0 outperformed WSARE 2.5, we conclude that in some cases, our proposition
is true. In others, the p-values estimated by WSARE 2.5 are not as low as those of version 3.0. The
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baseline distribution of WSARE 2.5 is likely not as accurate as the baseline of WSARE 3.0 due
to smoothing performed by the Bayesian network. The false positives found by WSARE 2.5 and
WSARE 3.0 are likely due to other non-anthrax illnesses that are not accounted for in the Bayesian
network. Had we explicitly added a Region Food Condition environmental attribute to the Bayesian
network, this additional information would likely have reduced the false positive count.

Figures 11 to 14 illustrate the various outbreak sizes in the simulated data by plotting the number
of anthrax cases per day during the outbreak period. Since the outbreak sizes and durations are
randomly generated for each of the 100 data sets, we do not have room toshow plots for each
data set. Instead, we include representative plots of the outbreaks that appeared in our simulated
data. Figure 11 represents a large scale outbreak which was easily detected on the first day by most
algorithms. Large scale outbreaks were rare in our simulated data. Figure 12 is a representative
plot of a medium scale outbreak that is most common in the data. The particular outbreak shown
in Figure 12 is also detected by WSARE 3.0 on the first day for an alarm threshold of 0.005. Small
scale outbreaks, as shown in Figure 13, are the most difficult to detect. WSARE 3.0 detects the
outbreak in Figure 13 on the third day with a very insensitive alarm thresholdof 0.005. Figure 14
contains an outbreak that WSARE 3.0 is unable to detect using an alarm threshold of 0.03.

We also conduct four other experiments to determine the effect of varyingcertain parameters
of WSARE 3.0. In the first experiment, we use a Bonferroni correction tocorrect for multiple
hypothesis testing instead of a randomization test. The AMOC curve for the results, as shown
in Figure 15 indicate that the Bonferroni correction results are almost identical to those of the
randomization test. This similarity was expected because on each day, there are approximately
only 50 hypothesis tests being performed to find the best scoring rule and the hypothesis tests are
weakly dependent on each other. However, as the number of hypothesis tests increases and as the
dependence between the hypothesis tests increases, the results of the randomization test should be
better than those of the Bonferroni correction.

In order to illustrate the advantages of the randomization test, we produce dependent hypothesis
tests in WSARE by creating attributes that are dependent on each other. Wegenerate a data set
using a Markov chainX0, . . . ,Xn in which the states of each random variable in the chain become
the attributes in the data set. Each random variableXt in the Markov chain can be in stateA, B, C,
or D, except forX0 which always starts atA. At each time stept, the random variableXt retains
the state ofXt−1 in the Markov chain with a 90% chance. With a 10% chance,Xt takes on the next
state in the ordered sequenceA, B, C andD. As an example, ifXt−1 = A, Xt can remain asA or
it can becomeB. If Xt−1 = D, Xt can retain the same state asXt−1 or transition back to the state
A, which is the first state of the ordered sequence. We use this model to generate 150 days worth
of data in which each day contains 1000 records and each record contains 100 attributes. We then
sample 14 days of data with the same characteristics except the Markov chainis altered slightly so
that each random variableXt remains in the same state asXt−1 with an 89% probability. Thirty data
sets, each containing a total of 164 days are produced. Two variations of WSARE 2.0, one with a
randomization test and the other with a Bonferroni correction, are appliedto these thirty data sets in
order to detect the change.

Figure 16 plots the average AMOC curve of this experiment. As the graph illustrates, at a false
positive rate of less than 0.4 per month, the randomization test has a much better detection time.
Upon further analysis, we find that the reduced performance of the Bonferroni correction are due to
a much higher number of false positives. As an example, we find that WSAREoften notices that a
rule such asX27 = C AND X96 = B produces a very good score. The Bonferroni correction deals
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Figure 11: An example of a large scale outbreak
in the CityBN data
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Figure 12: An example of a medium scale out-
break in the CityBN data
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Figure 13: An example of a small scale outbreak
in the CityBN data
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Figure 14: An example of an outbreak that was
not detected in the CityBN data by
WSARE 3.0 with an alarm threshold
of 0.03
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Figure 15: The Bonferroni correction version of WSARE versus the randomization test version on
the CityBN data

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3

D
et

ec
tio

n 
T

im
e 

in
 D

ay
s

False Positives per Month

Effect of Dependence among Hypothesis Tests on the Randomization Test and the Bonferroni Correction

Bonferroni
Randomization

Figure 16: A comparison between the Bonferroni correction version ofWSARE and the random-
ization test version on data generated from a Markov chain

with the multiple hypothesis problem by simply multiplying the score with the number of hypothesis
tests. Although there are a high number of hypothesis tests in this experiment, multiplying by the
number of hypothesis tests still results in a low compensated p-value. The randomization test, on
the other hand, notices that although the score is very good, the probabilityof finding an equal or
better score for another rule, such asX46 = A AND X94 = B is quite high because of the dependence
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between attributes. Thus, the resulting compensated p-value from the randomization test is quite
high, signifying that the pattern defined by the rule is not so unusual afterall.
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Figure 17: The effect of varying the maximum number of components for a rule on the AMOC
curve for CityBN data

The second experiment involves varying the maximum components allowed perrule from one
to three. As seen on the AMOC curve in Figure 17, the variations do not seem significantly different
to the left of the one false positive per month mark. However, after this point,a version of WSARE
with a three component limit outperforms the other two variations. By setting the maximum number
of components per rule to be three, WSARE is capable of being more expressive in its description
of anomalous patterns. On the other hand, WSARE also guards against overfitting by requiring
each component added to be 95% significant for the two hypothesis tests performed in Section 2.5.
This criterion makes the addition of a large number of rule components unlikely and we expect the
optimal number of components to be about two or three.

The third experiment involves changing the rule search to be exhaustive rather than greedy.
Note that if we compare the score of the best rule found by the exhaustivemethod against that
found by the greedy method, the exhaustive method would unquestionably find a rule with an equal
or greater score than the greedy method. In Figure 18, however, we compare the performance of
the two algorithms using AMOC curves. Each coordinate on the AMOC curve isa result of a
compensated p-value produced by the randomization test and not the rule score. Thus, even though
an exhaustive rule search will always equal or outperform a greedyrule search in terms of the best
rule score, it is not guaranteed to be superior to the greedy rule searchon an AMOC curve due to the
fact that the randomization test adjusts the rule score for multiple hypothesis testing. In Figure 18,
we plot the AMOC curves comparing the average performance for both theexhaustive and greedy
algorithms over 100 experiments; we do not show the confidence intervals inorder to avoid clutter.
The confidence intervals for both the greedy and the exhaustive curves do overlap substantially.
Therefore, there appears to be no significant difference between thetwo algorithms for the data
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Figure 18: AMOC curves for greedy versus exhaustive rule searchfor CityBN data

from this simulator. We measure the exhaustive search to be 30 times slower than the greedy search.
Since the AMOC curves are nearly identical for our simulated data, we prefer the greedy search.
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Figure 19: The effect of increased noise levels in the data on WSARE 3.0

Finally, we experiment with adding noise to the data by increasing the number ofED cases
due to allergies, food poisoning, sunburns and colds. We increase the noise levels by increasing
the probabilities ofRegion Food Condition= bad, Has Allergy= true, Has Cold= true, and
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Has Sunburn= true in their respective conditional probability tables. Note that these nodes areall
not visible in the output data. Increasing these probabilities involves changes to many entries of
the conditional probability tables and we do not have space to list all of the changes. In general,
we increase the probabilities of the corresponding entries in the conditionalprobability tables by
approximately 0.004-0.005. We cannot say specifically how many noisy cases are generated since
this amount fluctuates over time.

We produce 100 data sets with increased noise levels which we will refer to as “Noisy” and we
also produce another 100 data sets with even more noise which we will referto as “Noisier”. The
“Regular” data sets are the 100 data sets used in all previous experiments.We then apply WSARE
3.0 to these three groups. The average AMOC curve for each group of100 data sets is plotted in
Figure 19. As in previous experiments, we use the environmental attributes of Flu Level, Season,
Day o f WeekandWeather. As shown in Figure 19, both the detection time and the false positive
rate degrade with increased noise levels.

4.2 Annotated Output of WSARE 3.0 on Actual ED Data for 2001

We also test the performance of WSARE 3.0 on actual ED data from a major UScity. This database
contains almost seven years worth of data, with personal identifying information excluded in order
to protect patient confidentiality. The attributes in this database include date ofadmission, coded
hospital ID, age decile, gender, syndrome information, discretized home latitude, discretized home
longitude, discretized work latitude, discretized work longitude and both homelocation and work
location on a coarse latitude-longitude grid. In this data, new hospitals come online and begin
submitting data during the time period that the data is collected. We use the solution described in
Section 3.2 to address this problem. WSARE operates on data from the year 2001 and is allowed
to use over five full years worth of training data from the start of 1996 to the current day. The
environmental attributes used are month, day of week and the number of cases from the previous
day with respiratory problems. The last environmental attribute is intended to be an approximation
to the flu levels in the city. We use a one-sided Fisher’s exact test to score the rules such that
only rules corresponding to an upswing in recent data are considered.In addition, we apply the
Benjamini-Hochberg FDR procedure withαFDR = 0.1.

The following list contains the significant anomalous patterns found in the real ED data for the
year 2001.

1. 2001-02-20: SCORE = -2.15432e-07 PVALUE = 0

15.9774% (85/532) of today’s cases have Viral Syndrome = True and Respiratory Syndrome = False

8.84% (884/10000) of baseline cases have Viral Syndrome = True and Respiratory Syndrome = False

2. 2001-06-02: SCORE = -3.19604e-08 PVALUE = 0

1.27971% (7/547) of today’s cases have Age Decile = 10 and Home Latitude = Missing

0.02% (2/10000) of baseline cases have Age Decile = 10 and Home Latitude = Missing

3. 2001-06-30: SCORE = -2.39821e-07 PVALUE = 0

1.44% (9/625) of today’s cases have Age Decile = 10

0.09% (9/10000) of baseline cases have Age Decile = 10

4. 2001-08-08: SCORE = -1.21558e-08 PVALUE = 0

83.7979% (481/574) of today’s cases have Unknown Syndrome = False

73.6926% (7370/10001) of baseline cases have Unknown Syndrome = False
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5. 2001-10-10: SCORE = -1.42315e-06 PVALUE = 0

0.994036% (5/503) of today’s cases have Age Decile = 10 and Home Latitude = Missing

0.009998% (1/10002) of baseline cases have Age Decile = 10 and Home Latitude = Missing

6. 2001-12-02: SCORE = -4.31806e-07 PVALUE = 0

14.7059% (70/476) of today’s cases have Viral Syndrome = True and Encephalitic Syndrome = False

7.73077% (773/9999) of baseline cases have Viral Syndrome = True and Encephalitic Syndrome = False

7. 2001-12-09: SCORE = -3.31973e-10 PVALUE = 0

8.57788% (38/443) of today’s cases have Hospital ID = 1 and Viral Syndrome = True

2.49% (249/10000) of baseline cases have Hospital ID = 1 and Viral Syndrome = True

Rules 2, 3 and 5 are likely due to clerical errors in the data since the rule finds an increase in
the number of people between the ages of 100 and 110. Furthermore, the home zip code for these
patients appears to be missing in rules 2 and 5. Rule 4 is uninteresting since it indicates that the
number of cases without an unknown symptom, which is typically around 73.7%, has experienced
a slight increase. For rules 1, 6 and 7 we went back to the original ED datato inspect the text
descriptions of the chief complaints for the cases related to these three rules. The symptoms related
to Rules 1, 6 and 7 involve dizziness, fever and sore throat. Given that Rules 1, 6 and 7 have dates
in winter, along with the symptoms mentioned, we speculate that this anomalous patternis likely
caused by an influenza strain.

We also include results from WSARE 2.0 running on the same data set. Unlike WSARE 3.0,
WSARE 2.0 does not have a similar solution to the approach taken in Section 3.2 todeal with new
hospitals coming online. However, by using a short enough baseline period, such as the standard
baseline of 35, 42, 49, and 56 days prior to the current date, we can capture fairly recent trends and
deal with a changing distribution as new hospitals submit data. The results areshown below. Note
that we group together identical rules from consecutive days in order tosave space.

1. 2001-01-31: SCORE = -8.0763e-07 PVALUE = 0

21.2766% (110/517) of today’s cases have Unknown Syndrome = True

12.5884% (267/2121) of baseline cases have Unknown Syndrome = True

2. 2001-05-01: SCORE = -1.0124e-06 PVALUE = 0.001998

18.4739% (92/498) of today’s cases have Gender = Male and Home Latitude > 40.5

10.2694% (202/1967) of baseline cases have Gender = Male and Home Latitude > 40.5

Rules 3-6 from 2001-10-28 to 2001-10-31 all have PVALUE = 0 and involve rules with Hospital ID = Missing

7. 2001-11-01: SCORE = -7.78767e-21 PVALUE = 0

5.87084% (30/511) of today’s cases have Hospital ID = Missing and Hemorrhagic Syndrome = True

0% (0/1827) of baseline cases have Hospital ID = Missing and Hemorrhagic Syndrome = True

Rules 8-14 from 2001-11-02 to 2001-11-08 all have PVALUE = 0 and have the rule Hospital ID = Missing

Rules 15-37 from 2001-11-09 to 2001-12-02 all have PVALUE = 0 and have the rule Hospital ID = 14

Rules 38-59 from 2001-12-03 to 2001-12-24 all have PVALUE = 0 and have the rule Hospital ID = 50
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60. 2001-12-25: SCORE = -2.99132e-09 PVALUE = 0

53.1835% (284/534) of today’s cases have Rash Syndrome = False and Unmapped Syndrome = False

39.2165% (911/2323) of baseline cases have Rash Syndrome = False and Unmapped Syndrome = False

Rules 61-63 from 2001-12-26 to 2001-12-30 all have PVALUE = 0 and have the rule Hospital ID = 50

64. 2001-12-31: SCORE = -7.30783e-07 PVALUE = 0

52.071% (352/676) of today’s cases have Hemorrhagic Syndrome = True and Unmapped Syndrome = False

41.6113% (1064/2557) of baseline cases have Hemorrhagic Syndrome = True and Unmapped Syndrome = False

From the output above, WSARE 2.0 produces a large number of rules thatinvolves hospital IDs
14 and 50 because those two hospitals start providing data in 2002. Theserules typically persist for
about a month, at which point the new hospitals begin to appear in the baselineof WSARE 2.0. We
speculate that the missing hospital IDs in rules 3-14 are due to hospital 14 coming online and a new
hospital code not being available. The other rules produced by WSARE 2.0 are very different from
those generated by WSARE 3.0. This difference is likely due to the fact thatWSARE 3.0 considers
the effects of the environmental attributes. The most interesting rules produced by WSARE 2.0
are rules 2 and 64. Rule 2 highlights the fact that more male patients with a home zipcode in the
northern half of the city appear in the EDs on 2001-05-01. Rule 64 indicates that an increase in
the number of hemorrhagic syndromes have occurred. Both of these rules are unlikely to have been
caused by environmental trends; they are simply anomalous patterns when compared against the
baseline of WSARE 2.0. From our available resources, we are unable to determine if rules 2 and 64
are truly indicative of an outbreak.

4.3 Results from the Israel Center for Disease Control

The Israel Center for Disease Control evaluated WSARE 3.0 retrospectively using an unusual out-
break of influenza type B that occurred in an elementary school in central Israel (Kaufman et al.,
2004). WSARE 3.0 was applied to patient visits to community clinics between the dates of May
24, 2004 to June 11, 2004. The attributes in this data set include the visit date, area code, ICD-9
code, age category, and day of week. The day of week was used as the only environmental at-
tribute. WSARE 3.0 reported two rules with p-values at 0.002 and five other rules with p-values
below 0.0001. Two of the five anomalous patterns with p-values below 0.0001corresponded to the
influenza outbreak in the data. The rules that characterized the two anomalous patterns consisted of
the same three attributes of ICD-9 code, area code and age category, indicating that an anomalous
pattern was found involving children aged 6-14 having viral symptoms within aspecific geographic
area. WSARE 3.0 detected the outbreak on the second day from its onset. The authors of (Kaufman
et al., 2004) found the results from WSARE 3.0 promising and concluded that the algorithm was
indeed able to detect an actual outbreak in syndromic surveillance data.

4.4 Summary of Results

Overall, WSARE 2.0 and 3.0 have been demonstrated to be more effective than univariate methods
at finding anomalous patterns in multivariate, categorical data. The advantage that the WSARE
algorithms have over univariate methods is their ability to identify the combination ofattributes
that characterize the most anomalous groups in the data rather than relying on a user to specify
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beforehand which combination of characteristics to monitor. WSARE 3.0 has afurther advantage
in its ability to account for temporal trends when producing the baseline distribution while WSARE
2.0 can be thrown off by these temporal trends when it uses raw historicaldata for the baseline.

We would like to emphasize the fact that WSARE 3.0 is not necessarily the bestversion of
WSARE in all cases. WSARE 3.0 needs a large amount of data in order to learn the structure and
parameters of its Bayesian network reliably, particularly if there are many attributes in the data.
If WSARE 3.0 is intended to model long term trends such as seasonal fluctuations, several years
worth of historical data are needed. Large amounts of historical data arenot available in many cases,
such as when a syndromic surveillance system needs to be set up from scratch in a few months for
a major event like the Olympic games. In these scenarios, WSARE 2.0 may have an advantage
over WSARE 3.0. This disadvantage of WSARE 3.0 highlights the fact that thelearned Bayesian
network only stores the posterior mean in the conditional probability tables of each node. Future
work on WSARE 3.0 will involve accounting for the variance of the network parameters in the
p-value calculation, perhaps using the approaches proposed by van Allen (2000), van Allen et al.
(2001), and Singh (2004).

Moreover, WSARE 3.0 assumes that the environmental attributes are the onlysource of variation
in the baseline distribution. If other hidden variables cause a significant amount of noise in the
baseline, then WSARE 3.0 will not be very effective. In this situation, a better approach might be
to use WSARE 2.0 with a baseline of raw historical data from a very recent timeperiod. Finally,
we do not recommend using WSARE 2.5 because the algorithm is unable to make predictions
for days in which the combination of environmental attributes do not exist in historical data. The
Bayesian network used by WSARE 3.0 is able to handle such situations and WSARE 3.0 effectively
supersedes WSARE 2.5.

5. Finding Anomalous Patterns in Real-Valued Data

The WSARE algorithm can only be used on categorical data sets. If the datais entirely real-valued,
the attributes can certainly be discretized in a pre-processing step beforeWSARE operates on the
data. Discretization, however, treats all data points in the same discretization bin identically; the
distances between data points in the same bin are lost. If these distances are important, then a real-
valued version of WSARE is needed. Fortunately, the spatial scan statistic (Kulldorff, 1997) can be
considered as the real-valued analog of WSARE.

The spatial scan statistic works on a geographic areaA in which there is an underlying popu-
lation n and within this population there is a countc of interest. The distribution of the countsc
is assumed to follow either a Bernoulli model or a Poisson model. A window of variable size and
shape then passes through the geographic areaA. The crucial characteristic of this window is that
the union of the areas covered by the window is the entire areaA. Existing spatial scan statistic
applications typically use window shapes of circles (Kulldorff, 1999) although ellipses (Kulldorff
et al., 2002) and rectangles (Neill and Moore, 2004) have also been used. In order to set up the
scan statistic, we need to definep as the probability of being a “count” within the scanning window.
Furthermore, letq be the probability of being a “count” outside of the scanning window. Under
the null hypothesis,p = q while the alternative hypothesis isp > q. The spatial scan statistic then
consists of the maximum likelihood ratio betweenLW, the likelihood of the counts in the scanning
window areaW, andL0, the likelihood under the null hypothesis. Equation 1 illustrates the spatial
scan statistic in its general form, using the termW for the zone covered by a scanning window and
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W for the entire collection of zones:

SW = maxWεW

L(W)

L0
. (1)

Since an analytical form for the distribution of the spatial scan statistic is not available, a Monte
Carlo simulation is needed to obtain the significance of the hypothesis test. Typically 999 or 9999
replications of the data set are used for the simulation. In terms of computational complexity, the
bottleneck for the algorithm is the Monte Carlo simulation.

The spatial scan statistic has been extended to three dimensions in the space-time scan statistic
(Kulldorff, 1999, 2001). Instead of using a circular window over space, the scanning window is
now a cylinder, with its circular base for the spatial dimension and its height over a time interval.
Cylinders of varying heights and base radii are moved through space and time to find potential
disease clusters.

Naive implementations of the spatial scan statistic and the space-time scan statistic are too
computationally expensive for large data sets. Assuming that the circular windows are centered
on anNxN grid and the dimensionality isD, the complexity isO(RN2D) whereR is the number
of Monte Carlo simulations. Neill et al. (2005) have developed a fast spatial scan using overlap-kd
trees that can reduce the complexity toO(R(NlogN)D) in the best case. The algorithms discussed so
far find abnormally high density regions in data sets that are entirely real-valued. Efficiently finding
anomalous patterns in a data set with a mixture of categorical and real-valuedattributes remains an
open problem.

6. Related Work

The task of detecting anomalous events in data is most commonly associated with monitoring sys-
tems. As a result, related work can be found in the domains of computer security, fraud detection,
Topic Detection and Tracking (TDT) and fMRI analysis. In computer security, anomaly detection
has been most prominent in intrusion detection systems, which identify intrusions by distinguish-
ing between normal system behavior and behavior when security has been compromised (Lane and
Brodley, 1999; Warrender et al., 1999; Eskin, 2000; Lee et al., 2000; Maxion and Tan, 2002; Kruegel
and Vigna, 2003). In other related security work, Cabuk et al. (2004)describe methods to detect
IP covert timing channels, which surreptitiously use the arrival pattern ofpackets to send informa-
tion. As in computer security, automated fraud detection systems differentiate between normal and
unusual activity on a variety of data such as cellular phone calls (Fawcettand Provost, 1997) and
automobile insurance fraud (Phua et al., 2004). TDT is the task of identifying the earliest report of a
previously unseen news story from a sequence of news stories. Clustering approaches are typically
used in TDT (Yang et al., 1998; Zhang et al., 2005). Finally, anomalous event detection has also
been used in fMRI analysis to identify regions of increased brain activity corresponding to given
cognitive tasks (Neill et al., 2005).

In general, WSARE can be applied to data from these different domains aslong as the data
and the anomalous events satisfy several criteria. WSARE is intended to operate on categorical,
case-level records in which the presence of a record can be considered an event. For instance, in
ED data, an event is defined as the appearance of a person at the ED since it provides a signal of
the community health and we are interested in the characteristics of that person. Secondly, WSARE
only finds differences between the recent data and the baseline data. Ifwe consider the baseline
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data to be a “class”, then WSARE looks for deviations from a single class. Some domains, such
as TDT, require comparisons between several classes. For instance,the current news story needs
to be compared against several categories of news stories. Thirdly, aswas discussed in Section
2.6, WSARE’s running time depends on the number of attributes and the numberof values each
attribute can take. If the number of attributes and the number of values for each attribute are too
high, WSARE may not finish in a reasonable amount of time. Some domains require the running
time of the detection algorithm to be a few seconds or less in order for the entiredetection system to
be effective. In these situations, using WSARE is not appropriate. On theother hand, for domains
such as biosurveillance, the running time of WSARE is acceptable since it takes approximately a
minute to a few minutes to complete on real ED data sets. Finally, WSARE treats eachrecord in the
data independently of the other records. If a sequence of records is highly indicative of, for instance,
a security breach in a network, WSARE will not be able to detect this pattern.

Other related work can also be found in the area of stream mining. In streammining, the focus is
on the online processing of large amounts of data as it arrives. Many algorithms have been developed
to detect anomalies in the current stream of data. Ma and Perkins (2003) develop a novelty detection
algorithm based on online support vector regression. Anomalies can alsobe characterized by an
abnormal burst of data. The technique described by Zhu and Shasha (2003) simultaneously monitors
windows of different sizes and reports those that have an abnormal aggregation of data. A density
estimation approach is used by Aggarwal (2003) to help visualize both spatial and temporal trends
in evolving data streams. Finally, Hulten et al. (2001) present an efficientalgorithm for mining
decision trees from continuously changing data streams. While this work is primarily concerned
with maintaining an up-to-date concept, detecting concept drift is similar to detecting changes in
a data stream. WSARE 3.0 cannot be directly applied to stream mining because the amount of
historical data needed to create the baseline distribution is typically not accessible in a stream mining
context. However, WSARE 2.0 could possibly be modified for a stream mining application.

In the following paragraphs, we will briefly review methods that have beenused for the de-
tection of disease outbreaks. Readers interested in a detailed survey of biosurveillance methods
can be found in (Wong, 2004) and (Moore et al., 2003). The majority of detection algorithms in
biosurveillance operate on univariate time series data. Many of these univariate algorithms have
been taken from the field of Statistical Quality Control and directly applied to biosurveillance. The
three most common techniques from Statistical Quality Control include the Shewhart control chart
(Montgomery, 2001), CUSUM (Page, 1954; Hutwagner et al., 2003), and EWMA (Roberts, 1959;
Williamson and Hudson, 1999). Although these three algorithms are simple to implement, they
have difficulty dealing with temporal trends. Univariate algorithms based on regression and time
series models, on the other hand, are able to model explicitly the seasonal and day of week effects
in the data. The Serfling method (Serfling, 1963) uses sinusoidal components in its regression equa-
tion to model the seasonal fluctuations for influenza. A Poisson regression model that included a
day of week term as a covariate was demonstrated to be a fairly capable detector in (Buckeridge
et al., 2005). As for time series models, the ARIMA and SARIMA models (Choiand Thacker,
1981; Watier et al., 1991; Reis and Mandl, 2003) are commonly used in biosurveillance to deal with
temporal trends. Recently, wavelets (Goldenberg et al., 2002; Zhang etal., 2003) have been used as
a preprocessing step to handle temporal fluctuations including unusually lowvalues due to holidays.

The most common algorithm used in biosurveillance of spatial data is the Spatial Scan Statistic
(Kulldorff, 1997), which has already been discussed. The Spatial Scan Statistic has been generalized
to include a time dimension (Kulldorff, 2001) such that the algorithm searchesfor cylinders in
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spatio-temporal data. Recent work has improved the speed of the Spatial Scan method using an
overlap-kd tree structure (Neill and Moore, 2004; Neill et al., 2005).

The algorithms mentioned thus far have only looked at either univariate or spatial data. Only
a few multivariate biosurveillance algorithms that consider spatial, temporal, demographic, and
symptomatic attributes for individual patient cases currently exist. BCD (Buckeridge et al., 2005)
is a multivariate changepoint detection algorithm that monitors in a frequentist manner whether a
Bayesian network learned from past data (during a “safe” training period) appears to have a dis-
tribution that differs from the distribution of more recent data. If so, then an anomaly may have
occurred. The Bayesian Aerosol Release Detector (BARD) (Hogan et al., 2004) is an algorithm
specifically designed to detect an outbreak of inhalational anthrax due to atmospheric dispersion of
anthrax spores. BARD combines information from ED visits, recent meteorological data, and spa-
tial and population information about the region being monitored in order to determine if an anthrax
attack has occurred. Finally, PANDA (Cooper et al., 2004) is a population-based anomaly detection
algorithm that uses a massive causal Bayesian network to model each individual in the region under
surveillance. By modeling at the individual level, PANDA is able to coherentlyrepresent different
types of background knowledge in its model. For example, spatio-temporal assumptions about a
disease outbreak can be incorporated as prior knowledge. In addition,the characteristics of each
individual, such as their age, gender, home zip, symptom information and admission date to the ED
can be used to derive a posterior probability of an outbreak.

There are two algorithms that are similar to the approach taken by WSARE. Contrast set mining
(Bay and Pazzani, 1999) finds rules that distinguish between two or more groups using a pruning
algorithm to reduce the exponential search space. This optimization prunesaway rules whose counts
are too small to yield a valid Chi Square test. Many of these rules are interesting to WSARE.
Multiple hypothesis testing problems are addressed in contrast set mining through a Bonferroni
correction. In health care, Brossette et al. use association rules for hospital infection control and
public health surveillance (Brossette et al., 1998). Their work is similar to WSARE 2.0 (Wong
et al., 2002), with the main difference being the additional steps of the randomization test and FDR
in WSARE.

7. Conclusions

WSARE approaches the problem of early outbreak detection on multivariatesurveillance data using
two key components. The first component is association rule search, which is used to find anomalous
patterns between a recent data set and a baseline data set. The contribution of this rule search is best
seen by considering the alternate approach of monitoring a univariate signal. If an attribute or
combination of attributes is known to be an effective signal for the presence of a certain disease,
then a univariate detector or a suite of univariate detectors that monitors thissignal will be an
effective early warning detector for that specific disease. However,if such a signal is not known
beforehand, then the association rule search will determine which attributesare of interest. We
intend WSARE to be a general purpose safety net to be used in combination with a suite of specific
disease detectors. Thus, the key to this safety net is to perform non-specific disease detection and
notice any unexpected patterns.

With this perspective in mind, the fundamental assumption to our association ruleapproach is
that an outbreak in its early stages will manifest itself in categorical surveillance data as an anoma-
lous cluster in attribute space. For instance, a localized gastrointestinal outbreak originating at a
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popular restaurant in zipcode X would likely cause an upswing in diarrheacases involving peo-
ple with home zipcode X. These cases would appear as a cluster in the categorical attributes of
Home Zip Code= X andSymptom= Diarrhea. The rule search allows us to find the combina-
tion of attributes that characterize the set of cases from recent data thatare most anomalous when
compared to the baseline data. The nature of the rule search, however, introduces the problem of
multiple hypothesis testing to the algorithm. Even with purely random data, the bestscoring rule
may seem like a truly significant anomalous pattern. We are careful to evaluate the statistical sig-
nificance of the best scoring rule using a randomization test in which the nullhypothesis is the
independence of date and case attributes.

The second major component of WSARE is the use of a Bayesian network to model a base-
line that changes due to temporal fluctuations such as seasonal trends and weekend versus weekday
effects. In WSARE 3.0, attributes are divided into environmental and response attributes. Envi-
ronmental attributes, such as season and day of week, are attributes which are responsible for the
temporal trends while response attributes are the non-environmental attributes. When the Bayesian
network structure is learned, the environmental attributes are not permitted tohave parents because
we are not interested in predicting their distributions. Instead, we want to determine how the envi-
ronmental attributes affect the distributions of the response attributes. WSARE 3.0 operates on an
assumption that the environmental attributes account for the majority of the variation in the data.
Under this assumption, the ratios compared in the rule search should remain reasonably stable over
historical time periods with similar environmental attribute values. As an example, ifthe current day
is a winter Friday and we use season and day of week as environmental attributes, then the fraction
of male senior citizens, for instance, showing up at an ED to the total number of patients should
remain roughly stable over all winter Fridays in the historical period over which the Bayesian net-
work is learned. Once the Bayesian network structure is learned, it represents the joint probability
distribution of the baseline. We can then condition on the environmental attributes to produce the
baseline given the environment for the current day.

Multivariate surveillance data with known outbreak periods is extremely difficult to obtain. As a
result, we resorted to evaluating WSARE on simulated data. Although the simulators do not reflect
real life, detecting an outbreak in our simulated data sets is a challenging problem for any detection
algorithm. We evaluated WSARE on the CityBN simulator, which was implemented to generate
surveillance data which contained temporal fluctuations due to day of week effects and seasonal
variations of background illnesses such as flu, food poisoning and allergies. Despite the fact that
the environmental attributes used by WSARE 3.0 did not account for all of the variation in the data,
WSARE 3.0 detected the anthrax outbreaks with nearly the optimal detection time and a very low
false positive rate. We show that WSARE 3.0 outperformed three common univariate detection
algorithms in terms of false positives per month and detection time. WSARE 3.0 also produced a
better AMOC curve than WSARE 2.0 because the latter was thrown off by the temporal trends in
the data. Finally, the Bayesian network provided some smoothing to the baselinedistribution which
enhanced WSARE 3.0’s detection capability as compared to that of WSARE 2.5.

WSARE has been demonstrated to outperform traditional univariate methodson simulated data
in terms of false positives per month and detection time. Its performance on real world data requires
further evaluation. Currently, WSARE is part of the collection of biosurveillance algorithms in the
RODS system (Real-time Outbreak Detection System, 2004). WSARE 2.0 was deployed to monitor
ED cases in western Pennsylvania and Utah. It was also used during the 2002 Salt Lake City winter
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Olympics. WSARE 3.0 is currently being used as a tool for analysis of public health data by several
American state health departments and by the Israel Center for Disease Control.
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