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WSARE: What’s Strange About Recent Events?
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ABSTRACT This article presents an algorithm for performing early detection of disease
outbreaks by searching a database of emergency department cases for anomalous pat-
terns. Traditional techniques for anomaly detection are unsatisfactory for this problem
because they identify individual data points that are rare due to particular combinations
of features. Thus, these traditional algorithms discover isolated outliers of particularly
strange events, such as someone accidentally shooting their ear, that are not indicative
of a new outbreak. Instead, we would like to detect groups with specific characteristics
that have a recent pattern of illness that is anomalous relative to historical patterns.
We propose using an anomaly detection algorithm that would characterize each anom-
alous pattern with a rule. The significance of each rule would be carefully evaluated
using the Fisher exact test and a randomization test. In this study, we compared our
algorithm with a standard detection algorithm by measuring the number of false posi-
tives and the timeliness of detection. Simulated data, produced by a simulator that
creates the effects of an epidemic on a city, were used for evaluation. The results
indicate that our algorithm has significantly better detection times for common signifi-
cance thresholds while having a slightly higher false positive rate.

KEYWORDS Anomaly detection, Data mining, Detection algorithm, Multiple hypothe-
sis testing, Syndromic surveillance.

INTRODUCTION

This article is a shortened version of the Wong et al.1 article on rule-based anomaly
pattern detection for detecting disease outbreaks. Detection systems typically moni-
tor multidimensional temporal data for anomalies and raise an alert on discovery
of any deviations from the norm. For example, in the case of an intrusion detection
system, an anomaly would indicate a possible breach of security.2–4 Although early
disease outbreak detection appears to be similar to traditional anomaly detection
systems, shortcomings in these systems, which we illustrate, limit their usefulness
in early disease outbreak detection.

In our database of emergency department (ED) cases from several hospitals in
a city, each record contains information about the individual who was admitted to
the ED. This information includes age, gender, symptoms exhibited, home location,
work location, and time admitted. (To maintain patient confidentiality, personal
identifying information such as patient’s names, addresses, and identification num-
bers were not in the data set used in this research.)
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Clearly, when an epidemic sweeps through a region, there will be extreme in-
creases in the number of ED visits. While these dramatic upswings are readily ap-
parent during the late stages of an epidemic, the challenge is to detect the outbreak
during its early stages and mitigate its effects. Different diseases cause different
signals to appear in temporal, spatial, and demographic data.5 For any anomaly
detection algorithm to be successful in early detection of disease outbreaks, it must
be able to detect abnormalities in these three aspects of ED data.

A simplistic first approach would be to report an ED case as an anomaly if it
has a rare value for some attribute. For example, we would signal an anomaly if
we encountered a patient more than 100 years old. While this method detects the
outliers for a single attribute, it fails to identify anomalies that occur due to combi-
nations of features that alone might not be abnormal, but together would be un-
usual. For instance, the first technique would not find anomalies in cases for which
the patients were male and under the age of 30 years but exhibited symptoms
associated with a disease that affects primarily female senior citizens. Fortunately,
there are plenty of anomaly detection algorithms that can identify outliers in multi-
dimensional feature space. Typically, these detection algorithms build a probabilis-
tic model of the “normal” data using a variety of techniques, such as neural nets6

and a mixture of naive Bayes submodels.7

Even that kind of sophisticated outlier detection, however, is insufficient for
our purposes. Outlier detection succeeds at finding data points that are rare based
on the underlying density, but these data points are treated in isolation from each
other. Early epidemic detection, on the other hand, hinges on identifying anomalous
groups, which we refer to as anomalous patterns. Specifically, we want to know if
the recent proportion of a group with specific characteristics is anomalous based
on what the proportion is normally. This approach is closely related to the work
done by Bay and Pazzani8 in mining data from contrast sets and is somewhat similar
to item set mining.9 Traditional outlier detection, on the other hand, will likely
return isolated irregularities that are insignificant to the early detection system.

We might, then, argue that aggregate daily counts of a single attribute or com-
bination of attributes should be monitored to detect an anomalous group. For in-
stance, we could monitor the daily number of people appearing in the ED with
respiratory problems. A naive detector would determine the mean and variance of
the monitored signal over a training set that is assumed to capture the normal
behavior of the system. Then, a threshold would be established based on these
values. Whenever the daily count exceeds this threshold, an alert would be raised.

This technique works well if the monitored features are known. The spatial,
temporal, and demographic signatures of diseases are simply too extensive, how-
ever, for us to know a priori which features to monitor. We could well miss some
combination of features that would indicate an outbreak of a particular disease.
Thus, we need an algorithm that is able to detect anomalous patterns rather than
predefined anomalies.

The algorithm that we propose is designed to be a general safety net for new
kinds of emerging problems that have not been anticipated. Instead of operating by
itself, this piece of software is intended to be one component in a suite of detectors.
Within the suite, the other detectors will be tuned carefully for spotting specific
diseases or classes of diseases.

Our approach to this problem uses a rule-based anomaly pattern detector. Each
anomalous pattern is summarized by a rule, which in our current implementation
consists of one or two components. Each component takes the form Xi = Vj

i, where
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Xi is the ith feature, and V
j
i is the jth value of that feature. Multiple components are

joined by a logical AND. For example, a two-component rule would be Gender =
Male AND Age Decile = 4. One benefit to a rule-based system is that the rules are
easily understood by a nonstatistician.

We need to be wary, however, of the pitfalls of rule-based anomaly pattern
detection. Since we are finding anomalous patterns rather than isolated anomalies,
we will be performing multiple hypothesis tests. When multiple hypothesis tests are
performed, the probability of a false positive becomes inflated unless a correction
is made.10 In addition, as we add more components to a rule, overfitting becomes
a serious concern. Thus, a careful evaluation of significance is clearly needed. Fur-
thermore, temporal health care data used for disease outbreak detection are fre-
quently subject to “seasonal” variations. As an example, the number of influenza
cases is typically higher during winter than summer. In addition, the number of ED
visits varies between weekends and weekdays. The definition of what is normal will
change depending on these variations.

RULE-BASED ANOMALY PATTERN DETECTION

The basic question asked by all detection systems is whether anything strange has
occurred in recent events. This question requires definitions of what it means to be
recent and what it means to be strange. Our algorithm considers all patient records
that fall on the current day under evaluation to be recent events. Note that this
definition of recent is not restrictive—our approach is fully general, and recent can
be defined to include all events within some other period.

To define an anomaly, we need to establish what is normal. Our algorithm is
intended to be applied to a database of ED cases, and we need to account for
environmental factors such as seasonal and weekend versus weekday differences in
the number of cases. Consequently, normal behavior is assumed to be captured by
the events occurring on the days that are exactly 5, 6, 7, and 8 weeks prior to the
day under consideration. The definition of what is normal can be easily modified
to another time period without major changes to our algorithm. We refer to the
number of events that fit a certain rule for the current day as Ctoday. Similarly, the
number of cases matching the same rule from 5 to 8 weeks ago is called Cother.

There is clearly a tradeoff when defining the normal period. At one extreme,
we could only use data from the previous day. This approach, however, makes the
algorithm susceptible to outliers that may only occur in a short, but recent, period.
On the other hand, we could determine the baseline from all data collected over
the past few years. This choice would smooth out trends in the data, and we might
falsely raise an alarm for something that is a seasonal variation. One area of future
work for this project would be to determine the baseline distribution automatically
given a history of data.

From this point, we refer to our algorithm as WSARE, which is an abbreviation
for “what’s strange about recent events.” WSARE operates on discrete data sets
with the aim of finding rules that characterize significant patterns of anomalies.
Due to computational issues, the number of components for these rules is two or
fewer. Our description of the rule-finding algorithm begins with an overview, fol-
lowed by a more detailed example.

Overview of WSARE
The best rule for a day is found by considering all possible one- and two-component
rules governing events occurring on that day and returning the one with the best
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“score.” The score is determined by comparing the events on the current day with
events in the past. The best scoring rule then has its P value estimated by a random-
ization test. This P value is the likelihood of finding a rule with as good a score
under the hypothesis that the features of the case and the date are independent.
The randomization-based P value takes into account the effect of the multiple test-
ing that went on during the rule search. If we were running the algorithm on a day-
by-day basis, we would end at this step. If we were looking at a history of several
days, however, we would need the additional step of using the false discovery rate
(FDR) method10 to determine which P values are significant. The days with signifi-
cant P values are returned as anomalies.

One-Component Rules
To illustrate this algorithm, suppose we have a large database of 1 million ED
records collected during a 2-year span. This database contains approximately 1,000
records a day, thereby yielding approximately 5,000 records if we consider the
cases for today plus those from 5 to 8 weeks ago. We refer to this record subset as
DBi, which corresponds to the recent event data set for day i. The algorithm pro-
ceeds as follows. For each day i, retrieve the records belonging to DBi. We first
consider all possible one-component rules. For every possible feature-value combina-
tion, obtain the counts Ctoday and Cother from the data set DBi. As an example, suppose
the feature under consideration is the age decile for the ED case. There are nine
possible age decile values, ranging from 0 to 8. We start with the rule Age Decile = 3
and count the number of cases for the current day i that have Age Decile = 3 and
those that have Age Decile ≠ 3. The cases from 5 to 8 weeks ago are subsequently
examined to obtain the counts for the cases matching the rule and those not match-
ing the rule. The four values form a 2 × 2 contingency table such as the one shown
in the Table.

Scoring Each One-Component Rule
The next step is to evaluate the score of the rule using a test in which the null
hypothesis is the independence of the row and column attributes of the 2 × 2 con-
tingency table. In effect, this hypothesis test measures how different the distribution
for Ctoday is compared with that of Cother. This test will generate a P value, which we
will call the score to differentiate it from the P value obtained from the randomiza-
tion test. We use the Fisher exact test11 to find the score for each rule. Running the
Fisher exact test on the Table yields a score of 0.00005058, which indicates that
the count Ctoday for cases matching the rule Age Decile = 3 is significantly different
from the count Cother.

Two-Component Rules
At this point, the best one-component rule for a particular day has been found. We
refer to the best one-component rule for day i as BR1

i. The algorithm then attempts

TABLE. Sample 2 × 2 contingency table

Ctoday Cother

Age decile = 3 48 45
Age decile ≠ 3 86 220
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to find the best two-component rule for the day by adding on the component to
BR1

i that yields the best score for the resulting two-component rule, which we refer
to as BR2

i. Note that the best two-component rule may not necessarily be found in
this fashion. This greedy approach was taken to reduce the computational cost of
the algorithm. In addition, BR2

i may not be an improvement over BR
1
i. We need to

perform further hypothesis tests to determine if the presence of either component
has a significant effect. For further details on the creation of two-component rules,
consult Ref. 1.

Finding the P Value for a Rule
The algorithm for determining scores shown above is extremely prone to overfit-
ting. Even if data were generated randomly, most single rules would have insignifi-
cant P values, but the best rule would be significant if we searched more than 1,000
possible rules. To illustrate this point, suppose we follow the standard practice of
rejecting the null hypothesis when the P value is less than α, where α = .05. In the
case of a single-hypothesis test, the probability of making a false discovery under
the null hypothesis would be α, which equals .05. On the other hand, if we perform
1,000 hypothesis tests, one for each possible rule under consideration, then the
probability of making a false discovery could be as bad12 as 1 − (1 − .05)1000 � 1,
which is much greater than .05. Thus, if our algorithm returns a significant P value,
we cannot accept it at face value without adding an adjustment for the multiple
hypothesis tests we performed. We address this problem by using a randomization
test in which the date and each ED case features are assumed to be independent. In
this test, the case features in the data set DBi remain the same for each record, but
the date field is shuffled among records from the current day and records from 5
to 8 weeks ago. The best rule is obtained on this randomized data set. We repeat
this procedure 1,000 times and obtain a compensated P value for BRi, which we
refer to as CPVi. The full description for the randomization test is given in Ref. 1.

Using False Discovery Rate to Determine Which
P Values Are Significant
WSARE can be used on a day-to-day basis similar to an on-line algorithm, or it
can be used to review a history of several days to report all significantly anomalous
patterns. When using our algorithm on a day-to-day basis, the compensated P value
CPVi obtained for the current day through the randomization tests can be interpre-
ted at face value. When analyzing historical data, however, we need to compare
the CPVi values for each day in the history, thereby creating a second overfitting
opportunity due to yet another multiple hypothesis testing problem. We address
this problem through the use of the FDR method.10,12 For an in-depth discussion of
the use of FDR in WSARE, see the related section in Ref. 1.

RESULTS

We evaluated our algorithm using data from a simulator that simulated (to a first
approximation) the effects of an epidemic on a grid world populated by people of
varying characteristics. Thus, whenever an infected person exhibited the monitored
symptom, an entry would be added to the log file to simulate an ED record.

Our results were obtained by running the simulator for 180 simulated days
with the epidemic, named Epidemic0, introduced to the environment on the 90th
day. Epidemic0 had a target demographic group of males 50–59 years old. In addi-



WSARE: WHAT’S STRANGE ABOUT RECENT EVENTS? i71

tion, there were nine nonepidemic background diseases that spontaneously ap-
peared at random points in the simulation. At certain stages, these background
diseases caused infected people to display the monitored symptom. These back-
ground diseases had low infection probabilities as they were intended to provide a
baseline for the number of ED cases. Our initial publication on this subject1 con-
tains a detailed description of the simulator and the experimental settings.

Evaluation of Performance
We treated our algorithm as if it ran on a day-by-day basis. Thus, for each day in
the simulation, WSARE was asked to determine if the events on the current day
were anomalous. We evaluated the performance of WSARE against a standard
anomaly detection algorithm that treated a day as anomalous when the daily count
of ED cases for the monitored symptom exceeded a threshold. The standard detec-
tor was applied to the ED case data from day 30 to day 89 in the simulation to
obtain the mean µ and variance σ2. The threshold was calculated by the formula
below, in which Φ−1 is the inverse to the cumulative distribution function of a stan-
dard normal.

Threshold = µ + σ * Φ−1�1 − P
2 �

Both the standard algorithm and WSARE were tested using five levels of P
values (.1, .05, .01, .005, and .001). To evaluate the performance of the algorithms,
we measured the number of false positives and the number of days until the epi-
demic was detected. The specific rules for determining detection time and counting
false positives are stated in the full version of this article.1

Figures 1 and 2 plot the detection time in days versus the number of false
positives for five different P-value thresholds used in both the standard algorithm
and WSARE. In Fig. 1, the error bars for detection time and false positives are
shown. Figure 2 fills in the lines to illustrate the asymptotic behavior of the curves.
To extend the graph of the standard model, we performed additional experiments
beyond the range of the P values indicated. The values for Figs. 1 and 2 were gener-
ated by taking the average of 100 runs of the simulation.

Results From Simulated Data
The results from simulated data indicate that, for P-value thresholds above .01, the
detection time for WSARE is significantly smaller than that of the standard algo-
rithm. On the other hand, as the P-value threshold decreases, the detection time
for WSARE is somewhat worse than that of the standard algorithm. Choosing an
extremely low threshold would be unprofitable, however, since all anomalies except
those at an unusually high significance level would be ignored. For example, using
a threshold of .01 corresponds to a 99% significance level.

The results also demonstrate that WSARE signals more false positives than the
standard algorithm for higher P-value thresholds. Although this behavior is not
desirable, it is tolerable since the number of false positives produced by WSARE
differs by a small amount from the count generated by the standard algorithm. In
Fig. 1, there are at most three more false positives identified by WSARE that were
not identified by the standard algorithm.

We now show some of the rules learned by WSARE. The rules below were
obtained from one of the result-generating simulations.
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FIGURE 1. Scatterplot of detection time versus false positives with error bars for detection time
and false positives.

### Rule 1: Sat Day97 (daynum 97, dayindex 97)
SCORE = -0.00000011 PVALUE = 0.00249875
33.33% (16/48) of today’s cases have Age Decile = 5 and Gender = Male
3.85% (7/182) of other cases have Age Decile = 5 and Gender = Male
### Rule 2: Tue Day100 (daynum 100, dayindex 100)
SCORE = -0.00001093 PVALUE = 0.02698651
30.19% (16/53) of today’s cases have Age Decile = 5 and Column less than 25
6.19% (12/194) of other cases have Age Decile = 5 and Column less than 25

In rule 1, WSARE demonstrates that it is capable of finding the target demo-
graphic group that Epidemic0 infects. This rule proves to be significant above the
99% level. On the other hand, rule 2 discovers something that was not deliberately
hard coded into Epidemic0. Rule 2 states that, on day 100, an unusually large
number of cases involves people in their 50s in the left half of the grid. Since we
designed the people in the simulation to interact with places that are in geographic
proximity to their homes, we suspected that the locality of interaction of infected
individuals would form some spatial clusters of ED cases. On further inspection of
the log files, we discovered that 12 of the 16 cases from the current day that satis-
fied this rule were, in fact, caused by Epidemic0. This example illustrates the capa-
bility of WSARE to detect significant anomalous patterns that are completely unex-
pected.

Results From Real Emergenct Department Data
We also ran WSARE on actual ED data collected from hospitals in a major US city.
This database contained approximately 70,000 records collected during a period of
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FIGURE 2. Plot of detection time versus false positives.

505 days. Since we are looking at historical data, we need to use FDR to determine
which of the P values is significant. The results are shown below with α = .1 for FDR.

### Rule 1: Tue 05-16-2000 (daynum 36661, dayindex 18)
SCORE = -0.00000000 PVALUE = 0.00000000
32.84% (44/134) of today’s cases have Time Of Day after 6:00 pm
90.00% (27/30) of other cases have Time Of Day after 6:00 pm

### Rule 2: Fri 06-30-2000 (daynum 36706, dayindex 63)
SCORE = -0.00000000 PVALUE = 0.00000000
19.40% (26/134) of today’s cases have Place = NE and Lat = d
5.71% (16/280) of other cases have Place = NE and Lat = d
### Rule 3: Wed 09-06-2000 (daynum 36774, dayindex 131)
SCORE = -0.00000000 PVALUE = 0.00000000
17.16% ( 23/134) of today’s cases have Prodrome = Respiratory and Age less
than 40
4.53% ( 12/265) of other cases have Prodrome = Respiratory and Age less than
40

### Rule 4: Fri 12-01-2000 (daynum 36860, dayindex 217)
SCORE = -0.00000000 PVALUE = 0.00000000
22.88% ( 27/118) of today’s cases have Time Of Day after 6:00 pm and Lat = s
8.10% ( 20/247) of other cases have Time Of Day after 6:00 pm and Lat = s
### Rule 5: Sat 12-23-2000 (daynum 36882, dayindex 239)
SCORE = -0.00000000 PVALUE = 0.00000000
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18.25% ( 25/137) of today’s cases have ICD9 = shortness of breath and Time
Of Day before 3:00 pm
5.12% ( 15/293) of other cases have ICD9 = shortness of breath and Time Of
Day before 3:00 pm

### Rule 6: Fri 09-14-2001 (daynum 37147, dayindex 504)
SCORE = -0.00000000 PVALUE = 0.00000000
66.67% ( 30/ 45) of today’s cases have Time Of Day before 10:00 am
18.42% ( 42/228) of other cases have Time Of Day before 10:00 am

Rule 1 notices that there are fewer cases after 6:00 PM, possibly due to a lack
of reporting by some hospitals. Rule 6 correctly identifies a larger volume of data
being collected before 10:00 AM on day 504. Since day 504 was the last day of this
database, this irregularity was the result of the database being given to us in the
morning.

We are beginning the process of using input from public health officials of the
target city to help us validate and measure the performance of WSARE.

DISCUSSION

WSARE successfully identified anomalous patterns in the data. Our simulation re-
sults indicate that WSARE has significantly lower detection times than a standard
detection algorithm, provided the P-value threshold is not extremely low. This
should not be a problem since most anomalies are reported at a significance level
of 95% or 99%, corresponding, respectively, to P values of .05 and .01. WSARE
also has a slightly higher false positive rate than the standard algorithm. This differ-
ence, however, was approximately three more false positives in the worst case for
our particular simulation.

WSARE is designed to be a general safety net for emerging problems that have
not been anticipated. It is intended to operate with a suite of other detectors in
which each detector is tuned to look for a specific disease. WSARE has been experi-
mentally deployed in Utah and Pennsylvania.

We believe the three main innovations in this article are

1. Turning the problem of detecting the emergence of new patterns in recent
data into the question, Is it possible to learn a propositional rule that can
significantly distinguish whether records are most likely to have come from
the recent past or from the more distant past?

2. Incorporating several levels of significance tests into rule learning to avoid
several levels of overfitting caused by intensive multiple testing.

3. Examining the domain of early outbreak detection by means of machine
learning tools.
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