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OBJECTIVE: The ability to accurately and efficiently
identify patient cases of interest in a hospital
information system has many important clinical,
research, educational and administrative uses. The
identification of cases of interest sometimes can be
difficult. This paper describes a two-stage method for
searching for cases of interest.
DESIGN: First, a Boolean search is performed using
coded database variables. The user classifies the
retrieved cases as being of interest or not. Second,
based on the user-classified cases, a computer model
of the patient cases of interest is constructed. The
model is then used to help locate additional cases.
These cases provide an augmented training set for
constructing a new computer model of the cases of
interest. This cycle of modeling and user
classification continues until halted by the user.
MEASUREMENTS: This paper describes a pilot
study in which this method is used to identify the
records of patients who have venous thrombosis.
RESULTS: The results indicate that computer
modeling enhances the identification of patient cases
of interest.

INTRODUCTION

A hospital information system (HIS) can greatly
facilitate retrospective studies of patient cases. With
such a system, researchers also can identify potential
participants in prospective clinical studies. Both uses
of a HIS require the identification of patient
subgroups of interest. The more accurately and
efficiently such subgroups of patients can be
identified, the better.

The accurate and efficient identification of patient
subgroups of interest extend beyond research studies
to include clinical, educational and administrative
uses. For example, one educational application would
be the identification of interesting patient cases for
use in teaching medical students.

If a patient subgroup can be defined by a
relatively small and simple combination of coded data
fields in a HIS (e.g., ICD-9 codes, laboratory values,
and patient demographic variables), then finding the
relevant hospital records is relatively straightforward.
The task becomes considerably more challenging,
however, when a simple Boolean combination of data
fields does not readily locate all the patient cases of

interest. In such situations, it may be necessary to
perform more complex searches that involve coded
information and possibly unstructured information
(e.g., free-text history and physical examinations,
radiology reports, and discharge summaries). This
paper describes a semi-automated technique that is
intended to assist users in performing these more
complex searches.

BACKGROUND

We are using the MARS (Medical ARchival System)
hospital information system at the University of
Pittsburgh Medical Center [1], which contains a rich
store of both coded and free-text clinical information.
This section describes a current method that is
commonly used in identifying patient subgroups in
MARS.

Patient subgroups are often identified in MARS
as a team effort by MARS staff and users. We
characterize here a typical collaboration. The user
(e.g., a researcher) first describes the target population
to the staff member, and through a discussion, they
refine the description to construct an initial MARS
query. Typically the staff and user first identify a set
of patient reference cases, which are patient records in
MARS that match the study criteria. These cases
often are obtained using a Boolean search of MARS.
The reference cases are reviewed by the staff member
to get an idea of the search terms to use in finding
additional relevant records, which we call record
matches.

After developing a refined search query in
consultation with the user, the staff member performs
the search and reviews the results with the user. If
there are too many records to review exhaustively,
then a sample of the records is reviewed. Through this
process, a set of record matches is assembled. A
review of these records often provides additional hints
about how to further refine the search query, which is
run, and the cycle repeats.

The search and review cycle terninates when the
user is satisfied with the set of record matches that
have been found. The union of the reference cases and
all record matches constitute the set of records that
define the patient cases of interest to be used in
further analyses.
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There are two labor-intensive aspects to the
process of constructing a patient subgroup of interest:
(a) constructing complex search criteria beyond the
initial Boolean search, and (b) reviewing the retrieved
results of searches to identify record matches and
refine the queries further. We propose a method to
facilitate these two steps for the staff and user team,
which for brevity we generically call the user. The
current paper focuses primarily on the first step.

COMPUTER-ASSISTED
IDENTIFICATION OF PATIENT

SUBGROUPS

In this section, we provide an overview of our basic
approach to using computer modeling to help identify
patient subgroups in MARS. Figure 1 provides a
schematic sumnary of the approach. We currently are
in the process of implementing and integrating all the
steps in this approach.

The reference cases hold important clues to the
patient features that distinguish the patient subgroup
of interest from the other patients with records in
MARS. We are investigating the use of computer
modeling methods to characterize explicitly those
distinguishing clues. The reference cases are used as
positive instances in a training set. Negative
instances are either provided directly by the user or are
randomly selected from the entire set of MARS
records if it is highly unlikely that a random hospital
record satisfies the study criteria. The training set
containing positive and negative instances is used to
construct a computer model. The variables in the
model can represent both coded and free-text patient
data, although initially we are using only coded data.

The computer model contains a set of patient
features (clues) that characterize approximately the
patient subgroup of interest. Conceptually, each
patient record in MARS is compared to the model to
determine a numeric score that indicates how closely
the record and the model match (in practice, the
implementation can be more efficient
computationally). The most closely matching records
are presented to the user, sorted in descending order of
their scores. As outlined in Figure 1, the user reviews
records in the order they appear in the sorted list, and
in the process indicates record matches, until the yield
of matches becomes so low that he or she stops the
review. To help maintain confidentiality, these
records contain no explicit patient or clinician
identifiers (e.g., name, address, social security
number); currently we perform this de-identification
process manually, but we plan to investigate methods
for automating it. We hypothesize that (a) this
selective review of the records will be significantly
faster than the current more manual process of
reviewing records, and (b) more record matches will

be found using the system than are found using
current methods. The current paper describes a
preliminary study that provides a step toward
addressing these hypotheses.

The records that are marked by the user as
matches or non-matches become part of a growing
training set of patient records. The augmented training
set is used to learn a new, refined computer model,
and the cycle of search and review continues.
Ultimately, the user will decide to terminate the
search and review process. At that point the union of
the reference cases and all record matches become the
study set that is exported for use.

RELATED RESEARCH

Conceptually, the basic methodology presented in the
current paper is closely related to relevance feedback
research in information retrieval [2]. In relevance
feedback, a user performs an initial search and
classifies a sample of the retrieved documents
regarding whether or not they are of interest. This
feedback is used to re-weight and possibly expand the
search terms that are then used in subsequent
retrievals. Other related research is being pursued by
machine-learning researchers [3].

The line of research we are pursuing is
distinguished along two basic ways from most of the
prior work on relevance feedback. First, we are
interested in using a highly heterogeneous collection
of information in the electronic medical record,
including free text of several types (e.g., dictated
history and physical examinations, surgical pathology
reports, and discharge summaries) as well as a variety
of types of coded information (e.g., demographic
information, patient charge codes (see below), and
laboratory results). The current paper focuses on
learning models using patient charge codes; it serves
as a baseline study for future extensions that involve
modeling with additional information in the electronic
medical record. Second, we are interested in applying
a wide variety of statistical and machine-learning
methods for modeling. Some of these methods (e.g.,
neural networks and Bayesian networks) are able to
model multivariate interactions among features. By
using a simple Bayes classification model, the current
paper serves as a baseline for planned investigations
that use more sophisticated modeling techniques.

EXPERIMENTAL METHODS

This section describes a pilot study that involves the
identification of those patients in the intensive care
unit with a venous thrombosis (VY). The primary
goal of the original study was to eventually locate
just those patients with a deep venous thrombosis.
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Figure 1. An outline of a method for identifying patient subgroups that uses computer modeling.

We investigated an approach in which initial cases of
VT are obtained by a simple search of coded features
of the total study population. The question is whether
there are other cases of VT that computer modeling
can help a user efficiently locate.

The total study population consists of all
patients admitted to two medical ICUs at the
University of Pittsburgh Medical Center Health
System (UPMC-HS) between January 1, 1993 and
December 31, 1995. There were a total of 3020
patients. Of these, 124 patients were identified as
having VT, based on being assigned one or more of
the following ICD-9 codes at discharge: other venous
thrombosis (ICD-9 code 453), Budd-Chiari syndrome
(453.0), thrombophlebitis migrans (453.1), vena cava
syndrome (453.2), renal vein thrombosis (453.3),
venous thrombosis nec (453.8), and venous
thrombosis nos (453.9). An ICU specialist reviewed
the MARS patient records and verified that the records
support a VT diagnosis.

In the current experiment, we randomly divided
the 124 VT cases into two parts. A total of 74 cases
were placed in a training dataset. For the purpose of
our study, we imagine that this dataset contains all
the cases found by a Boolean search of the ICD-9
codes; suppose, for example, that the ICD-9 coding of
records had been less complete, and only 74 cases
were coded as VT. We use the remaining 50 cases as a
test dataset. We investigate to what extent computer
modeling can help efficiently locate some or all of
those 50 cases without using ICD-9 codes; so, for
example, if the ICD-9 coding had been incomplete,
we are investigating the extent to which the uncoded
50 cases could be located by means other than the
ICD-9 codes.

Of the 3020 ICU patient cases, we randomly
selected 1802 cases for use in preliminary
experiments that investigated model construction

methods. To avoid testing bias, in performing the
final experiment reported here, we used only the
remaining 1218 cases (3020 - 1802). These 1218
cases contained 50 VT cases, as mentioned
previously; none of these 50 cases appeared in the
1802 cases used in preliminary experiments. The
fraction of VT cases in the entire set of 3020 is
approximately 4 percent. Likewise, the fraction of VT
cases in the set of 1218 cases is approximately 4
percent; thus, our evaluation dataset of 1218 cases
provides an unbiased sample of the original patient
population of 3020 cases.

We used patient charge codes as the features
(variables) with which to construct computer models
of VT cases. A charge code is a single item charged to
a patient during his or her hospitalization. For
example, the code 33001371 is used to represent a
charge for "warfarin sodium S mg tablet". There are
approximately 45,000 distinct items that can be
charged at UPMC-HS. Among the 3020 cases in our
study database, only 7035 distinct charge codes
appeared. Since charge codes can be very specific, and
thus lead to small sample sizes, we augmented these
7035 charge code features with 1081 abstract features.
In the current pilot study, an abstract feature was
created for each unique first word within the charge
code descriptions; as an example, the abstract charge
code heparin corresponds to the disjunction of all
charge codes whose descriptions begin with the word
"heparin". For the current study, we choose to use
charge codes because (a) they represent many of the
actions taken in caring for patients, and thus, are a
rich source of clinical information, and (b) they are

sufficiently voluminous and complex in their
organization that using them in a structured Boolean
search would be difficult for most users. We
represented a given charge code as a binary variable.
The value of a charge code is set to true if the given
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charge was made at any time during a patient's
hospitalization; otherwise, the value was set to false.

We used a simple Bayes system as a statistical
model, because it is simple to code, efficient to learn
and apply, and it often performs well in practice. A
simple Bayes system assumes that features (e.g.,
charge codes) are independent conditioned on a
diagnosis (e.g., VT). Although this assumption
usually is not valid, simple Bayes models have been
shown to be robust to violations of the assumption
when the models are used for classification [4]. That
is not to say that improvements cannot be made by
using more sophisticated models, which we intend to
do in future research.

Suppose that d represents a diagnosis or
prediction (e.g., VT). Let d' denote that d is bound to
some particular value (e.g., VT= present). Let fi
denote a feature (e.g., a charge for a 5 mg warfarin
tablet) that is bound to some particular value (e.g.,
either bound to the value true orfalse). Let F denote a
set of n features, each of which is bound to some
value. A simple Bayes model computes the
probability of d' given F as follows:

n
P(d')HP(fi d')

P(d' F) = i=l (1)
n

(P(d) P(fi d))
d i=l

where n is the number of features in the model and
the sum is taken over all the values of d (e.g., d =
present and d = absent). For any specific values off
and d, we estimated the term P (Jf d) as
(freq(fi, d) + 1)/(freq(d) + 2), wherefreq(f, d) is the
number of times that f. and d co-occur in the training
database. Similarly, we estimated P(d) as
(freq(d) + 1)/(N + 2), where N is the total number
of cases in the training database. When the sample
size is small, these estimates are less extreme than are
maximum likelihood estimates based on the simple
ratios freq(fi,d)/freq(d) and freq(d)/N.

When there are a large number of features, simple
Bayes models often have better predictive performance
if feature selection is applied. Thus, rather than use
many thousands of charge codes in Equation 1, a
search method is applied to select a relatively small
number of features that are highly predictive of the
diagnosis. We used a simple feature selection method:
in Equation 1 we only used those features with the
value true in at least one case in the training set.

Initially (cycle 0) we started with a training set
containing 74 cases of patients known to have had
VT and 74 cases known not to have had VT. These
constitute the reference cases denoted in Figure 1.
Following the figure, a simple Bayes model was

constructed from those 148 cases. This model was
applied to the 1218 cases in the test set and a
probability of VT was computed for each case using
Equation 1. The probabilities were sorted in
descending order. We assumed that a user would be
willing to review the 40 most probable VT cases and
classify each case as VT or not. In actual practice,
such a review would involve the user examining the
MARS record of each of the 40 patients to assess
whether the patient had experienced VT. Such an
examination could involve looking at structured
information (e.g., laboratory values) or free text (e.g.,
discharge summaries). In our experiments we
simulated the assessments that a user would give. We
were able to do so because we assume that among the
3020 cases the only ones with VT were those 124
cases described above.

We repeated this cycle of 40 patients for 10
cycles. We stopped after 10 cycles because it seems
unlikely that a user would be willing to review more
than 400 cases.

RESULTS

Figure 2 shows the key results. The x axis represents
the number of cycles taken in Figure 1. In a single
cycle, the 40 most probable VT cases (outside the
training set) are presented to the user for
classification. The y axis shows the total number of
VT cases found, which is equal to the 74 reference
cases plus the new record matches as verified by the
user.

Figure 2. A plot of the total number of VT
cases located as a function of the modeling cycle.

The upper line in Figure 2 is the maximum
performance that could be achieved; since only 40
cases are selected in each cycle, the maximum number
of cases that can be identified just after the first cycle
is 40 + 74 = 114. The line containing triangles
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shows the performance of applying the method
described in the previous section. The lower line is
the performance that would be expected when
randomly selecting 40 patient cases (from outside the
training set) during each cycle; this performance
corresponds to randomly searching through the ICU
patients in search of VT cases beyond the original 74.

DISCUSSION

The results in Figure 2 indicate that computer
modeling is helping locate VT cases that are not
included in the original set of 74 reference cases. In
the first cycle, 7 new VT cases are included among
the 40 cases presented to the user. Based on VT
having a prior probability of 4 percent in this dataset,
we would expect to find only 1 or 2 VT cases in a
random sample of 40 cases. The performance of
computer modeling continues at about the same rate,
until the fourth cycle. A plausible interpretation is
that as more and more VT cases are discovered, the
remaining cases become relatively fewer and are
therefore more difficult to locate; thus, the slope
begins to flatten at about the fourth cycle. Also, the
most apparent VT cases are likely to be located in the
early cycles, leaving the more difficult cases for later
cycles. Another factor is that we presently are using
only charge codes as model features. We intend to
expand the features modeled to include demographic
information, ICD-9 codes, and DRG codes; we then
plan to investigate the extent to which these
additional features change the system's performance.

In the present study, we have assumed that all
2896 (i.e., 3020 - 124) cases that are not known to be
VT are in fact not VT. As a check on that
assumption, we plan to have an ICU specialist
examine cases of VT that are predicted by the system
and that are not among the 124 cases already
established to be VT. We are interested in the fraction
of those cases that the specialist designates as being
VT cases. The larger the fraction the better. As a
supplementary check, we also plan to select a
feasible-sized random sample of the 2896 cases and
present these to the specialist for evaluation. From
the fraction designated by the specialist as VT cases
we can estimate the total number of VT cases within
the entire dataset of 3020 cases.

In the near term, we also plan to expand our
investigation to the identification of other patient
subgroups. In the longer term, our plans include the
representation of features that are extracted from free
text in the medical record (e.g., the discharge
summary). Our emphasis in representing free text
will be to explore relatively simple methods that will
be computationally tractable on a database the size of
MARS. For example, one basic approach is to map
free-text phrases into UMLS Metathesaurus concepts
using available mapping tools. Each identified
concept represents one variable that characterizes a

part of the free-text report. We also will explore a
wide variety of statistical and machine-learning
models, including neural networks, Bayesian
networks, and rule-based systems. We plan to provide
a web interface that will allow a user to perform an
initial set of Boolean queries on coded features, then
extend the search for patient cases using computer
modeling. The interface will permit the user to
examine and directly alter the model, if desired. An
audit trail will be maintained of all user decisions
regarding classification of cases in order to document
for each case the user's justification for it being of
interest or not.

When the overall search system is sufficiently
mature, we plan to perform a randomized, control
experiment with a wide variety of users and search
tasks in order to compare the computer modeling
approach to the current approach. The primary metrics
we anticipate using are the total patient cases of
interest that are found using each approach (case
capture), the total amount of user and staff time
expended in obtaining those cases, and the users'
assessments of the utility of the case capture given
the total expended time.
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