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ABSTRACT
Cost-effective health care is at the forefront of today's
important health-related issues. A research teamii at the
University ofPittsburgh has been interested in lowering
the cost ofmedical care by attempting to define a subset
of patients with comnmtnunity-acquired pneumionia for
whoin outpatient therapy is appropriate and safe.
Sensitivity and specificity requirements for this domain
make it difficult to use rule-based learning algorithmtis
with standard mteasures of performtance based on
accuracy. This paper describes the use of
misclassification costs to assist a rule-based machine-
learning programii in deriving a decision-support aidfor
choosing outpatient therapy for patients wsith
community-acquired pneumnonia.

INTRODUCTION
The Cost-Effective Health-Care (CEHC) project at the
University of Pittsburgh Medical Center is interested in
lowering the cost of medical care by attempting to define
a subset of patients with community-acquired
pneumonia for whom outpatient therapy is appropriate
and safe. The CEHC group is comprised of members of
the Pneumonia Patient Outcomes Research Team
(Pneumonia PORT) project, and machine-learning
researchers from the University of Pittsburgh and
Carnegie-Mellon University. The CEHC group is
investigating numerous machine-learning and statistical
classification models, to predict whether a patient with a
diagnosis of community-acquired pneumonia may be
safely treated on an outpatient basis. Models under
investigation include logistic regression, neural
networks, Bayesian and non-Bayesian belief netwvorks
[1,2], and rule-based systems. A physician who is
uncertain about outpatient treatment for a patient with
comnlunity-acquired pneumonia could consult the
model for assistance. The ideal model would use only a
few key patient findings to make a prediction, and
would be simple enough for a physician to perform the
calculations on a piece of paper.

To be clinically useful, the group decided that such a
model must have a very high predictive value when
outpatient therapy is recommended. In other words, the
model should make very few predictions suggesting

outpatient therapy in patients who should ideally be
treated as inpatients.

Learning a model with a very high positive predictive
value is a problem not typically seen in the machine-
learning literature. Most machine-learning algorithms
are evaluated and compared using classification
accuracy or classification error as the measure of
performance [3]. (Accuracy is defined as the ratio of
number of correct classifications divided by the total
number of cases to be classified. Error rate is one minus
the accuracy.) Learning a model with maximal
classification accuracy will not necessarily produce a
model with the desired sensitivity and specificity
requirements (or predictive value requirements) for a
given domain.

For learning methods whose output is continuous (e.g., a
probability of risk of mortality between zero and one
inclusive), an ROC curve' [4] can be computed by
varying the cutoff threshold for the two predicted
classes. A cutoff threshold can be selected to produce a
model with an appropriate sensitivity and specificity for
the given domain. (If it is preferred to use predictive
values to select the cutoff threshold, as suggested by the
Pneumonia PORT team for this domain, then a table of
predictive values can be calculated for each cutoff
value.) The ability to generate an ROC curve from a
single model allows two or more models to be compared
using the area under their ROC curves (or area under
the clinically relevant portion of the ROC curve).
Learning methods that produce continuous value outputs
include logistic regression, neural networks, and
Bayesian netwvorks.

Learning methods with categorical outputs (e.g., 'admit'
versus 'outpatient therapy') include traditional decision
tree programs [5], classification trees/CART [6], and
most rule induction programs [7,8,9]. These methods
can not produce an ROC curve from a single model. To
obtain a model with a different sensitivity and
specificity, a completely new model must be induced
(learned). In this paper we explain how
misclassification error costs can be used with a rule

A receiver operator clharacteristic (ROC) curve is a plot of
true positive rate (sensitivity) versus false positive rate (one
minus specificity).
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induction system to produce an ROC-lik-e curve and to
learn a clinically relevant model (i.e., one with a high
predictive value). Although we chose a rule induction
system, this method is general and can be used with any
learning method that produces categorical outputs.

BACKGROUND
For a two-class learning problem, classification accuracy
is calculated as the sum of true positive and true
negative cases divided the total number of cases. The
classification error rate (which is one minus
classification accuracy) can be calculated as the sum of
false positive and false negative cases divided the total
number of cases. Misclassification cost is similar to
classification error, except that different weights can be
assigned to the false positive and false negative cases.
Misclassification cost is calculated as the number of
false positive cases multiplied by the false positive cost
plus the false negative cases multiplied by the false
negative cost divided by the total number of cases.
Table 1 shows a sample misclassification matrix. The
matrix shown gives a large false positive cost (10) when
a patient who should be admitted (e.g., according to
expert opinion) is predicted by a computer model to best
receive 'outpatient therapy (RLx).' There is a smaller
false negative cost (1) when a patient which should be
treated as an outpatient is predicted as 'admit.'

Table 1: A misclassification matrix
with FP:FN cost ratio of 10.

True Class
Predicted Class Outpatient Rx Admit
Outpatient Rx 0 (fp) I10 (fp)

Admit I1 (fn) 0 (tn)

In a misclassification matrix, the fonvard diagonals
typically have zero values (no cost for correct
classifications) [3,10]. For a two-class problem, a
misclassification matrix (with zero diagonals) can be
completely defined by the ratio of the false positive cost
to the false negative cost (FP:FN cost ratio).

RELATED WORK
Pazzani et al. [10] has applied several misclassification
cost matrices to standard machine-learning databases
and has shown that cost can be used as a measure of
performance. Catlett [11] has applied misclassification
costs to a blackjack domain by augmenting a standard
decision tree program. He has shown how a variation in
the FP:FN cost ratio can produce a ROC-like curve. The
work described in this paper was done independently of
Catlett's research.

METHODS
The data used for this study were obtained from the
1989 MedisGroups Comparative Hospital Database [12].
Data were collected on 772,000 patients admitted to 78
hospitals in 23 states during the period from 7/87 to
12/88. The database consists of patient demographics
and over 250 key clinical findings which are obtained
from hospital information systems and standardized
chart review.

The Pneumonia PORT study team identified 14199
adult patients with community-acquired pneumonia
from the 1989 MedisGroups data using the following
criteria: 1) ICD-9-CM principal diagnosis of
pneumonia, 2) age 18 or greater, and 3) admission from
home or a nursing home. Excluded were: 1) patients
with AIDS or HIV positive titers (131 patients), and 2)
patients with a previous hospitalization within the prior
week (346 patients). Patients with AIDS or HIV
positive titers were excluded due to the distinct
differences in pneumonia etiologies and prognoses. For
patients with more than one hospitalization for
pneumonia in the database during the study period,
(1008 patients), only the initial episode of pneumonia
was evaluated.

From the MedisGroups key clinical findings, the
Pneumonia PORT study team selected 47 of the most
likely patient attributes (findings) considered to be
useful for the prediction of risk of mortality in patients
with community-acquired pneumonia. These attributes
included patient demographics (age, sex), presence of
comorbid conditions (diabetes mellitus, asthma, cancer,
congestive heart failure, chronic renal insufficiency or
failure, etc.), physical findings (vital signs, presence of
wheezing, heart murmur, altered mental status, etc.),
laboratory findings (pH, PO2, pCO2, electrolytes, BUN,
creatinine, liver function tests, WBC, etc.), and
radiologic findings (infiltrate, eff-usion, pneumothorax,
mass, collapse, etc.). All of the 47 attributes typically
are available to an emergency department physician who
is deciding the disposition of a patient with community-
acquired pneumonia.
The data were randomly divided into two mutually
exclusive sets. One set, consisting of 9847 patients,
was used for training (model learning) and the other set,
consisting of 4352 patients, was used for testing. The
dependent variable used for learning was the outcome of
vital status (mortality) in the MedisGroups database.
'Alive' is defined as surviving to discharge or surviving
more than 60 days in the hospital. The mortality rate in
the training and test sets were 11.1% (1091 out of the
9847) and 10.4% (451 out of the 4352), respectively.

Learning a model to suggest a fraction of community-
acquired patients wvhich can be treated safely at home,
should, ideally, involve data on both inpatients and
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outpatients. Since the MedisGroups database contains
only inpatients, any model derived from this data has, in
reality, learned to predict 'low risk for inpatient
mortality' versus 'higher risk for inpatient mortality.'
Therefore, we will subsequently refer to the two
predicted classes as 'low risk' and 'high risk.' We
define 'low risk' as the positive class and 'high risk' as
the negative class. Thus, a false positive prediction
corresponds to the classification model predicting 'low
risk' in a patient who was admitted and died in the
hospital. Similarly, a false negative prediction
corresponds to the model predicting 'high risk' in a
patient who was admitted and survived in the hospital.

Model learning for this study was done in two stages.
First, a rule induction machine-learning program, Rule
Learner (RL), was used to generate a large set of
plausible rules. Second, this large set of rules was given
to a post-processing program, Optimizer (OP), whose
task was to select a subset of these rules, based on
misclassification error costs. Both the rule generation
stage and rule selection stage used the training set only.
Model testing was performed with the test set only.

RL is a knowledge-based, rule induction program under
development in the Intelligent Systems Laboratory at the
University of Pittsburgh [7,8]. The rules generated by
this program are of the form 'if <feature 1> and <feature
2> and ... then the case is a member of <class X>.' We
define a feature as an attribute:value pair; thus 'age' is
an attribute, while 'age greater than 80' is a feature. If a
test case satisfies all of the features on the left-hand-side
of the rule (the if part), then the rule would cause that
case to be predicted as the class specified by the right-
hand-side of the rule (the theni part). An example of a
rule that predicts 'low risk' is "if (age < 23) and (PO2 >
47.5) then predict the case as 'low risk."' An example
which predicts 'high risk' is "if (systolic blood pressure
< 60) then predict the case as "high risk."'

OP is a ruleset post-processor under development in the
Section of Medical Informatics at the University of
Pittsburgh [13]. It is designed to select a subset of rules
from a ruleset (from any source) with the goal to
improve classification on unseen test cases. OP can use
either cost or accuracy as a measure of performance.
The use of a misclassification cost matrix allows it to
assign different costs to errors and to select a ruleset
whose predicted total error cost on the test set is
minimized.

In our study, the rules generated by RL predicted some
cases to be 'low risk' and others to be 'high risk.' When
two or more conflicting rules predicted the sanme case to
be both 'low risk' and 'high risk,' it was necessary for
OP to use a evidence gathering procedure to decide the
class of the case. The conflict-resolution strategy used
in this study was based on a weighted sum of rule

strength, which is best illustrated with an example.
Assume that two rules predicted a case to be 'high risk,'
and three rules predicted the case to be 'low risk.' The
case will be predicted to be 'high risk' if the sum of the
ratings for the rules predicting 'high risk' exceeds the
sum of the ratings for the rules predicting 'low risk.' If
no rule predicts the class of a case (or if the weighted
voting results in a tie), a default class is chosen. The
default class used in this study was 'high risk' because
this class has the least expected cost (i.e., it is the class
with the least cost if all cases were predicted to be in
that class).

OP selects a subset of rules from a larger ruleset using a
two stage process. The first stage, which we shall call
rule ordering, involves assigning an order to the rules.
The second stage, which we shall call ruleset evaluation
and selection, involves selecting a ruleset using the
ordering from the first stage.

OP currently implements three different post-processing
algorithms for the rule ordering stage. The algorithm
used in this study begins by rating the strength of each
of the rules. The rating function used was based on the
FP:FN cost ratio and the performance of the given rule
on the training data. The rule with the highest strength
(rating) was selected as the first in an ordered list. The
algorithm then recalculated the rule strength for each
remaining rule. This time, however, the rating function
also included additional information provided by the
performance on the training data of the ruleset
consisting of the ordered list. That is, given the ordered
list of selected rules, the rating function was able to
assign more weight to training cases not correctly
classified by these rules (on the ordered list). After the
ratings were recalculated, the best rule was added to the
ordered list, and the process was repeated.

During the ruleset evaluation and selection stage, OP
selected the single ruleset that performed best (i.e., has
the lowest cost) on the training data. The first ruleset
evaluated was the empty ruleset. (This corresponds to
the rule 'predict all cases as high risk,' since the default
class is 'high risk.' The second ruleset contains only the
first rule from the ordered list, while the third ruleset
contains the first two rules from the ordered list, and the
fourth ruleset contains the first three rules from the
ordered list, etc.

Table 2: A misclassification matrix used with OP.
True Class

Predicted Class Ouitpatienit Rx | Admit
Outpatient Rx 0 FP:FN cost ratio

Admit 1 0

OP wvas run a single time for each value of the
misclassification matrix FP:FN cost ratio. Table 2
above shows the misclassification matrix used. The
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Table 3: Table of partial resuilts. Thle lheadinigs of the table are FP:FN (FP:FN cost ratio), TP (true positive predictions), FP (false
positive predictions), FN (false niegative predictions), TN (true negative predictionis), SENS (sensitivity), SPEC (specificity), PPV
(predictive value of ani 'low risk' predictioni), NPV (predictive value of an 'high risk' prediction), ACC (classification accuracy),
and % Low Risk (percent of total test cases predicted as 'low risk.').
predictioni is a predictioni of 'higlh risk. .........................

FN
18
109
226
385
577
846
1063
1387
1554
1958
2125
2395
2496
2624
2872
3291
3615

TN
29
103
157
208
269
330
363
391
401
416
426
436
437
440
442
447
450

SENS
0.995
0.972
0.942
0.901
0.852
0.783
0.728
0.644
0.602
0.498
0.455
0.386
0.360
0.327
0.264
0.156
0.073

FP:FN cost ratio was initially set to 1, and was increased
until no further increase in positive predictive value was
obtained.

RESULTS
Table 3 is a partial listing of the results. Each line in
the table represents the results of the ruleset model
selected by OP for the given FP:FN cost ratio. The
results shown are on the test data only.

As the FP:FN cost ratio increases, Table 3 shows that
the number of false positives (FP) decreases faster than
the number of true positives (TP), so that the positive
predictive value of a 'low risk' prediction (PPV)
increases. Classification accuracy (ACC) and the
percent predicted as 'low risk' also decrease as the
positive predictive value and FP:FN cost ratio increase.

1.0 . ........~.

0.9 08~~~~~~~~~........Y

0.8
057
046
035

0.2
0.1
0.0

0.0 0.2 0.4 0.6 0.8
False Positive Rate (1I specificity)

1.0

A positive predictioni is a predictioni of 'low risk.' A negative

SPEC
0.064
0.228
0.348
0.461
0.596
0.732
0.805
0.867
0.889
0.922
0.945
0.967
0.969
0.976
0.980
0.991
0.998

PPV
0.902
0.916
0.926
0.935
0.948
0.962
0.970
0.977
0.979
0.982
0.986
0.990
0.990
0.991
0.991
0.993
0.997

NPV
0.617
0.486
0.410
0.351
0.318
0.281
0.255
0.220
0.205
0.175
0.167
0.154
0.149
0.144
0.133
0.120
0.111

ACC
0.899
0.895
0.881
0.856
0.826
0.778
0.736
0.668
0.631
0.542
0.506
0.446
0.423
0.395
0.338
0.243
0.169

% Low Risk
98.9
95.1
91.2
86.4
80.6
73.0
67.2
59.1
55.1
45.5
41.4
34.9
32.6
29.6
23.9
14.1
6.6

Figure 1 shows a plot of true positive rate (sensitivity)
versus false positive rate (one minus specificity). Each
line in Table 3 represents one point in Figure 1. The
point in the upper right corner of the figure corresponds
to the FP:FN cost ratio of 1, while the point in the lower
left corner corresponids to the FP:FN cost ratio of 80.

DISCUSSION
We have chosen to call the cunre in Figure 1 an ROC-
like curve because, each point represents a different
learned model. Thus, in contrast to a traditional ROC
cunre, an ROC-like curve may not be strictly
moniotonically increasing. Nevertheless, this curve still
provides the clinician a graphical representation of the
data and can aid in determination of the most suitable
model.

By varying the FP:FN cost ratio, a rule-based learning
algorithm has been able to learn models with varying
values of sensitivity anid specificity. Clinician
researchers can use the data in Table 3 or the curve
plotted in Figure 1 to select an appropriate model for
clinical application or to compare these results to
another learning method. The clinicians involved in
CEHC and PORT projects believe that an appropriate
model will require a positive predictive value in the
range of 0.990 (1% mortality rate in hospitalized
patients when 'lowv risk' is predicted). Given this
clinically useful range for positive predictive value,
Table 3 shows that the 'best' model would not have the
highest classification accuracy.

Fiqure 1
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Cost Ratio
1
2
3
4
6
8
10
12
16
20
24
30
36
44
56
70
80

TP
3883
3792
3675
3516
3324
3055
2838
2514
2347
1943
1776
1506
1405
1277
1029
610
286

FP
422
348
294
243
182
121
88
60
50
35
25
15
14
11
9
4
1
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Since the purpose of this study is to describe a general
methodology for developing a rule-based model in
domains with specific sensitivity and specificity
requirements (or predictive value requirements), we
have purposely not emphasized the actual results of this
rule-based learning system. For this domain, our
clinician researchers have determined that the important
parameters are the fraction of patients able to be
assigned to the 'low risk' group (% Low Risk) and the
prediction accuracy when 'low risk' is predicted
(positive predictive value). (Table 3 shows the tradeoff
between these two important parameters.) Models with
similar positive predictive value can be compared using
percent predicted as 'low risk.' Alternatively, models
with similar percent predicted as 'low risk' can be
compared using positive predictive value.

This study has some limitations. First, as previously
stated, a model whose goal is to select community-
acquired pneumonia patients for outpatient therapy,
should be learned from a database which contains
outcome data for both inpatients and outpatients. Since
the MedisGroups data consist only of inpatients, an1y
model learnedfromti this data mnakes the assulmiption that
hospitalized patients with a very lowv mniortality rate (i.e.,
those predicted as 'lowv risk), will not have a higher
mortality rate when treated as outpatients. Second, this
study also assumes that low risk patients demonstrate
favorable clinically relevant outcomes other than
mortality, such as morbidity, symptom resolution, and
return to usual activity. To validate these assumptions,
the chosen classification model will be evaluated using
data from the Pneumonia PORT study, which includes
both inpatient and outpatient data, and an assessment of
other health outcome measures.

CONCLUSIONS
We have shown how to use misclassification costs with
statistical or machinie-learning algorithms which
produce categorical outputs to adjust for the sensitivity
and specificity (or predictive value) requirements of a
particular domain. We have illustrated this general
technique by applying it to the construction of rule-
based systems that predict inpatient pneumonia
mortality.
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