
The impact of modeling the dependencies among patient findings
on classification accuracy and calibration

Stefano Montit
tIntelligent Systems Program

University of Pittsburgh
901M CL, Pittsburgh, PA - 15260

smontifisp . pitt . edu

ABSTRACT

We present a new Bayesian classifier for computer-
aided diagnosis. The new classifier builds upon the
naive-Bayes classifier, and models the dependen-
cies among patient findings in an attempt to im-
prove its performance, both in terms of classifica-
tion accuracy and in terms of calibration of the
estimated probabilities. This work finds motiva-
tion in the argument that highly calibrated proba-
bilities are necessary for the clinician to be able to
rely on the model's recommendations. Experimen-
tal results are presented, supporting the conclusion
that modeling the dependencies among findings im-
proves calibration.

INTRODUCTION

The development of medical diagnostic decision-
support systems is a field of research that has
received considerable attention in the past thirty
years, and numerous systems have been developed
to this end [1]. When developing a diagnostic
model, statistical or otherwise, we are faced with
the problem of assessing its performances. This as-
sessment is usually based on a validation process
whereby the model is applied to a test set (i.e., to
the solution of a set of clinical cases for which the
actual outcome is known), and the diagnosis pro-
vided by the model for each of the cases in the test
set is compared with the actual diagnosis.
Summary statistics of interest, such as the propor-
tion of cases correctly classified, positive predictive
value (PPV), negative predictive value (NPV), and
ROC curve area [2], are collected and possibly com-
pared with the corresponding statistics for compet-
ing models.
A problem with the adoption of summary statis-
tics measuring classification accuracy only, such as
PPV and NPV, or ROC curve area, is that these
statistics do not evaluate whether the degree of con-
fidence with which each diagnosis provided by a
model is produced is valid. With statistical diag-
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nostic models, the probability attributed to a given
diagnosis is the natural measure of the degree of
confidence in that diagnosis. A probability p of a
given outcome o, is considered well calibrated when
cases assigned a probability p of yielding outcome
o, actually yield outcome o approximately 100p%
of the times. Accordingly, whether a probability is
well calibrated tells us whether the degree of con-
fidence assigned to a given diagnosis is valid.
In this paper, we address the issue of a model's
calibration and of its classification accuracy in the
context of Bayesian models for decision-theoretic
computer-aided diagnosis. These models operate
by specifying a probability distribution over the
set of possible diagnostic outcomes, conditioned on
a set of relevant clinical findings. The diagnostic
decision is then based on the provided probability
distribution.
Recent results [3, 4] show that, for classification
purposes, the calibration of the probabilities pro-
duced by a classifier is not necessary to achieve high
classification accuracy as measured by means of a
zero/one loss (i.e., by measuring the proportion of
cases correctly classified by the model). These con-
clusions can be intuitively understood by noticing
that if the actual probability of the correct classi-
fication for a given case is p, the classifier will be
equally accurate if it assigns to that classification
any probability equal to or higher than p. That is,
if the classifier consistently errs in the direction of
higher probabilities for the favored classification.
These results can be naturally applied to the anal-
ysis of diagnostic models. In fact, provided we as-
sume the set of possible diagnoses to be an exhaus-
tive set of mutually exclusive outcomes, the diag-
nostic task can be interpreted as a classification
task, whereby a set of clinical findings are to be
assigned to the correct diagnosis.
In computer-aided diagnosis, the calibration of the
probabilities output by the model may be as impor-
tant as the classification accuracy for the clinician
to be able to rely on the system's recommenda-
tions. This claim is based on a decision analyti-
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cal view of the diagnostic task, with the clinician
acting as decision maker. We apply these consid-
erations to the analysis of the naive-Bayes (NB)
model [5], also known as simple Bayes, or indepen-
dence Bayes. We provide evidence supporting the
conclusion that the assumption of independence
among patient's findings adversely affects the cal-
ibration of the model's probability estimates, and
we propose a new Bayesian classifier that models
the findings' dependencies. We present experimen-
tal results aimed at comparing the classification ac-
curacy and the calibration of the new model with
the NB model. For the comparison, we use a med-
ical database of pneumonia patients collected over
several medical institutions in North America. The
results show that, while modeling the probabilistic
dependencies of the findings does not improve diag-
nostic accuracy, it positively affects the calibration
of the estimated probabilities.

BACKGROUND

In this section, we briefly describe the Bayesian
classifiers that are the building blocks of the new
model proposed in the next section.

The naive-Bayes model

As discussed in the introduction, recent results
[3, 4] show that the calibration of the probabil-
ities produced by a classifier is not necessary to
achieve high classification accuracy. A notable ex-
ample supporting these results is the naive-Bayes
(NB) model [5]. The NB model is one of the most
popular classification methods used for computer-
aided diagnosis [7-9]. One of its first applications
to a diagnostic task was explored more than thirty
years ago by Warner et al. [10], and it is still to-
day the object of active research [3, 11]. Part of its
success is due to its simplicity and interpretabil-
ity. Furthermore, several empirical studies have
shown that it is very accurate, and can often out-
perform more complex and sophisticated classifica-
tion methods, despite the strong assumptions on
which it is based [3]. The main assumption nec-
essary to the application of the NB model is that
all the findings are mutually independent condi-
tioned on the outcome variable. A graphical repre-
sentation of the NB model is shown in Figure l.a.
The outcome variable 0 is defined as the common
parent of the findings F = {F1,.. ., Fn}, and each
of the findings Fi is a child of the outcome vari-
able 0. The independence assumptions implied by
the model allow for the following factorization of
the conditional probability P(O F) of the outcome

variable given a set of findings:

P(O I F) = 0,F)
>ZO' P(0', F)

(1)
P(O) f11n P(FS 0)

Eon P(O') H1 P(FS Q')i
It follows that for the specification of the model, we
need to estimate the prior probability P(O), and
the conditional probabilities P(Fi 0) of each find-
ing Fi given the outcome variable 0. These proba-
bilities can be easily estimated from data for both
discrete and continuous variables.
The conditional independence assumption is often
violated by the data, but both empirical results and
theoretical analysis suggest that this violation does
not necessarily affect classification accuracy [3, 4,
11-13], a point to which we will return.

The finite mixture model
An alternative to the NB model that allows for the
relaxation of the conditional independence assump-
tion is the finite mixture (FM) model [6]. In a FM
model, all the dependencies between observed vari-
ables, both the findings and the outcome variable,
are assumed to be modeled by a single discrete la-
tent (i.e., unobserved) variable. In aFM model, the
outcome variable is itself a child node, and the com-
mon parent is a latent variable. With reference to
Figure L.b, the parent node L represents an unmea-
sured, discrete variable, which models the interac-
tion among the findings {Fi}, as well as the interac-
tion between the findings and the outcome variable
0. Based on the conditional independencies im-
plied by the FM model, the conditional probability
P(O F) can be factored as follows:

NO F) ZEL P(L)P(O,FI L)
EL P(L) PF)P(PL',F I L)

(2)
EL P(L)P(O L) H1i P(Fi L)

EL P(L) Hi P(Fi I L)
It follows that for the complete specification of the
FM model, we need to estimate the prior probabil-
ity P(L), and the conditional probabilities P(O L)
and P(Fi I L).
Learning an FM model from data consists of two
steps: 1) determination of the number of values
of the latent variable L; and 2) parameter estima-
tion. The determination of the number of values of
the latent variable is the most difficult step. Exact
parameter estimation is not feasible in general, be-
cause of the presence of the latent variable, and ap-
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Figure 1: Bayesian classifiers: a) the naive-Bayes (NB) model with outcome variable 0 and set of findings {Fi},
which are independent given 0; b) the finite mixture (FM) model, where the hidden variable H models the depen-
dencies among all the observed variables; and c) the finite-mixture-augmented naive-Bayes (FAN) model, obtained
by superimposing an FM model on the set of feature variables of an NB model.

proximate iterative methods are usually adopted.
For lack of space, we refer the interested reader to
a detailed discussion of these topics in [15].

METHODS

The classifier that we describe in this section com-

bines the two models described in the previous sec-

tion, while relaxing the assumptions on which they
are based. We call the new classifier the Finite-
mixture-Augmented Naive Bayes (FAN) model.
As shown in Figure L.c, the proposed classifier is
obtained by superimposing a FM model on the set
of findings of a NB model. That is, the latent vari-
able L is introduced to model the residual prob-
abilistic dependencies between the findings {jF}
that are not captured by the outcome variable 0.

At the same time, in an attempt to improve over

the FM model, the FAN model reduces the burden
on the latent variable L by modeling part of the
dependencies among findings through the outcome
variable 0. Notice that the NB model is subsumed
by the FAN model, since it corresponds to a trivial
FAN model with a one-valued latent variable.
Based on the conditional independencies implied
by the FAN model, the conditional probability
P(O F) can be factored as follows:

P(0 F) = EL P(L)LOP(O FIL)

(3)
P(O) EL[P(L) Fj P(F, 0,L)]

o { P(O') EL[P(L) HiP(Fi 0',L)] }.
The method for learning a FAN model from data is

a straightforward adaptation of the corresponding

method for learning an FM model from data.

Experimental design
For the experimental evaluation, aimed at com-

paring the three models described in the previous
sections, we used the pneumonia PORT database
[16, 17]. This database contains the results of an

observational study of outpatients and inpatients
with community-acquired pneumonia, conducted
at five medical institutions in North America. The
database has a total of 2287 cases, with each case

corresponding to a different patient. In our ex-
periments, each case is described by a total of 159
variables, including the outcome variable, and 158
predictors, corresponding to demographics, symp-
toms, physical findings, and test results. The out-
come variable used in the experiments is DIREOUT,
which registers the occurrence or non-occurrence

of any of the following events: a severe complica-
tion, death within 30 days of being seen initially,
or ICU admission for respiratory failure, respira-
tory or cardiac arrest, or shock/hypotension. The
dataset was randomly partitioned into a training
set of 1601 cases and a test set of 686 cases, both
containing approximately the same proportion of
positive cases of DIREOUT. For each of the three mod-
els considered, we built the model based on the
training set, and collected the relevant summary
statistics on the test set.

RESULTS

For the comparison of the classification accuracy
of the three models, we use the area under the
receiver operating characteristic (ROC) curve [2].
The ROC curve plots the true positive rate as a

function of the false positive rate as we vary from
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Figure 2: a) ROC curves; and b) calibration plots for the three models being compared.

case as positive. Each point on the curve charac-
terizes the performance of the classifier for a given
threshold. The area under the ROC curve can be
used as a measure of classifier performance. An
area of 1 corresponds to perfect accuracy. An area

of .5 corresponds to the performance of a classifier
that randomly guesses the outcome.
Table 1 (2nd column) reports the ROC area for
the different models we considered. A statistical
comparison of the ROC areas [18] shows that there
is no statistically significant difference in the ROC
area of the NB model and the FAN model (p > .5),
while the ROC area for the FM model is signifi-
cantly worse (p < .05). By looking at Figure 2.a,
we can see that the ROC curves for the NB model
and the FAN model are similar, while the ROC
curve for the FM model is consistently dominated
by the ROC curves for the other two models.
For the comparison of the models' calibration, we

present descriptive plots accounting for their cali-
bration. Notice that, if we knew the actual prob-
ability of each case's outcome, that is, its asymp-

model
NB model
FAN model
FM model

I
ROC area

.8505

.8493

.8125

L

1=
Calibration

1 of 6 bins ('17%)
4 of 9 bins (-45%)
3 of 4 bins (-75%)

totic frequency as the sample size goes to infinity,
then for a perfectly calibrated model the plot of the
actual probability of each case against the proba-
bility assigned by the model to the corresponding
case would be the straight line y = x. Based on

this observation, we specify the calibration plot for
a model as follows. We divide the probability range
in equal bins of width .1, and for each bin, we re-

port the proportion of actual positive cases that are

assigned a probability within the range specified by
the bin. For example, if we consider the third bin,
corresponding to the probability range between .2
and .3, we compute the proportion of actual pos-
itive cases among all the cases that were assigned
a probability between .2 and .3 by the model. For
a well calibrated model, this proportion should fall
within the bin's range.

As shown in Figure 2, the plot for each model is
specified by a series of 95% confidence intervals
(CIs), one for each of the ten bins, centered at
the mid-point of the probability range specified by
each bin. No CI is reported if the model does not
assign a probability within the bin's range to any
case in the test set. The diagonal line correspond-
ing to perfect calibration is also plotted as a ref-
erence. The comparison of the calibration plots of
Figure 2.b is summarized in Table 1 (3rd column).
From Figure 2.b, we can see that the NB model
is consistently miscalibrated. In fact, for only one

out of six bins the 95% CI intersects the perfect-
calibration line. The FAN model is considerably
better calibrated, since the CI of 4 out of 9 bins

I
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Table 1: Area under the ROC curve, and summary
of calibration plots.
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intersects the perfect-calibration line. Finally, the
FM model is very well calibrated (3 out of 4 bins),
but it does not assign any probability above the
.4 threshold. That is, it never classifies a case as
positive with a large degree of confidence.
Our results are consistent with results presented
in similar studies [3, 11-13] that show that model-
ing the conditional dependencies among the patient
findings does not necessarily increase classification
accuracy. Significantly however, our results also
show that modeling the dependencies among find-
ings improves the calibration of the model.

CONCLUSIONS

We have presented a new Bayesian classifier, which
builds upon the naive Bayes model, while relaxing
the strong assumptions of probability independence
on which that model is based, in an attempt to im-
prove the calibration of its probability estimates.
The rationale for the new model is the idea that
well calibrated probability estimates are necessary
for the clinician to be able to rely on the recom-
mendations provided by a probabilistic diagnostic
system. For the comparison of the calibration of
different models, we used calibration plots. How-
ever, we plan to investigate statistics that measure
the calibration of a model, so as to be able to com-
pare competing models, and test the statistical sig-
nificance of possible differences.
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