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SUMMARY

Early detection and characterization of outdoor aerosol releases of Bacillus anthracis is an important
problem. As health departments and other government agencies address this problem with newer methods
of surveillance such as environmental surveillance through the BioWatch program and enhanced medical
surveillance, they increasingly have newer types of surveillance data available. However, existing methods
for the statistical analysis of surveillance data do not account for recent meteorological conditions, as
human analysts did in the case of the Sverdlovsk anthrax outbreak of 1979 to determine whether the
locations of victims were consistent with meteorological conditions in the week preceding their onset of
illness.

This paper describes the Bayesian aerosol release detector (BARD), an algorithm that analyzes both
medical surveillance data and meteorological data for early detection and characterization of outdoor
releases of B. anthracis. It estimates a posterior distribution over the location, quantity, and date and
time conditioned on a release having occurred. We report a proof-of-concept evaluation of BARD, which
demonstrates that the approach shows promise and warrants further development and evaluation. Copyright
� 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Early detection of a surreptitious aerosol release of Bacillus anthracis is an important problem [1, 2].
A release could infect hundreds of thousands of individuals. Without early detection, mortality
could be as high as 30 000 [1] to 3 million [3].

There is a narrow window of time within which infected individuals must receive antibiotics and
vaccines. Statistical models of release scenarios suggest that the ability of antibiotics and vaccines
to reduce mortality falls rapidly over the week following a release [1, 4–7]. If these treatments
could be administered to all exposed immediately, mortality could be limited to less than 1
per cent [4]. A response beginning on day 2 results in mortality of approximately 8 per cent [7]
to 42 per cent [1], whereas a response on day 7 has mortality of 25–95 per cent. In the model of
Wagner et al., a delay of just 1 h results in additional economic costs (primarily from additional
deaths) of as much as $250 million [2].

To enable treatment of the maximum number of exposed people within the short window of
opportunity, early detection must be accompanied by rapid characterization of the release. In
particular, identification of the people exposed, or at least rapid and accurate risk stratification of
people according to their probability of exposure, is important. Even the most highly developed
emergency response system has a finite rate at which it can administer antibiotics and vaccinations
to people. At a treatment rate of 10 000 people/h, it would take just over 4 days to treat one million
people. In the event of a large-scale release, responders will face a triage problem, whose optimal
solution with respect to minimizing mortality and morbidity depends on accurate estimation of
exposure levels.

In response to these requirements for early detection and identification of exposed individ-
uals, health departments and other government agencies have been augmenting notifiable disease
surveillance with two new methods of surveillance: (1) monitoring of the air (the BioWatch
program) and (2) more intensive monitoring of human health through collection of data from
emergency departments (EDs) and other sources such as the retail industry. The latter method of
enhanced medical surveillance is sometimes referred to as syndromic surveillance [8–10]. Both
methods attempt to detect releases before the healthcare system confirms the diagnosis in indi-
vidual cases (the basis of the notifiable disease reporting system), a process that took 9 days
after the release in Sverdlovsk [11] and at least 8 days after terrorists mailed spore-laden letters
in 2001 [12].

A consequence of these new surveillance methods is that health departments have a
broader range of data to analyze than in the past. The data may include results of tests
from BioWatch that indicate the presence or absence of selected biological agents in the air.
They may include meteorological data such as wind direction and speed needed to inter-
pret the results from BioWatch devices. The data may also include counts of ED visits
for particular syndromes (such as generic respiratory and gastrointestinal syndromes), sales
of selected over-the-counter healthcare products, orders for laboratory tests, and school
absenteeism.

At present, health departments analyze these data primarily using univariate time series
algorithms and spatial scan statistics [9, 13–17]. They may also utilize tools provided by the
BioWatch program for the integrated analysis of air-sampler data and meteorological data to
determine likely release locations, release dates, and locations where people are likely to have
been exposed [18]. Algorithms for multivariate analysis exist [19–22], but their use in practice is
less frequent.
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A limitation of these methods is that they do not analyze both meteorological and medical
surveillance data to detect and characterize releases. Weather conditions at the time of the release
and the release location, primarily, will determine where exposure occurs and at what levels.
An analyst considering the possibility of a release would therefore check the spatial distribution
of cases against recent meteorological data, as did Meselson et al. when analyzing data from
the Sverdlovsk anthrax outbreak of 1979 [23]. However, Meselson et al. did not formalize their
analysis as an algorithm, and no prior work on such an algorithm exists, to our knowledge. The
existence of BioWatch tools for integrated analysis of air-sampler results and meteorological data
also confirms the need for tools for similar analysis of medical surveillance and meteorological
data.

This paper describes the Bayesian aerosol release detector (BARD), an algorithm that analyzes
both medical surveillance data and meteorological data for early detection and characterization
of outdoor releases of B. anthracis. BARD computes the posterior probability of a release given
these data. It estimates a posterior distribution over the location, quantity, and date and time
conditioned on a release having occurred. BARD can also estimate, at various locations within the
area under surveillance, the probability of infection given assumptions about the infectious dose
and other relevant model parameters. This information may help guide prioritization of antibi-
otic and vaccine administration. The current version of BARD is specialized to detect anthrax
releases and analyzes only data about ED visits for respiratory complaints (medical surveil-
lance) and meteorological data. However, the approach is general and could be extended to
include additional data and other biological agents that can be disseminated by outdoor aerosol
release.

2. BACKGROUND

In this section, we review the three current methods of anthrax surveillance. Additionally, both to
illustrate the need for integrated analysis of surveillance and meteorological data and to motivate our
fundamental approach in BARD, we review how Meselson et al. performed an integrated analysis
of human health, animal health, and meteorological data to characterize the 1979 Sverdlovsk
anthrax outbreak.

2.1. Notifiable disease surveillance

The traditional method of disease surveillance is called the notifiable disease reporting system.
Laws in all 50 states require physicians, hospitals, and laboratories to report to health departments
the existence of individuals with any of approximately 50 diseases, including anthrax. The diseases
for which reporting is mandatory are called notifiable diseases.

The strength of the notifiable disease reporting system is that it is in place nationwide and
therefore covers 100 per cent of the population. Its chief limitation is the delay from infection to
suspected or confirmed diagnosis, which is the event that triggers reporting. The delay between
infection and reporting of the first case in the Sverdlovsk anthrax outbreak was 9 days [11]. The
delay in the 2001 mail contaminations was at least 8 days [12]. Although the latter incident was
not an outdoor aerosol release, the time to detection was similar and it is one of only two data
points available on how quickly the notifiable disease reporting system detected terrorist incidents
involving anthrax.
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2.2. BioWatch

As of 2003, BioWatch—a program of the Department of Homeland Security—had deployed
approximately 500 air-sampling devices in 31 cities [24]. These devices capture particulate matter
from the air on filter paper, which are collected periodically and sent to laboratories for testing.
The testing identifies the presence of the DNA of several biological agents, including B. anthracis
[24]. At present, the filters are retrieved and analyzed daily, unless there is heightened suspicion
or threat.

Although much information about BioWatch is classified, there is enough information publicly
available to identify its strengths and limitations with reasonable certainty. The strengths of the
BioWatch program are that it can detect an aerosol release quickly—as early as 24 h after it occurs.
It generates few false alarms, identifies the organism released, is unlikely to miss a large release,
can roughly estimate the concentration of spores that were in the air, and—if there are enough
devices in a region—it may be able to rapidly and accurately characterize the geographic extent of
contamination. The limitations of BioWatch are that it is not universally deployed (approximately
30 cities) and it cannot distinguish between viable (infectious) organisms and those that are dead.
Even in those cities in which it is deployed, the limited number of air collectors—approximately
15 per city—allows for the possibility that a ‘significant’ release will not be detected if it passes
between detectors [25]. Additionally, if only one or two collectors register the presence of B.
anthracis, then characterization of the source (location, time, quantity, etc.) may be difficult because
several recent wind directions, speeds, etc. could be consistent with the observed results.

BioWatch also provides health departments with a system called the Biological Warning and
Incident Characterization (BWIC) system, which estimates the exposed area resulting from a
release by analyzing BioWatch results and meteorological data [18]. BWIC also has capabilities
for displaying medical surveillance data on a map but does not use these data in its analysis.

2.3. Enhanced medical surveillance

Enhanced medical surveillance is the monitoring of data that may reflect early stages of illness in
humans. The data may come from both the healthcare system and entities outside the healthcare
system such as retail chains.

The strength of enhanced medical surveillance is its potential for earlier detection than
the notifiable disease reporting system. It also has the potential to detect novel pathogens,
whereas BioWatch and the notifiable disease reporting system are limited to known pathogens
(however, our focus in this paper is the known pathogen anthrax). Its limitations are that
it is not universally deployed throughout the United States, it cannot identify the biolog-
ical agent, and it produces frequent false alarms in most settings (although the frequency of
false alarms is under the control of the operators and therefore could be reduced). Whether
enhanced medical surveillance ultimately can provide earlier warning than notifiable disease
surveillance is controversial [26–28], but the work we report here represents an effort in
that regard.

Statistical analysis is important in enhanced medical surveillance because the data have
high variability in the absence of outbreaks; thus, extracting an outbreak ‘signal’ from back-
ground ‘noise’ can be difficult [28–30]. In addition, researchers typically automate the statistical
analyses because the volume of data is often too high for routine, manual review. Common
statistical approaches include time series analysis, control charts, and spatial scan statistics
[9, 15, 27–29, 31].
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2.4. Meslson’s analysis of the 1979 Sverdlovsk outbreak

Meselson et al. analyzed human, animal, and meteorological data in their analysis of whether an
outbreak of anthrax in Sverdlovsk, the U.S.S.R., in 1979 was caused by contaminated meat—the
official Soviet explanation—or an aerosol release of B. anthracis from a military microbiology
facility, as was suspected by the U.S. intelligence experts [23]. The question was important because
the latter explanation would be relevant to whether the Soviet Union was in violation of international
treaties to which it was a party.

Meselson et al. obtained data about the victims of the outbreak, outbreaks of anthrax in animals
that occurred at the same time, and meteorological conditions. In particular, they interviewed
victims and their families and acquaintances and reviewed available records to determine time
of symptom onset, time of hospital admission, and time of death (if applicable). They collected
detailed information about the locations of victims prior to the onset of illness. They obtained
records of outbreaks of anthrax in animals in nearby villages. They obtained records of three-hourly
surface weather observations from local airports.

They created several maps of the locations of victims at different times. They compared these
maps with the locations of animal outbreaks, meteorological conditions, and the most likely source
of a possible release, a military microbiology facility.

They found that the area encompassing the daytime locations on 2 April 1979 of 57 victims was
a narrow, 4-km long zone extending south–southeast from the microbiology facility (Figure 1(a)).
Of the remaining nine victims, eight were plausibly inside the zone and for one there was insufficient
information. They found that the six villages that had experienced outbreaks of anthrax in animals
were located along the axis (when extended to 50 km) of the zone that encompassed the daytime
locations of humans on 2 April (Figure 1(b)).

The meteorological data showed that the wind direction had a compass bearing that ranged from
320 to 350◦ from 1:00 AM to 7:00 PM local time (Figure 1(c)) on 2 April, consistent with the
compass bearing of 330◦ of the high-risk zone for humans and animals (meteorological convention
is to report the direction from which the wind is blowing). A postulated release date of 2 April
was also consistent with available information about the incubation period of inhalational anthrax
and the dates of symptom onset in victims.

Meselson et al. also estimated that a few milligrams to a gram of spores escaped into the
air from the facility, depending on assumptions about the lethal dose of spores and the turbu-
lence of the atmosphere [32]. This quantity of release is consistent with the explanation for
the release of two former Soviet officials, who claim that workers in the military microbiology
facility mismanaged a ventilation system with subsequent discharge of spores into outside air [33].
Because it estimated a small size of the release, the study by Meselson et al. was insufficient
evidence on its own that the Soviets were in violation of a treaty that banned the production of
biological weapons (the treaty permitted production of small amounts for defensive purposes).
When considered in the light of other evidence, however, the study supported the conclusion of
a violation.

The analysis conducted by Meselson et al. was labor and time intensive. It required manually
searching through the varying physical locations of victims during the week preceding the outbreak
for spatial patterns consistent with the weather and a model of atmospheric dispersion. A motivation
for developing BARD was to automate this type of analysis so that it can be performed on a routine
basis and in real time, with notification to relevant personnel (i.e. an alarm) when the surveillance
data are sufficiently suggestive of a release.

Copyright � 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:5225–5252
DOI: 10.1002/sim



5230 W. R. HOGAN ET AL.

Figure 1. (a) The high-risk zone for humans. Numbers indicate daytime locations of victims on 2nd April.
The ellipse-like lines are isopleths of the airborne concentration of spores produced by the Gaussian plume
model. The military microbiology facility resides just northwest of the zone. (b) The high-risk zone for
animals. The six villages where outbreaks of anthrax occurred in animals are shown. (c) Meteorological
data from 2nd to 4th April 1979. The only times the wind was blowing towards the south-southeast was
from 1 AM to 7 PM on April 2nd. All three figures are reprinted with permission from Meselson M et al.
The Sverdlovsk anthrax outbreak of 1979 (Science 1994; 266(5188):1202–1208). Copyright 1994 AAAS.

3. DESCRIPTION OF THE BARD ALGORITHM FOR DETECTING
WIND-BORNE OUTBREAKS

BARD uses Bayes’ rule to compute the posterior probability of an outbreak hypothesis:

P(Hi |B,G,M)= P(B|Hi ,G,M)P(Hi |G,M)∑
j P(B|Hj ,G,M)P(Hj |G,M)

(1)
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where the Hi and Hj belong to a set H of mutually exclusive and exhaustive outbreak hypotheses,
B is a matrix of biosurveillance data, G is a matrix that contains population and location data
for the geographical sub regions (such as zip codes) of the region (city, county, or metropolitan
statistical area) from which the surveillance data were taken, and M is a matrix of meteorological
data. We describe these matrices and how we compute the likelihood of the surveillance data under
Hi , P(B|Hi ,G,M) below.
At present, BARD considers two outbreak hypotheses and makes assumptions to simplify the

derivation of the necessary prior and conditional probabilities. The first hypothesis H0 is that
‘background’ respiratory disease that we have seen historically is the only ‘respiratory disease’
causing illness in the geographic region. The second hypothesis H1 is that both background
respiratory disease and an outbreak of inhalational anthrax due to a release of B. anthracis are
causing illness in the most recent 24-h period. At present, we assume that (1) H0 and H1 are
mutually exclusive and exhaustive, (2) the prior probabilities of the hypotheses are independent of
G and M, and (3) the probability of B given H0 is independent of M. As we discuss below, we
condition background respiratory disease instead on month of year and day of week to account for
seasonal and day-of-week effects in historical surveillance data. Assuming exclusivity of H0 and
H1 could cause BARD to signal false alarms during other types of outbreaks such as influenza,
and thus worsen its overall measured outbreak-detection performance in the evaluation we discuss
below. Conditioning background disease on weather—either in addition to or instead of—month
of year and day of week could improve BARD’s ability to detect releases, but we did not study it
here.

With the above assumptions and the fact that at present B contains one column (counts of ED
visits for respiratory complaints) and thus is the vector b, equation (1) simplifies to

P(H1|b,G,M)= P(b|H1,G,M)P(H1)

P(b|H1,G,M)P(H1)+P(b|H0,G)P(H0)
(2)

We must therefore specify the two prior probabilities—P(H0) and P(H1)—and the two conditional
probabilities—P(b|H0,G) and P(b|H1,G,M). Because we assume that H0 and H1 are mutually
exclusive and exhaustive, P(H0)=1−P(H1). We use P(H1)=10−5 (Table I); this value is a
subjective estimate that roughly one release of B. anthracis will occur every 10 years in any one of
the 30 largest cities in the United States (i.e. approximately 1/(10×365×30)). Other researchers
have used a daily probability of approximately 2.7×10−5 [34].

To allow decision makers to substitute an alternative prior probability for H1, BARD also outputs
the following likelihood ratio, or Bayes’ Factor [35]:

P(b|H1,G,M)

P(b|H0,G)
(3)

In the remainder of this section, we describe in more detail the input and output of the BARD
algorithm and how it computes the conditional probabilities P(b|H0,G) and P(b|H1,G,M).

3.1. Input and output

BARD requires three inputs: (1) the vector b of counts of ED visits for respiratory complaints; (2)
the matrix G of data about geographical areas; and (3) the matrix M of meteorological data. The
vector b comprises the most recent 24-h counts of ED visits for respiratory complaints for each
zip code in the surveillance region.
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Table I. Notation and description of parameters in BARD’s model.

Variable Default value Description

h Height in meters above ground at which B. anthracis spores were released
Q Quantity of anthrax spores released in kg
V̇E 2.23×10−4 Minute ventilation (m3/s)
x, y x , y coordinate of release location on surface of the Earth∗
u Wind speed at time of release in m/s
s Atmospheric stability class
t Number of hours from time of release to the end of a 24-h interval

for which we counted ED visits
d Number of anthrax spores an individual inhales
ID50 8625 Dose of spores infectious for 50 per cent of population
Probit slope 0.669 Slope of linear relationship between probit and log10(d)
zip Home zip code
moy Month of year of the 24-h interval of counts of ED visits
dow Day of week of the 24-h interval of counts of ED visits†

!+
1 P (individual presents to ED with respiratory chief complaint

between t−1 and t |d, t)
!0 P (individual presents with respiratory chief complaint |moy,dow)
P(H1) 10−5 Prior probability of a release

∗One must convert from longitude and latitude to meters using the map projection functions of geographical
information system software.

†We use the day of week in which the majority of the 24-h period resides. For example, if the 24-h interval
ends at 12:00 PM on Thursday, we use dow=5 (Thursday), but if it ends at 8:00 AM on Thursday, we use
dow=4 (Wednesday).

Similarly each zip code has one row in matrix G with five columns of data. The five columns
are (1) population, (2) the x coordinate of a central point in the zip code, (3) the y coordinate of
the same point, and the historical (4) mean and (5) standard deviation of counts of ED visits for
the zip code and the month of year and day of week that correspond to the date/time of the counts
of ED visits in b (we discuss these columns further in Section 3.2.1).

The rows of matrix M correspond to times at which meteorological observations were made
and the columns to the particular variables observed. Specifically, the columns are wind speed,
wind direction, and atmospheric stability class. Atmospheric stability class is a measurement of
atmospheric turbulence, a key determinant of atmospheric dispersion of substances [36].

In addition to the posterior probability P(H1|b,G,M), BARD outputs (1) the posterior
distribution over the release location, quantity, and date/time conditional on a release having
occurred and the expectation of these quantities, (2) the zip code whose boundary contains
the point corresponding to the posterior expectation of the release location, and (3) a listing
of the zip codes in descending order of the probability that some individuals in the zip code
are infected.

3.2. Computation of the conditional probabilities

BARD assumes that the counts of ED visits in the zip codes, b=[c1,c2, . . . ,cm]′, are independent
given either hypothesis (relaxing this assumption is future work); thus, if there are m zip codes in
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the region BARD is monitoring:

P(b|H0,G) = P(c1,c2, . . . ,cm |H0,G)

=
m∏
i=1

P(ci |H0,gi ) (4a)

P(b|H1,G,M) = P(c1,c2, . . . ,cm |H1,G,M)

=
∫

r

[
m∏
i=1

P(ci |H1,gi ,mt ,r)
]
P(r|H1,gi ,M)dr (4b)

where gi is the row vector of G for zip code i,r is a vector of values for a particular location
and quantity and time of release, and mt is the row vector of M that specifies the meteorological
data corresponding to the hypothesized time of release in r. We discuss r, its dependency rela-
tionship with ci , its prior distribution, and the procedure we use to integrate over it to compute
P(b|H1,G,M) in Section 3.2.2.
BARD represents each ci as a binomial process:

P(ci |H0,gi ) =
∫ 1

0

(
ni

ci

)

!ci0,i (1−!0,i )ni−ci f0(!0,i |gi )d!0,i (5a)

P(ci |H1,gi ,mt ,r) =
∫ 1

0

(
ni

ci

)

!ci1,i (1−!1,i )ni−ci f1(!1,i |gi ,mt ,r)d!1,i (5b)

where ! j,i is the probability under hypothesis Hj that an individual in zip code i will visit an ED
with a respiratory complaint in a given 24-h period, f j (·) is the density function over ! j,i , and
ni is the population of zip code i . Although researchers more typically represent count data using
the Poisson distribution, we assume that the number of ED visits from a zip code is bounded by
the number of people who live there (the ED data are given by patient home zip code); thus, the
binomial distribution is appropriate. Nevertheless, given that typically we will have small values
of ! j,i and ci , and large values of ni , our use of the binomial typically will closely approximate
the Poisson.

We discuss next how BARD estimates f0(!0,i |gi ) and f1(!1,i |gi ,mt ,r) and uses them to compute
the conditional probabilities P(c1,c2, . . . ,cm |H0,G) and P(c1,c2, . . . ,cm |H1,G,M).

3.2.1. Computing P(c1,c2, . . . ,cm |H0,G). We condition !0,i on month of year and day of week
(moy and dow, respectively, in Table I) to account for seasonal and day of week effects in the
counts of ED visits for respiratory complaints that we have observed historically. We assume that
no releases of B. anthracis occurred during the time period covered by the historical data that we
use to parameterize f0(!0,i |gi ). Specifically, for each zip code i , we use a beta probability density
function

!0,i ∼beta("̂i , #̂i ) (6)

where "̂i and #̂i are parameters of the beta distribution, which we estimate from historical data as
discussed below.
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The value of P(ci |H0,gi ) is then a beta binomial probability:

P(ci |H0,gi )=
(
ni

ci

)
!("̂i + #̂i )

!("̂i )!(#̂i )

!("̂i +ci )!(#̂i +ni −ci )

!("̂i + #̂i +ni )
(7)

and we compute P(c1,c2, . . . ,cm |H0,G) as the product of the P(ci |H0,gi ) as in equation (4a).
We use a method of moments approach to compute the estimates "̂i and #̂i from historical data.

For example, if zip code 15219 on Mondays (dow=2) in March (moy=3) had the following
historical counts: 5,7,13,7,8,5,12,8, then the sample mean (p) and variance ($̂2) of the proportion
(of the residents of the zip code) that visited the ED for a respiratory complaint are 8.125/n
and 8.70/n2, respectively, where n is the population of the zip code. Zip code 15219 has a
population of 19 531 according to the United States census of 2000, leading to p=4.16×10−4

and $̂2=2.28×10−8. These values for p and $̂2 are in the row of G that corresponds to zip code
15219.

We then derive "̂15219 and #̂15219 using the following moment-matching equations [37]:

"̂+ #̂ = p ·(1− p)

$̂2
−1

"̂ = p ·("̂+ #̂)

#̂ = (1− p) ·("̂+ #̂)

In this example, "̂15219=7.59 and #̂15219=18231.47.
For combinations of zip code, month of year, and day of week for which the mean of the historical

data was zero, we chose values for p and $̂2 such that the probability of observing more than one
ED visit (under H0) was approximately 0.025. The reason for this arbitrary choice was that we
wanted to minimize the effect on the likelihood of H0 of a single visit from such zip codes to avoid
false alarms due to occasional ED visits due to background respiratory disease, but we wanted
two visits from such zip codes to have a more substantial effect. It turns out that—for all zip-code
populations ranging from 100 to 150 000—p≈0.125/n and $̂2= p(1− p)/n result in a probability
of observing two or more visits of approximately 0.025. To study the sensitivity of BARD to this
choice, we also tried p=1/n (P(>1 visit)=0.25) and p=10−6/n (P(>1 visit)=2×10−7) in
the evaluation we discuss below.

3.2.2. Computing P(c1,c2, . . . ,cm |H1,G,M). Because H1 is the hypothesis that both background
respiratory disease and an outbreak of inhalational anthrax are occurring, we condition !1,i on
these two causes of individuals visiting EDs for respiratory complaints. The probability that an
individual presents to an ED with a respiratory complaint given that he or she has background
respiratory disease is !0,i as above. We denote the probability that an individual presents to an ED
with a respiratory chief complaint given that he or she has inhalational anthrax as !+

1,i .
We assume that these causes are independent; that is, a person with inhalational anthrax will not

be less or more likely to present with background respiratory disease or vice versa. Thus, ignoring
for now the density function over !0, we can compute !1 from !0 and !+

1 as [38]

!1,i =1−(1−!0,i )(1−!+
1,i ) (8)
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Following the method used by other researchers [4, 39], we model !+
1,i as a function of the number

of spores that an individual inhales—d—and the number of units of time that has elapsed since
he or she inhaled the spores—t . BARD derives d from the Gaussian plume model of dispersion
and an estimate of minute ventilation (the volume of air that an individual breathes per minute).

The Gaussian plume model of atmospheric dispersion computes the time-integrated concentra-
tion at an arbitrary downwind location due to a near-instantaneous release of substance:

TIC= Q
2%$y(s, x−xi )$z(s, x−xi )u

e−(y−yi )2/2$y(s,x−xi )2

×[e−(hi−h)2/2$z(s,x−xi )2 +e−(hi+h)2/2$z(s,x−xi )2] (9)

where TIC is the time-integrated concentration in units of mass×time/volume; Q is the mass of
substance released; (x, y,h) is the coordinate‡ of the release location where x and y specify the
location on the surface of the earth and h specifies height above ground; (xi , yi ,hi ) is similarly
the coordinate of the location for which we are computing TIC (i.e. the x, y coordinate from row
i of G, and we assume hi =0); $y and $z (in units of length) are the distributions of spores in the
crosswind direction (parallel to ground and perpendicular to wind direction) and vertical direction
(perpendicular both to ground and wind direction), respectively, as a function of downwind distance
from the release location (i.e. x–xi ) and atmospheric turbulence, which we denote by s to indicate
the fact that we use stability classes as a measurement of turbulence; and u is the wind speed (in
units of length/time). We note that Meselson et al. [23] and other researchers [4, 39] have used
the Gaussian plume model in the same manner for modeling aerosol releases of B. anthracis.

The variables x, y,h,Q, and t constitute the vector r of release parameters. We will assume
they are fixed for the moment, but they are unknown. We discuss below how we integrate over
them to derive the posterior probability of a wind-borne outbreak.

We specify Q in terms of the number of spores released—and thus TIC has units of spores×
time/volume—and multiply TIC by minute ventilation or V̇E to compute the total dose of spores
inhaled at the central point of each zip code:

d=TIC·VE (10)

We use a value of 13.38 l/min for minute ventilation (see Appendix A.1 for derivation and rationale).
To match the units of time and distance we use for variables in the Gaussian plume model, the
appropriate value is 2.23×10−4m3/s (Table I). This estimate for minute ventilation is lower than
the value other researchers use; thus with our model individuals will inhale fewer spores than with
other models, all other things being equal.

The next step in computing !+
1,i is to estimate the probability that an individual who inhaled d

spores visits an ED with a respiratory complaint. We denote this probability as P(visit ED|d).
We use the fraction of people infected as an approximation of P(visit ED|d). Our rationale was

that during the 2001 mail-borne anthrax attack, at least nine out of the first 10 victims visited an
ED [40]. We did not adjust for the fact that not all victims will have a respiratory chief complaint
or that classifiers of chief complaints are imperfect and thus they fail to properly classify some

‡For analytic convenience, we assume that all coordinates are in meters and are in a coordinate system that has its
x-axis pointing in the direction to which the wind is blowing.
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individuals. The net effect is that we use an upper bound for P(visit ED|d). We plan to relax these
assumptions in future work.

Data about the lethal dose of anthrax spores (we adjust what follows to an infectious dose
below) in monkeys have shown there is a linear relationship between probits and log10(d) [41].
A probit is the inverse cumulative density function of the standard-normal distribution computed
at the fraction of exposed individuals who die: that is, probit="−1 (fraction killed). Glassman
derived a probit slope of 0.669, and using his estimate of a median lethal dose (LD50,probit=0)
of 4130 inhaled spores, we obtain

probit=0.669 log10(d)−2.42 (11)

In a recent paper, Wilkening found that three models of anthrax—which he labeled as A1, A2,
and D—provided the best fit to Sverdlovsk and animal model data [7]. Of those models, we chose
values for probit slope and ID50 (dose infectious for 50 per cent of the population) from model
A1. Our rationale was that it was the only model that had a linear relationship between median
incubation period and log10(d), which is consistent with the relationship seen with at least one
other disease caused by inhalation of pathogens—Q fever [42]. In model A1, ID50=8625 spores
and probit slope=0.67. Changing the ID50 only changes the y-intercept of equation (11); for 8625
spores, the y-intercept is −2.64. Anyone using BARD may vary the values of ID50 and probit
slope.

BARD thus uses the following equation:

P(visit ED|d)= fraction infected|d="(0.669 log10(d)−2.64) (12)

The next step in computing !+
1,i is to estimate the probability that an individual who visits

the ED will do so during a 24-h interval t−1 to t days after inhaling spores. This computation
requires that we estimate two time intervals: the incubation period (exposure to symptom onset)
and visit delay (symptom onset to presentation to an ED). In Wilkening’s A1 model of anthrax,
the parameters of the lognormal distribution for incubation period vary with log10(d). We have
previously described how we combined incubation period parameters from model A1 and data
about visit delay in inhalational anthrax into a new set of functions for computing—as a function
of log10(d)—parameters for a lognormal distribution that closely approximates the sum of the
incubation period and visit delay [43]. This method models visit delay as a lognormal distribution
and approximates the sum of the lognormal distributions for incubation period and visit delay as
a single lognormal distribution (using the method of Wu [44]).

BARD then estimates the probability of presenting in (t−1, t] as
P(visit ED during (t−1, t]|visit ED,d)=F(t |&d ,$d)−F(t−1|&d ,$d) (13)

where F(·) is the cumulative density function of the lognormal distribution that approximates the
sum of incubation period and visit delay, and &d , $d are calculated as a function of log10(d) as
per Hogan and Wallstrom [43].

We set the interval to (t−1, t] or 1 day because biosurveillance systems typically make counts
of ED visits (and other data) available as 24-h counts and because it simplifies the model to exclude
time-of-day effects in the ED visit data.§

§Taking into account time-of-day effects may lead to earlier detection, and we plan to explore this possibility in
future research.
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We assume that the time of release and time that individuals inhale spores are the same, although
they may differ by as much as a few hours. Given that the variances of the lognormal distributions
are on the order of >1 day, this difference is not likely to be of much consequence.

Finally, BARD computes !+
1,i as

!+
1,i = P(visit ED during (t−1, t]|visit ED,d) ·P(visit ED|d) (14)

As stated before, this computation of !+
1,i requires particular values of the release parameters

r=[x, y,h,Q, t]; thus by extension, !1,i is also dependent on r. Therefore, we first discuss how
we compute each P(ci |H1,gi ,mt ,r), where mt is the row vector of M corresponding to the value
of t in r, and then how we integrate over r to obtain P(c1,c2, . . .,cm |H1,G,M).

We do not directly derive the expression for f1(!1,i |gi,mt ,r), but instead substitute the right-hand
side of equation (8) for !1,i in equation (5b):

P(ci |H1,gi ,mt ,r) =
∫ 1

0

(
ni

ci

)

(1−(1−!+
1,i )(1−!0,i ))ci

×((1−!+
1,i )(1−!0,i ))ni−ci beta(!0,i |"̂i,, #̂i )d!0,i (15)

This integral has the following closed-form solution, with the i subscript omitted for notational
convenience (see Appendix A.2 for proof):

P(c|H1,g,mt ,r) =
(
n

c

)

(1−!+
1 )n−c !("̂+ #̂)!(#̂+n−c)

!("̂)!(#̂)

c∑
q=0

(
c

q

)

(!+
1 )c−q(1−!+

1 )q

× !("̂+q)

!("̂+q+ #̂+n−c)
(16)

Because the release parameters r=[x, y,h,Q, t] are unknown, BARD integrates over these vari-
ables to obtain P(c1,c2, . . . ,cm |H1,G,M) as shown in equation (4b).

Equation (5b) requires that we assign a prior distribution to the vector of release parameters r.
We assume that the release parameters are conditionally independent, given H1 and independent
of G and mt to obtain

P(r|H1,G,mt )= P(x, y|H1) ·P(h|H1) ·P(Q|H1) ·P(t |H1) (17)

We assigned a uniform prior distribution to all but P(h|H1), for which we used a probability
function that decreases as values for h increase (see Appendix A.3).

BARD uses a Monte Carlo integration method called likelihood weighting [45, 46] to numerically
solve equation (5b) (Appendix A.4), because it is not solvable in closed-form and simple iterative
numerical methods can be computationally intractable. A desired by-product of this procedure is
that—with minimal additional computational effort—we can also estimate a posterior distribution
for the elements of r. The expectations of these posterior distributions are the characterization of the
release location, quantity, and date/time that BARD provides at present. In the future, we also plan
to derive additional features, such as credible intervals, of these distributions as characterizations.
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4. A PROOF-OF-CONCEPT EVALUATION OF BARD

To determine whether BARD shows promise as a method for integrated analysis of data for early
detection, we conducted a proof-of-concept evaluation. Specifically, we measured its ability to
detect aerosol releases created by a simulator that uses the same assumptions as BARD. We
also conducted one-way sensitivity analyses of BARD’s performance over several key parameters
in the model to determine the effect of varying the values for these parameters. If BARD has
acceptable outbreak-detection performance and its performance is robust to variations in its key
model parameters, then additional development and evaluation of BARD would be warranted.

4.1. Methods

We measured BARD’s performance for the detection of simulated aerosol releases. We added ED
visits from simulated outbreaks to actual, historical ED visit data, a common approach to the
evaluation of outbreak-detection algorithms [19, 22, 47–49]. The Institutional Review Board of the
University of Pittsburgh approved this study.

4.1.1. Setting. We evaluated BARD using ED, meteorological, and zip code data from the six-
county Pittsburgh Metropolitan Statistical Area (MSA), consisting of Allegheny, Beaver, Butler,
Fayette, Washington, and Westmoreland counties.

4.1.2. Data sets. The historical ED data we used in this study were actual ED visits to 10 EDs
operated by one health system. These EDs represent approximately 30 per cent of all ED visits
for the Pittsburgh MSA.

We divided the actual historical ED visit data into training and test sets. The training set—which
we used to parameterize BARD’s beta distributions for !0—spanned a four-year time period from
1 January 1999 to 31 December 2002. The test set—into which we injected simulated releases—
spanned three years from 1 January 2003 to 31 December 2005.

We created ED outbreak data for 225 simulated releases of B. anthracis according to the
procedure we describe in Appendix A.5. Specifically, we selected 25 random release locations
(x, y,h) and dates/times. We then simulated nine releases from each of the 25 sets of locations and
dates using different values for various parameters: three different release quantities (values of Q),
two different values of ID50, two different values of probit slope, and two different y-intercepts
and slopes for the linear relationship between median incubation period and log10(d).

We varied the parameter values used for simulation as opposed to the values for detection
because we wanted to evaluate the effect of a discrepancy between actual outbreak parameters
and the typical values we use operationally for detection. Specifically, to measure the effect of
the quantity of release—and by extension size of outbreak—on BARD’s performance, we used
Q=1012,1013, and 1014; values that overlap the range of quantities of spores assumed by other
researchers [4, 50, 51]. If one assumes 1014 spores/kg (approximately the value for spores mailed
to Senator Tom Daschle [52]), then these values are 1,0.1, and 0.01 kg released, respectively.

For the other parameters, we chose the minimum and maximum extremes of values to maximally
stress the assumptions of the model. We used a fixed release quantity of 1013 spores for these
analyses. For ID50, we used values of 2000 and 55 000 spores [53]; for probit slope, 0.3 (less than
one half of our baseline value) and 1.43 [51]; and for y-intercept and slope of log10(d) vs median
incubation, 6.33 and −0.725 days and 12 and −1.618 days, respectively. The former choice for
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the relationship between log10(d) and median incubation is from Wilkening’s model B, which
Wilkening rejected as not being consistent with Sverdlovsk data [7], but which Rickmeier et al.
derived from expert consensus [51]. The latter choice for the relationship between log10(d) and
median incubation period we derived by choosing a median of 12 days at the lowest value of d
(one spore)—1 day longer than the median incubation estimated by Brookmeyer [54])—and then
choosing the slope such that the linear relationship between log10(d) and median incubation period
intersects the same point at 106 spores as does the line for models A1 and B.

Because the market share of the historical data was 30 per cent, we ensured that only 30
per cent of cases from the simulations were included in the data input into BARD.

The meteorological data we used are actual data from the National Weather Service, which
included wind speed and wind direction, but not stability class. We computed stability class with
the available data using Turner’s method [55]. It is not a requirement to use these meteorological
data with BARD.

The populations and central zip code points that we used in this study are from the ESRI®

ArcGISTM Desktop product.

4.1.3. Measurements. We measured outbreak-detection performance with standard metrics: false-
alarm rate, sensitivity, and mean time to detection. We defined a false alarm as a posterior probability
that exceeds the alarm threshold in the absence of an outbreak. The false-alarm rate is then the
number of false alarms that occur per unit of time. To estimate the false-alarm rate, we ran BARD
on the test set with no simulated ED visits added. We computed the sensitivity of outbreak detection
as the percentage of outbreaks during which the posterior probability exceeds the alarm threshold
at least once. If BARD did not detect the outbreak before day 7, then we counted that outbreak as
a false negative. Time to detection is the duration of the interval between the time of the release
and the time the posterior probability first exceeds the alarm threshold.

We also measured time to detection as the duration of the interval between the time of the
first simulated ED visit and the time of detection because it allows a comparison of BARD’s
time to detection with estimates of the time to detection of the notifiable disease reporting
system. The latter are derived from case reports in the literature about the interval from the
time of presentation for healthcare to the time of a confirmed diagnosis. One advantage of using
this interval is that it is not dependent on assumptions about the incubation period used in
simulations.

Throughout the evaluation we ran BARD as if it were running every 4 h on the production
real-time outbreak and disease surveillance (RODS) system using counts of ED visits from the
previous 24 h. The reason is that at the time of this study, most outbreak-detection algorithms in
RODS evaluate data with this frequency, including BARD. Running BARD every 4 h on a real-time
system such as RODS has the potential to improve the timeliness of detection relative to running
just once every 24 h on a daily batch-feed system. However, running BARD multiple times per
day also has the potential to increase BARD’s false-alarm rate. Here we did not study alternative
frequencies of running BARD on surveillance data.

Because there is a fundamental trade-off between the false-alarm rate and time to detection, it
is common when evaluating outbreak-detection algorithms to perform an activity monitoring oper-
ating characteristic or AMOC analysis [19, 22, 29, 47, 49, 56–59]. AMOC analysis (first described
by Fawcett and Provost [60]) resembles ROC analysis, but plots the false-alarm rate vs time to
detection. It allows users of biosurveillance systems to set the alarm threshold based on the trade-
off between the costs of false alarms and the benefits of earlier detection. In this study, we plotted
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Figure 2. Mean time to detection (measured both from release date/time and from date/time of first
anthrax case that visited the ED) and sensitivity versus false alarm rate, illustrating BARD’s performance

over a range of alarm thresholds (error bars are 95 per cent CI on mean).

false-alarm rate vs mean time to detection and sensitivity. We constructed AMOC plots for each
sensitivity analysis.

We also analyzed BARD’s performance as a function of outbreak size, which we measured as
the total number of cases produced by the simulator. We plotted AMOC curves by quintiles of
outbreak size (i.e. 0–20th percentile, 20th–40th percentile, etc.) Note that because the market share
of the historical data was approximately 30 per cent, only approximately 30 per cent of the cases
were available to BARD for detection. We also determined the approximate size of the smallest
outbreak BARD could detect with 100 per cent sensitivity at a false-alarm rate of one per three
years (the lowest false-alarm rate we could measure with our test data set) by manually reviewing
the data about BARD’s performance as a function of outbreak size.

To determine whether BARD could detect simulated releases before they become obvious on
univariate time series, we made several measurements. First, we computed the mean number of
cases who visited the ED in the 24 h prior to detection (only those cases influence BARD’s posterior
probability at present). We also computed the mean and standard deviation of 24-h counts in the
test set of historical data. Finally, we standardized the counts of ED visits at detection relative to
the mean and standard deviation of counts in the month prior to the release and computed the
mean number of standardized counts at detection.

We measured the mean running time of BARD to determine whether its inference is sufficiently
fast that it is practicable to include it in a functioning biosurveillance system. We ran BARD on
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Figure 3. Results of sensitivity analyses over parameters used in simulation. Variations in parameter values
that increased outbreak size (a) and variations in parameter values that decreased outbreak size (b). In both
plots, BARD’s performance for simulations using the baseline parameter values with a release quantity

of 1013 spores (Reference) is designated with square markers. FAR, false-alarm rate.

a dual-processor server from Dell that cost less than $3500. BARD is a single-threaded JavaTM

application and thus did not take advantage of the additional processor.

4.2. Results

Of the 225 simulated outbreaks, 224 ranged in size from 8 to 168 190 cases of inhalational anthrax.
One simulation with a probit slope of 1.43 failed to generate any case, but we did not exclude
it from further analysis. The mean outbreak size was 19 386 cases, with a standard deviation of
27 623. The median outbreak size was 8316 cases; the 90th percentile was just under 51 000.
Because the historical data had a market share of approximately 30 per cent, we limited the number
of simulated cases available to BARD to approximately 30 per cent of these numbers.

At a sensitivity of 86.2 per cent and a false-alarm rate of one per three years, BARD’s mean
time to detection was 3.37 days (95 per cent CI 3.23–3.51) (Figure 2). The alarm threshold that
produced these results was a posterior probability of 0.0014. As the false-alarm rate increased,
time to detection decreased (Figure 2): at a false-alarm rate of 12 per year (or 1 per month), time
to detection was 3.16 days (95 per cent CI 3.04–3.29) and sensitivity increased to 90.2 per cent.
When measured as the duration of the interval from the time that the first case presented to an ED
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Figure 4. Results of sensitivity analysis over default value for p.

to time of detection, time to detection varied with false-alarm rate from 1.11 days (95 per cent
CI 0.99–1.22) at a false-alarm rate of one per month to 1.40 days (95 per cent CI 1.31–1.52) at a
false-alarm rate of one per three years (Figure 2).

In the sensitivity analyses, variations of parameters in the simulation that increased outbreak
size or shortened the incubation period resulted in improved outbreak-detection performance
(Figure 3(a)). Similarly, variations of parameters that decreased outbreak size or lengthened
the incubation period worsened outbreak-detection performance (Figure 3(b)). In no case did a
parameter change that increased outbreak size worsen outbreak-detection performance; neither did
a parameter change that decreased outbreak size improve outbreak-detection performance. The
parameter changes that led to the largest improvement in outbreak-detection performance were
shortening the median incubation period and lowering probit slope (Figure 3(a)). The parameter
changes that led to the largest reduction in outbreak-detection performance were increasing probit
slope and lowering the release quantity to 1012 spores (Figure 3(b)).

Varying the default value for p in the model of background respiratory disease (when the mean
and/or variance of historical counts were zero) led to later and/or less sensitive outbreak detection
at all measured false-alarm rates (Figure 4). This result held for both values tried: 1/n and 10−6/n.

In the analysis of BARD’s outbreak-detection performance by outbreak size, BARD’s perfor-
mance improved with each quintile at all measured false-alarm rates (Figure 5(a)). We found that
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Figure 5. Analysis of BARD’s outbreak detection performance by outbreak size.
Outbreak detection performance by quintiles of outbreak size (a) and by threshold

value of 900 cases (b). FAR, false-alarm rate.

above an outbreak size of 900 cases, BARD detected 100 per cent of outbreaks at a false-alarm
rate of one per three years by 3.32 days on average (Figure 5(a)). Conversely, BARD detected 12
per cent of outbreaks of size !900 cases at a false-alarm rate of one per three years by 5.79 days
on average (Figure 5(b)).

At a false-alarm rate of one per three years, there was a mean of 22.1 simulated ED visits in the
24 h period prior to the time of detection. The mean count of 24-h ED visits in the historical data
was 38.3, with a standard deviation of 9.9. The count of ED visits at detection was an average of
2.9 standard deviations (median 2.7) above the mean 24-h count of visits in the month prior to the
release. The correlation between outbreak size and this number of standard deviations was 0.11.

BARD’s mean running time—for one analysis of one set of 24-h ED visit counts for all 271
zip codes—was 2min and 24 s on our server.

5. DISCUSSION

We developed an algorithm—the BARD—for the integrated analysis of surveillance and meteo-
rological data for early detection and characterization of aerosol releases of B. anthracis. BARD
is the first algorithm to integrate meteorological data and a model of atmospheric dispersion
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into the analysis of medical surveillance data. It computes the posterior probability of a release
of B. anthracis from two types of data readily available to biosurveillance systems: counts of
ED visits and meteorological observations. BARD also computes a posterior distribution over
the release location, quantity, and time. The model is flexible and allows for the substitution
of alternative dispersion models and for varying a number of parameters such as minute venti-
lation, the number of spores per kilogram, the lethal dose of spores, the incubation period of
inhalational anthrax, and the dose–response relationship between spores inhaled and incubation
period.

In our idealized ‘proof-of-concept’ evaluation, BARD detected relatively small simulated releases
early with high sensitivity and a low false-alarm rate. At the lowest false-alarm rate we measured,
one per three years, BARD detected half the outbreaks when the count of ED visits was just 2.7
or fewer standard deviations above the mean count in the preceding month.

BARD proved sensitive and timely for all but the smallest releases. If one assumes 1014 spores/kg,
200 of the 225 simulations used a release quantity of 0.1 kg or smaller. Furthermore, our re-
analysis of the data by outbreak size showed that BARD could detect 100 per cent of outbreaks
with >900 cases at a low false-alarm rate of one per three years. Because the market share of
our data set was 30 per cent, only 30 per cent of the simulated cases (>300) were available
to BARD. Given higher market share, BARD may be able to detect even smaller outbreaks
reliably.

Besides small release quantities and the relatively low market share of our historical data
set (which we matched in the simulations), other factors in our evaluation served to make the
detection problem more challenging for BARD. First, we used a more appropriate estimate for
minute ventilation than other researchers; thus, our simulated releases may have fewer cases per
equivalent release quantity than other researchers. Second, the assumption of mutually exclu-
sive and exhaustive hypotheses H0 and H1 led to higher posterior probabilities during influenza
outbreaks when establishing the false-alarm rate, leading to a higher threshold for detection
of simulated releases at equivalent false-alarm rates—and thus potentially leading to delayed
detection.

On the other hand, several assumptions in our model made the detection task less challenging
for BARD. The assumption that all individuals are exposed in their home zip code is strong and
unlikely to hold in the event of an actual release. Thus, the spatial pattern of cases that BARD
recognizes may have been stronger in our simulations than they would be in reality. Second, we
assumed that every case of anthrax had a respiratory chief complaint, but many victims are likely
to have non-respiratory chief complaints (generally, only one or two symptoms are listed in a chief
complaint). Also, we assumed that a syndromic surveillance system will classify all respiratory
chief complaints as respiratory when in fact the accuracy of classifying chief complaints is less
than 100 per cent.

Even if the net effect of these assumptions were to reduce BARD’s performance on 1 kg releases
to that of 0.1 kg releases, BARD could still detect a 1 kg (or approx. 1014 spores) release by 3.36
days with a false-alarm rate of one per three years and sensitivity of 100 per cent (as opposed to
2.81 days at the same false-alarm rate and sensitivity, see Figure 3).

The sensitivity analyses demonstrated that BARD was more sensitive to outbreak size and
incubation period than to extreme variations in parameters used in simulation or to the choice
of default parameters in the model of background respiratory disease. BARD never performed
worse when the parameter change increased outbreak size or shortened incubation period; it never
performed better when the parameter change decreased outbreak size or lengthened incubation
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period. Note that the sensitivity analyses were designed to explore what would happen if an actual
outbreak had a parameter value at the extreme values of what is considered possible. Thus, the
sensitivity analyses were designed to maximally stress the BARD model.

One should not interpret our time-to-detection results as realistic estimates of when BARD would
detect a release in the real world. Our study demonstrates that shorter incubation periods of disease
lead to shorter detection times. Our time-to-detection results should, therefore, be considered in
light of the lognormal distributions we used for the incubation period of inhalational anthrax
in our simulated outbreaks. Even at a dose of one million inhaled spores, a time to detection
of 3.37 days corresponds to a cumulative distribution function value of 0.15 on the lognormal
incubation period; thus, detection occurred on average before 15 per cent of cases presented to
the ED.

Additionally, our alternative definition of time to detection may assist with the interpretation of
our results. It is likely that the first case of anthrax for which the healthcare system confirms the
diagnosis will also be one of the first cases to present to the healthcare system. The history of the
Sverdlovsk incident indicates that laboratory confirmation of anthrax was made 3 days after the
first victim was admitted to the hospital [33]. During the anthrax attacks of 2001, the first case that
astute clinicians diagnosed was the second case to present to the healthcare system, approximately
1 day after the first case presented [40]. These two events are likely the upper and lower bounds
of the time to detection of the healthcare system for inhalational anthrax, as the first event was not
suspected a priori but the latter event, coming on the heels of 11 September 2001, was anticipated
to at least some degree. Our results, although somewhat idealized, compare favorably with the
lower bound of 1 day seen in 2001, especially as the release quantity becomes larger. Additionally,
whether either of these outbreaks was wind-borne was not known until a long time after the first
cases were diagnosed.

As a recent case of inhalational anthrax in a New York City man [61] illustrates, a diagnosis
of a single case of inhalational anthrax does not indicate a terrorist event, let alone wind-borne
dissemination of spores. BARD’s ability to characterize the outbreak as windborne at the time of
detection is therefore potentially useful even if the healthcare system confirms a diagnosis prior
to BARD sounding an alarm.

Future work on BARD includes several enhancements to its model. Incorporating a model
of population mobility is perhaps the most critical. We also plan to relax the assumptions that
every case has a respiratory chief complaint and that chief-complaint classification has perfect
accuracy. Lastly, the Gaussian plume model makes some assumptions that may not hold, despite
the success that Meselson et al. had when using it to characterize the Sverdlovsk outbreak [23].
These assumptions include (1) the terrain is flat; (2) wind speed and direction are constant over
space and time; (3) the substance released behaves like a gas with the same density as air; (4) there
is no settling or deposition of particles; (5) the substance that is dispersing does not react with air or
sunlight to become inactive; and (6) the release occurs at a single point. As discussed by Meselson
et al., infectious B. anthracis spores are on the order of 5–10#m in diameter and particles of this
size behave like a gas with the same density as air [23]. In addition, any decay in the infectivity of
spores over time is likely to be negligible [62]. Thus, assumptions (3) and (5) are reasonable. The
other assumptions were similarly reasonable in the case of the Sverdlovsk outbreak, but in general
they are strong and not likely to hold. Future work thus includes incorporating a more realistic
dispersion model into BARD, especially ones that can handle varying meteorological conditions
and releases that occur at multiple points and/or line releases (such as a release from a moving
car or airplane).
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Extending BARD to relax the assumptions it makes is likely to increase the complexity of
inference. However, the running time of BARD was <3min and we did not employ advanced
Markov chain Monte Carlo (MCMC) inference techniques. Use of MCMC could help maintain
tractable and accurate inference as we extend the model.

Overall, our evaluation of BARD demonstrates that BARD is a promising approach to inte-
grated analysis of medical surveillance and meteorological data and that it is suitable for further
development and evaluation. Future work includes enhancements to its model, evaluating its ability
to characterize as well as detect releases, and comparing its performance with that of other
algorithms.

APPENDIX A

A.1. Estimation of minute ventilation

We derived our estimate for minute ventilation from data tabulated in Altman et al. [63]
(see Table AI for calculation). We arrived at a value of 13.68 l/min, which is 2.23×10−4m3/s
when converted to match the units of distance and time used in the Gaussian plume model. We
used our own estimates of the proportions of the population of particular genders who are engaged
in particular levels of physical activity, which are shown in parentheses in Table AI. We did not
explicitly break out activity level by time of day, but included time of day considerations when
forming our estimates. Taking into account (1) children and infants and (2) census data about
the proportion of the population that are male vs female and adult vs child vs infant lowered the
value only slightly to 2.02×10−4m3/s (calculation not shown). Given the uncertainty in both
estimates, we kept the first one.

By contrast, Rickmeier et al. used a value of 2.5×10−4m3/s [51] and Wein et al. [4] used a
value of 5.0×10−4m3/s, the same minute ventilation that Meselson et al. used [23]. Meselson
et al. used the minute ventilation of a man engaged in light physical work, in the context of
a shop for the manufacture of ceramic pipes where several male victims were working at the
time they were exposed. Since we are concerned in this work with the entire population (not
just males), and given that (1) women and children on average have a lower minute ventila-
tion than men at a particular level of physical activity [63] and (2) many people will not be
performing physical work but will instead be at rest, we arrived at our lower estimate of minute
ventilation.

Table AI. Calculation of minute ventilation.

Activity level∗

Gender Rest† Light work† Heavy work†

Male 7.43 (0.3) 28.6 (0.15) 42.9 (0.05)
Female 4.50 (0.3) 16.3 (0.15) 24.5 (0.05)

∗Numbers in parentheses are our estimates of the proportion of
the population of a particular gender and engaged in a particular
level of activity.

†Expectation: 13.68. Values are in units of l/min.
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A.2. Proof of equation (16)

The solution to the integral begins with expanding the terms of the following polynomial factor
of the integrand of equation (15) (in what follows, we drop the subscripts for the zip code, month
of year, and day of week for notational convenience):

(1−(1−!+
1 )(1−!0))c (A1)

We expanded this polynomial in this form as a binomial series, but doing so led to a numerically
unstable solution to the integral that—when implemented—occasionally produced negative prob-
abilities. This problem is likely due to the alternating positive and negative terms in the series. We
therefore rewrote the polynomial as

((1−!+
1 )!0+!+

1 )c (A2)

The binomial series expansion of this form of the polynomial is

c∑
q=0

(
c

q

)

(1−!+
1 )q!q0(!

+
1 )c−q (A3)

Substituting Expression (A3) for Expression (A1) where it appears in equation (15) and inserting
the definition of the probability density function for the beta distribution yields
∫ 1

0

(
n

c

)

((1−!+
1 )(1−!0))n−c

[
c∑

q=0

(
c

q

)

(1−!+
1 )q!q0(!

+
1 )c−q

]
!("+#)

!(")!(#)
!"−1
0 (1−!0)#−1 d!0

After moving constants outside the integral, distributing the remaining terms into the sum, and
collecting exponentiations with the same base, we obtain

(
n

c

)

(1−!+
1 )n−c !("+#)

!(")!(#)

∫ 1

0

c∑
q=0

(
c

q

)

(!+
1 )c−q(1−!+

1 )q!"+q−1
0 (1−!0)#+n−c−1 d!0

Moving the integral inside the summation such that no constants remain inside the integral, we
obtain(

n

c

)

(1−!+
1 )n−c !("+#)

!(")!(#)

c∑
q=0

(
c

q

)

(!+
1 )c−q(1−!+

1 )q
∫ 1

0
!"+q−1
0 (1−!0)#+n−c−1 d!0

The solution to the integral is

!("+q)!(#+n−c)
!("+q+#+n−c)

After substituting the solution to the integral and moving a term not dependent on q outside the
summation, we obtain equation (16):

P(c|H1,g,mt ,r) =
(
n

c

)

(1−!+
1 )n−c !("+#)!(#+n−c)

!(")!(#)

×
c∑

q=0

(
c

q

)

(!+
1 )c−q(1−!+

1 )q
!("+q)

!("+q+#+n−c)
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We did not represent our uncertainty over !+
1 in this work, but note that if we were to do so

using a beta distribution, we would still have a closed-form solution to the integral, where ("0,#0)
are the parameters of the beta distribution over !0 and ("1,#1) are the parameters of the beta
distribution over !+

1 :

(
n

c

)
!("0+#0)!("1+#1)!(#0+n−c)

!("0)!(#0)!("1)!(#1)!("1+#1+n)

c∑
q=0

(
c

q

)
!("0+q)!("1+c−q)!(#1+n−c+q)

!("0+q+#0+n−c)

A.3. Prior distributions on release parameters

Table AII shows the ranges of values we used for each of the five release variables, whether we
represented the parameter as a discrete or continuous variable and whether the distribution was
uniform. For h (the only variable for which we assigned a non-uniform prior), we assigned an
informative prior by evaluating the following function for all values of h between 0 and 3350m
that are also multiples of 10m and then normalizing the resulting values to 1.0:

1
1+eh/200−6

We chose this function to generate a distribution function (df) of 0.5 at approximately 330m,
a df of 0.95 at approximately 1000m, and a df of 0.999 at approximately 1650m. Our rationale
for this distribution is that higher release locations are less likely because fewer spores will reach
ground level; thus, terrorists will prefer lower release heights to maximize morbidity and mortality.
This distribution may still overestimate the probability of releases from higher than 100m (or
approximately 300 feet) above ground.

When creating simulated outbreaks, we compute a prior distribution for x , y that assigns higher
probabilities to release locations that are more likely to result in higher numbers of infected
individuals. Thus, this prior distribution favors release locations desirable for their impact in terms

Table AII. Prior probability distributions for release location, quantity, and time.

Variable Discrete vs continuous Minimum Maximum Uniform?

x (m)∗ Continuous xmin−10000m† xmax Yes
y (m)‡ Continuous ymin ymax Yes
Q (spores) Discrete 106 spores 1015 spores No
h (m) Discrete (every 10m) 0 3350 No
t (h)§ Discrete (every 4 h) 28 168 Yes

∗The values for xmin and xmax are the minimum and maximum x-coordinates over all zip code
centroids after rotating the x-axis so that it points in the direction of the wind.

†We include an additional 10 km of distance upwind of the minimum in case the release location
is upwind of the region BARD is monitoring.

‡The values for ymin and ymax are the minimum and maximum y-coordinates over all zip code
centroids after rotating the x-axis so that it points in the direction of the wind.
§The date/time of the release can be obtained by subtracting t hours from the date/time of the
end of the 24-h interval for which the counts of ED visits were made.
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of number of individuals infected, but it does not account for other strategic factors such as the
likelihood that an attack would go unnoticed if carried out from a particular location or ease of
access (e.g. tops of buildings, highways, airports, etc). The procedure is as follows:

1. Divide the region into a 100 by 100 grid of potential x, y release coordinates.
2. Simulate multiple outbreaks from the center of each of the 10 000 grid cells at varying release

heights.
3. For each grid cell center, sum the total number of ED visits generated by the outbreaks in

step 2.
4. Normalize the counts for each center such that the sum over all centers equals one.

A.4. The likelihood weighting procedure

The likelihood weighting procedure for computing P(c1,c2, . . . ,cm |H1,G,M) is as follows:

1. Let sum :=0.
2. For j :=1–N do the following (each iteration over j is a cycle):

(a) For variables with known values (e.g. moy, dow, zip) set them to their values.
(b) For each variable with unknown values (i.e. x, y,Q,h, and t), sample a value randomly

according to its prior probability distribution. Let r( j) collectively denote the sampled
values x( j), y( j),h( j),Q( j), and t ( j).

(c) For u(wind speed), s (stability class), and wind direction, just use the row of M corres-
ponding to the value for t ( j) obtained in step 1b. Let mt ( j) denote this data.

(d) Let score :=1.
(e) For each zip code i=1–m:

(i) compute d using equation (10);
(ii) compute !+

1,i from d and t ( j) using equation (14);
(iii) compute P(ci |H1,gi ,mt ( j),r( j)) using equation (16);
(iv) score :=score×P(ci |H1,gi ,mt ( j),r( j)).

(f) sum :=sum+score. Note that score= P(c1,c2, . . . ,cm |H1,G,mt ( j),r( j)).

3. Estimate P(c1,c2, . . . ,cm |H1,G,M) as sum/N .
4. We can also estimate the posterior distribution for x, y,Q,h, and t , but do not show it here.

In the evaluation and in practice, we use N =200000 cycles.

A.5. Simulating releases of B. anthracis

Because BARD is a Bayesian model, it is also possible to use it to simulate releases of B. anthracis
spores and the resulting outbreak. The procedure we used in this study is as follows:

1. Choose an arbitrary date/time of release of spores and obtain the meteorological data for
that date/time. We chose an arbitrary date/time of release from the interval covered by the
test set of historical data (1 January 2003 to 31 December 2005).

2. Sample values for x, y, and h from their prior probability distributions (as discussed above,
we deterministically chose Q). For simulated outbreaks, we use a different prior over x and
y than uniform (Appendix A.3).
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3. For each zip code i in the region:

(a) use equation (10) to compute d .
(b) Use equation (12) to derive P(visit ED |d). Call this probability pi .
(c) For the total number of cases from zip code i , use a random variate ci from Bin(pi ,ni ),

where ni is the population of the zip code.
(d) For each of the ci cases, assign a date/time of presentation to the ED:

(i) Generate a random variate from the lognormal distribution corresponding to the
value of d obtained in step 3a.

(ii) Generate a random variate from the lognormal distribution for visit delay (&=1.015
and $=0.737, see Hogan and Wallstrom [43]).

(iii) Add these values to the release date and time to obtain ED presentation date/time.

Because (1) not every case of inhalational anthrax would visit one of the 10 EDs in our historical
data set and (2) our historical data set contains data on approximately 30 per cent of ED visits in
the Pittsburgh MSA, we multiplied pi in step 3b by a constant multiple of 0.30. In reality, each
zip code likely has a different fraction of sick individuals that would visit one of the EDs when
ill, but we did not have sufficient information to estimate this fraction.
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