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Abstract ALARM (A Logical Alarm Reduction Mechanism) is a diagnostic applica-
tion useq-to explore probabilistic reasoning techniques in belief networks. ALARM
implements an alarm message system for patient monitoring; it calculates proba-
bilities for a differential diagnosis based on avalilable evidence. The medical knowl-
edge 1s encoded in a graphical structure connecting 8 diagnoses, 16 findings and
13 intermediate variables. Two algorithms were applied to this belief network: (1)
a message-passing algorithm by Pearl for probabflity updating in multiply con-
nected networks using the method of conditioning; and (2) the Lauritzen-
Spiegelhalter algorithm for local probability computations on graphical structures.
The characteristics of both algorithms are analyzed and their specific applications
and time complexdties are shown. ’

Introduction

The goal of the ALARM monitoring system s to provide specific text messages ad-
vising the user of possible problems. This is a diagnostic task, and we have chosen
to represent the relevant knowledge in the language of a belief network (Fig.1).
This graphical representation [Pearl 86b] facilitates the integration of qualitative
and quantitative knowledge, the assessment of multiple faults, as required by our
domain, and nonmonotonic and bidirectional reasoning.

Fy. 1 The ALARM network representing causal relationships (s shown with diagnostic (@), tntermediate (Q) and

t (@) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular end-

diastolic volume, LV fatlure: left ventricular fatture, MV: minute ventilation, PA Sat: pulmonary artery axygen satu-

ration, PAP: pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, Pres: breathing pressure, RR:
respiratory rate, TPR: total peripheral resistance, TV: tidal volume
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A belief network i1s a directed, acyclic graph in which nodes represent domain
variables and arcs show important dependencies among those variables. Proba-
bilities are attached to nodes and to arcs or local groups of arcs. In particular, for
each node N;without direct predecessors, there is a prior probabllity function
p(Ny: for a node Ny with one or more predecessors Py there is a conditional
probability function p{(N; | Px). These probability functions capture for example
our assessment of the chance of having hypovolemia in a patient or that
bloodpressure is dependent on cardiac output (CO) and total peripheral resistance
(TPR).

Knowledge Acquisition

Three types of variables are represented in ALARM. Dlagnoses and other qualita-
tive information are at the top level of the network. These variables have no
predecessors and they are assumed to be mutually independent a prior. All nodes
are associated with a set of mutually exclusive and exhaustive values representing
the presence or absence or the severity of a particular disease. Measurements
represent any available quantitative information. All continuous variables are
represented catagorically with sets of discrete intervals dividing the value range.
Depending on the necessary level of detail, three to five categories are used per
node. Intermediate varlables are inferred entities that cannot be measured di-
rectly.

The dependencies in the network were assessed from diagnosis to evidence.
There are three reasons for this approach: First, our domaln involves some well-
known causal interactions. Second, most textbooks of medicine use this form of
description. Third, the representation is less complicated in the causal direction,
as more independence assumptions can be made [Shachter 87}. The resulting
structure was later edited using KNET, an object-oriented environment developed
in our laboratory for drawing and manipulating decision networks (Fig.2).

Fig. 2 Editing the beltef net-
work tn KNET: The object
oriented-graphics editor adds
a user tnterface for knowledge
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KNET differs from other tools for expert-system construction in that it combines
a direct-manipulation visual interface with the probabilistic inference schemes
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described in this paper. The KNET architecture defines a complete separation
between the design of a user Interface on the one hand., and the representation
and management of expert opinion on the other [Chavez 88].

The probabillities In a belief network can represent objective as well as subjective
knowledge. ALARM contains statistical data on prior probabilities, logical condi-
tional probabilities computed from equations relating variables, and a number of
subjective assessments. It is necessary to obtain conditional probabilities for the
states of a node, given all different states of the parent nodes. An example of this
shown in the inset of the figure 2: here the heart rate displayed by an EKG-moni-
tor is conditioned on the heart rate of the patient and whether or not an electro-
cauter is in use. If the electrocauter is in use, the EKG monitor is equally likely to
show a low, normal, or high reading independent of the patient's real heart rate (p
= 0.33 for all states); the corresponding matrix of conditional probabilities is dis-
played on the ALARM probability editor (Fig. 2). If the electrocauter is not in use,
then the EKG reading is very likely to correspond to the patient's heartrate (p =
0.98 for identical categories, p = 0.01 otherwise); this probability matrix would be
accessed by pointing to one of the arrows on the editor display using a mouse.

A sample consultation

ALARM is a data-driven system. Simulating an anesthesia monitor, ALARM accepts
a set of physiologic measurements. An example would be as follows: blood pressure
120/80 mmHg, heart rate 80/min, inspired oxygen concentration 50%, tidal vol-
ume 500 ml, respiratory rate 10/min, breathing pressure 50 mbar, and measured
minute ventilation 1.2 1/min. These measurements are categorized into ‘low’,
‘normal’, 'high', etc. and text messages are generated when measurements are
outside of their normal range. These messages will then appear in the Warning
and Cautlon fields of the monitor depending on their importance (Fig. 3). In the
given example, the high breathing pressure of 50 mbar imposes a direct danger to
the patient and a warning is issued. The low minute ventilation is less immediate
and is displayed as a caution only.
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measurements, displays
warning and caution mes-
sages, and lists a d{fferential

dlagnosts.

The categorized information is then passed to the measurement nodes and the
network is updated using either the Pearl or Lauritzen-Spiegelhalter algorithm.
The posterior probabilities on all diagnostic nodes are then presented as a dif-
ferential diagnosis on the monitor.
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Pearl's Algorithm

Pearl's algorithm implements a local message-passing system for probability up-
dates in a belief network [Pearl 86b]. Each node receives messages on prior
probabilities from its parents and on likelihoods from its children. These mes-
sages are combined to form a belief in the proposition represented by a node. This
belief is then sent to neighboring nodes until an update of the complete network
is obtained.

Given a singly connected network with only one path between any two nodes, this
algorithm has a running time proportional to the size of the network for a single
measurement. In the worst case, messages have to travel from the node containing
the measurement to all other nodes in the network: thus, the running time is
proportional to the length of all possible paths in the network.

Fortunately, message passing stops under a number of blocking conditions (Fig. 4):
(a) an observed node does not send information from its children to its parents or
from its parents to its children - once, for example, the left ventricular end-
diastolic volume (LVED volume) is known, information on left-ventricular faflure
(LV fatlure) will not influence the beliefs in central venous pressure (CVP) or pul-
monary capillary wedge pressure (PCWP) and vice versa; (b) an observed node
does not send information from its child to any other children — a measurement of
CVP will not influence the belief in PCWP once the LVED volume 1s known; and (¢} -
a node that has not been observed and that does not have any descendents that
have been observed does not send information from one parent to any other par-
ents - this states for example the fact that left-ventricular failure and hypovolemia
are independent of each other if neither the LVED volume nor CVP or PCWP are
known. Thus, depending on the location of the measurement nodes, messages and
updates will be necessary for only parts of the network.

Fig. 4
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In the ALARM network, the observation of a ‘central venous pressure' {node 1 in
Fig.1) will affect only nodes up to five links away, if no other information is avaii-
able. Message propagation will stop at the node for ‘blood pressure’ if there is no
blood pressure measurement available (blocking condition ¢). On the other hand,
information on ‘heart rate' (node 8) will change beliefs in almost the entire net-
work (Fig. 5). Information will traverse all of the network for only those combi-
nations of evidence that override the blocking conditions.
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Fig. 5 Propagation of single
pleces of evidence with Pearl's
algortthm.

(a) information on ‘central ve-

nous pressure’ updates only a
part of the network.

{b) On the other hand, tnfor-
mation on ‘heart rate’ propa-
gates through almost the
entire network

Pearl's original algorithm works for singly-connected networks only, because mul-
tiple paths between nodes, also called loops. can cause messages to cycle indefi-
nitely in the network. Pearl suggest three solutions to this problem: (1) clustering,
(2) conditioning, and (3) stochastic simulation [Pearl 86a; 87]. Clustering is the
formation of a supernode from nodes that form a loop. As all possible combinations
of propositions from the individual nodes must be represented in the supernode,
only very small local loops can be handled by this method. Stochastic simulation
yilelds a heuristic approximation of the probability distributions by sampling ran-
dom cases. The method of conditioning (explained below), or reasoning by as-
sumptions, provides an alternative yielding exact results; it works moderately
quickly with a small number of loops.

Conditioning breaks the message-passing cycle by assuming one node in a loop as
being observed. When properly chosen, this will prevent message cycling by the
blocking conditions described previously. In a network with multiple loops, each
loop must be interrupted in such a fashion. The result is a set of nodes, the loop—
cutset, that renders a network singly connected when assuming the cutset-nodes
are observed. :

A multiply connected network must now be updated for all possible instantiations
of the cutset-nodes. The algorithm then combines the resulting probabilities,
welighting each by the probability of the particular instantiation that was used to
generate it. The number of instantiations is equal to the number of all possible
combinations of cutset-node propositions, and thus is exponential in the size of
the loop—cutset and its propositions.

One of us has recently developed a heuristic technique for finding a cutset for any
arbitrary network [Suermondt 88]. Although finding the minimal cutset is NP-
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hard, this algorithm will find a small cutset that is often, but not always, minimal.
For the ALARM network, which contains a number of loops, a cutset of five nodes
was found (Fig. 6). This set of nodes has 144 possible instantiations, each corre-
sponding to a complete update of the network.

Fg.6

Loops (wwsm) and loop-cutset
nodes (@) in the ALARM net-
work

In the ALARM system, a collection of data usually becomes available at the same
time. That is, the network must be updated simultaneously with information on
the blood pressure, the pulse rate, the oxygen saturation, and so on of a patient. In
the absence of a special scheduling mechanism for messages, Pearl’s algorithm
can handle this set of measurements only by sequential updating. First, the infor-
mation for the patient's blood pressure is incorporated; then the information on
the pulse rate is added, and so forth. A complete update must be performed sepa-
rately for each piece of information .

The time complexity of this algorithm is therefore proportional to the product of
the size of the network, the number of cutset instantiations and the size of the
measurement set. In our current implementation and computer architecture
(Macintosh II) this complexity corresponds to an average time of 8 minutes to up-
date all 8 diagnostic nodes for each set of measurements.

The Lauritzen-Spiegelhalter Algorithm

The Lauritzen-Spiegelhalter algorithm rearranges a network into a tree by form-
ing clusters of nodes {Lauritzen-Spiegelhalter 88]. First, arcs are added between
each pair of parents of each node in the graph. The authors of the algorithm call
this ‘marrying parents' and the result is a 'moralized' graph. Moralizing makes the
next step, the triangulation of the graph, more efficient, as this procedure already
triangulates parts of the graph. A triangulated graph contains no cycles of length 4
or more without a short-cut [Gavril 72; Lauritzen 84]. Next, the network is con-
verted to an undirected graph, and more edges are added to completely triangu-
late the graph using the maximum cardinality search algorithm by Tagan [Tarjan
84]. Darroch has shown that a triangulated graph is decomposable into clusters of
nodes, called cliques, for which a joint probability and marginal probabilities are
relatively easy to compute [Darroch 80. Spiegelhalter 87]. A clique is defined as a
set of nodes such that each node in the set has an arc to all other nodes in the set

(Fig. 7).
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Fg.7

Splegelhalter’s algorithm re-
arranges the ALARM network
by triangulation and clique
Jormation. The cliques are
shaded differently to make
them vtstble.

Tarjan and Yannakakis have shown that these cliques satisfy the running intersec-
tion property: There exists an ordering of the cliques such that each clique can be
assigned a unique parent clique, which summarizes all information from cliques
preceding in the ordering [Tarjan 84; Leimer 85)]. Thus, all cliques can be rear-
ranged in a clique tree where each clique is linked only to its parent clique, and
to a number of children (Fig.8). This treeformation allows evidence propagation
through local only operations on the cliques.

The initial clique tree is simplified fur-
ther once evidence becomes available.
Evidence nodes contribute their infor-
mation to the cliques in which they are
contained. The nodes are then removed,
reducing the size of the respective cli-
ques or eliminating a clique entirely if it
becomes a subset of another clique.
Thus, observing evidence simplifies the
network and makes inference faster (Fig.
9).

The complexity of evidence propagation
using this algorithm is linear in the
number of cliques, and is exponential in
the size of the largest clique in the net-
work. Evidence propagates to all cliques,
going from one clique to the next by
looping through all possible combina-
tions of values of nodes in a clique.

Fg. 8

The ALARM network converted to a clique
tree: Each cligue ts shown as a set of node

numbers
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Since the number of these combinations is the product of the number of nodes in
a clique, propagation from one clique to the next is exponential with respect to
clique size. The clique size is in turn dependent on the connectivity of the net-
work: Nodes with a large number of parents will generate large cliques.

The size of the largest clique is dominant in determining the performance of the
algorithm. In the ALARM network, the largest cliques contains five nodes and
there is a total of 26 cliques. This small maximum clique size makes the network
particularly suitable for inference with the Lauritzen-Spiegelhalter algorithm; the
average propagation time for a set of measurements is 3 seconds.

a a6

Fyg. 9. {a) Evidence for nodes 5, 7, 8, 12, 13, 15 and 16 becomes available. (b} This thformation ts ab-
sorbed, and the clique tree {s stmplified before updating. As a result, the algortthm becomes faster as
the set of evidence grows.

Discussion

Belief networks are an increasingly prevalent framework for representing proba-
bilistic knowledge. They have been used successfully to calculate the probability of
genetic diseases [Spiegelhalter 88] or to interpret clinical tests [Andreassen 87].
One criticism of them, however, is the prohibitive growth in inference complexity
as the size of the network increases. The ALARM network provided us with a case
to {llustrate these problems in a real-world domain.

The differences among algorithms are significant. Updating the network with
Pearl's algorithm takes approximately 8 minutes for a typical set of measurements.
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On the other hand, evidence propagation with the Lauritzen-Spiegelhalter al-
gorithm is completed In 3 seconds for the same set of findings. Characteristics of
the network topology and the handling of loops determine this behavior.

The performance of Pearl's algorithm on the ALARM network can be explained by
the size of the cutset, the large number of measurements available at any time, and
the peripheral location of the evidence nodes. The high number of dependencies
in this network mandates multiple connections between nodes. To render the
network singly connected by the method of conditioning, the algorithm must
break five loops generating a cutset that is impractically large.

In this monitoring domain, whole sets of data, typically nine or more measure-
ments, become available at any point in time. This evidence must be propagated
sequentially in the absence of special scheduling techniques. In addition, most
measurement nodes in the ALARM network are located peripherally. Their
instanttation will not simplify subsequent updating. Instead, these nodes start
passing messages from parent to parent after being observed, making evidence
propagation longer. The peripheral location of evidence nodes also makes it tm-
possible to use the commonly observed ones as cutset members. We could elimi-
nate a large number of cutset instantiations were that possible.

Ironically, a large set of evidence has the opposite effect for the Lauritzen-
Spiegelhalter procedure: Evidence simplifies the clique tree and increases update
speeds. The high connectivity of the ALARM network, a problem for the Pearl
mechanism, makes the cliques smaller in the case of the Lauritzen-Spiegelhalter
algorithm. As there is only a small number of parents per node, the maximum
clique size stays within reasonable limits. Higher-order dependencies leading to
many parents per node are unlikely as they are only rarely known or assessed; in
general, new concepts are introduced to avoid such dependencies.

The choice of an inference mechanism corresponding to the topology of a belief
network is crucial for any real-world application. It is important to match the
given domain with the inference algorithm that will be most efficlient given the
specific properties of the domain model.
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