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ABSTRACT

Time modeling is an important aspect ofmedical
decision-support systems engineering. At the core of
effective time modeling lies the challenge ofproper
knowledge representation design. In this paper, we
focus on two importantprinciples for effective time-
modeling languages: (a) hybrid temporal
representation, and (b) dynamic temporal abstraction.

To explore the significance ofthese design
principles, we extend a previously-deflnedformalism
(single-granularity modifiable temporal beliefnetworks
- MTBN-SGs) to accommodate multiple temporal
granularities and dynamic query and domain-specific
model creation. We call the newformalism multiple-
granularity MTBNs (MTBN-MGs). We develop a
prototype systemfor modeling aspects ofliver
transplantation and analyze the resulting model with
respect to its representation power, representational
tractability, and inferential tractability.
Our experiment demonstrates that the design of

formalisms is crucialfor effective time modeling. In
particular: (i) Hybrid temporal representation is a
desirable property oftime-modeling languages because
it makes knowledge acquisition easier, and increases
representational tractability. (ii) Dynamic temporal
abstraction improves inferential and representational
tractability significantly.
We discuss a high-levelprocedurefor extending

existing languages to incorporate hybrid temporal
representation and dynamic temporal abstraction.

INTRODUCTION
Time modeling is an important and challenging aspect
of engineering medical decision support systems
(MDSSs) [1]. During the last two decades significant
progress has been made in several medical informatics
areas with respect to representation of, and reasoning
about temporal concepts. The research includes (but is
not exhausted by) temporal abstraction and
summarization systems, temporal databases, temporal
maintenance systems, temporal logics, dynamic
Bayesian networks, recurrent neural networks, Markov
decision processes and time-specific statistical models
(time series, reliability and survival analysis) [1,2].

In previous work we introduced an extension of
Bayesian belief networks called single-granularity
modifiable temporal beliefnetworks (MTBN-SGs) with
the intent to incorporate formal temporal and causal
semantics to probabilistic temporal reasoning [3]. In the
present paper, we focus on the implementation and
empirical assessment oftwo aspects oftemporal

language design which we had previously theoretically
identified [4]: Dynamic temporal abstraction, which
refers to the ability of a modeling language to allow a
condensed representation of a temporal model for a
domain, from which appropriate problem-specific
submodels can be created when problem instances are
encountered. Dynamic temporal abstraction can be viewed
as an instance of the knowledge-based model construction
and object-oriented model construction methods that is
specifically tailored to time modeling [5,6].
Hybrid temporal representation which refers to the
ability of a representation to allow expression of objects or
relations of the problem-solving domain in several levels
oftemporal detail [4].

GOALS
The goals of the present research are: (a) To introduce a
representation language that implements these two design
principlesffully and in an integrated manner, (b) to
empirically investigate the modeling effectiveness ofusing
hybrid temporal representation and dynamic temporal
abstraction by applying the language of part (a) in a time-
sensitive medical domain, and (c) to identify general
principles for MDSSs time-modeling language design.

DOMAIN BACKGROUND
Liver transplantation is a medical domain with important
technical challenges, as well as decision problems with
profound ethical and economic repercussions. Under the
current organ donor shortage, one ofthe most pressing
issues is the optimal allocation of organs. Two related
questions are under which conditions (if any)
retransplantation should be attempted, and what is the
optimal timing for transplantation [7,8,9].
The liver transplantation domain is highly temporal and

is driven by complex tasks such as prediction/forecasting,
intervention and therapy planning, as well as policy
formulation and evaluation. As such, it can serve as a
useful application environment for testing new methods for
time modeling.

In the medical literature one can find several statistical
and machine learning methods that have been applied in
the domain of liver transplantation to address aspects ofthe
above issues [7,8,10].

In this modeling experiment we focused on creating
a model that would be able to: (a) predict the outcomes
of patients given specific interventions and patient
background information, and (b) evaluate the expected
utilities of competing policies for transplantation
timing and retransplantation constraints.
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RESULTS
1. Extending MTBNs to incorporate dynamic
temporal abstraction and hybrid temporal
representation.
In [3] we introduced MTBNs with a single granularity
(MTBN-SGs). The main differences of those from
ordinary beliefnetworks and temporal belief networks
are: (a) MTBN-SG models have well-defined temporal
and causal semantics. (b) There are two additional
types of variables besides ordinary ones: arc

(mechanism variables) and cause-effect delay (lag)
variables. All types of variables can interact (e.g., an
ordinary variable may cause a lag variable, or an arc

variable may cause another arc variable). (c) There is a
condensed and a deployed graph. The former serves

for defining and describing a model, while the later
contains all variable instances over time and is used
for inference.
MTBN-SG models have variables that are either
indexed with a single temporal granularity, or non-

indexed so that a simple form ofhybrid temporal
representation is supported. In the remainder of this
section we introduce multiple granularity MTBNs
(MTBN-MGs) that are enhanced so as to support
sophisticated hybrid temporal representation and
dynamic temporal abstraction by having the
following additional enhancements over single
granularity MTBNs:
(i) We introduce the notion of temporal context
which is a collection ofrelated variables. Variables
are organized into variable types, variable types into
temporal context instances, and temporal context
instances into temporal context types. These elements
are hierarchically related in an object-oriented
ontology.
(ii) We introduce the notions of inclusion and
exclusion of a variable in a model. An included
variable is one that is relevant to solving a particular
problem instance, whereas excluded ones are not.
(iii) The model of time is still discrete and linear,
however it may consist of several temporal
granularities (e.g., seconds, minutes, days).
(iv) Each temporal context instance has four
additional meta-variables associated with it:
activation (determines whether all context instance
variables are included or not in the model), duration,
location in time, and granularity (which can also
change dynamically). Figure 1 shows graphically the
example of a temporal context instance having a

variable A, granularity of 1 month, duration of2
months, starts at the 1' month, and its activation is
not constant (but determined as a random variable).
Enhancements (i) to (iv) implement a hybrid
temporal representation in MTBNs. The following
additions implement dynamic temporal abstraction:
(v) Generalized arc variables describe connections
among multiple variables (e.g., ARC[TCl(l-10).AI5
-> TC2(1-3).B120] connects all variable instances of
variable type A (belonging to context instances 1 to 10 of
context type 1) and having temporal index 1 to 5, to all
variable instances of variable type B (belonging to context
instances 1 to 3 of context type 2) and having temporal
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index 1 to 20. The temporal index ranges, instance ranges
and connection patterns are not necessarily constant but
may be modeled as random variables themselves).

TC1(1)
ACT |L< 1DUR=2

LOC=1 I MONTH

1 TIME

Figure 1: Temporal context instance example.

(vi) Inference is augmented with three optimizations.
Temporal context deactivation optimization omits
variables that belong to context instances that have been
deactivated in a particular simulation cycle (Figure 2a).
Backward search optimization builds only the portion
of the deployed graph that needs to be instantiated to
answer a specific query (Figure 2b). Finally, dynamic
duration optimization omits variables that fall outside
the dynamically-determined length of a temporal context
instance (Figure 2c).
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Figure 2: MTBN-MG optimizations. (a) Temporal
context deactivation optimization. The context instances
in dotted lines are deactivated, therefore we need not
instantiate them. (b) Backward search optimization. The
example query is "p(A1=1 B1=2) =?". Only Al and B1
(belonging to the context instances with the shaded
background) need be instantiated. (c) Dynamic duration
optimization. The top context instance is assigned a
duration of 2, therefore variable instances A3 to A,, need
not be instantiated.

2. The liver transplantation model.
With the help of a domain expert we built a liver
transplantation model capable of answering the
query types described in the "Domain background"
Section using a combination of:
(a) Knowledge engineering (for the domain
structure, qualitative relationships, and some
quantitative relationships expressed as conditional
probabilities),
(b) Domain theory (in the form oftextbook
physiological, or surgical facts, as well as published
analyses and predictive models).



(c) Statistical analysis/machine learning from
patient data.
A total ofapproximately 15 two-hour knowledge-

acquisition sessions with the expert were conducted,
about 20 published articles were used, and 2 patient
data sets from the expert's file were analyzed.
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Figure 3: High-level structure of liver
transplantation model, and condensed graph for two
ofthe component temporal context instances.

Figure 3 (top) presents the high-level domain
structure. The bottom ofFigure 3 elaborates on two of
the components ofthe high-level structure. We can see
that the history of liver transplantation starts from the
end-stage liver disease context (ESLD - top left of
Figure 3), in which a patient with failing liver function
is waiting for a transplantation. During this waiting
period the patient may die, suffer a complication, or
get transplanted. Once a transplantation occurs, a
number ofpreoperative factors are observed (Bottom
left ofFigure 3) that determine the subsequent
outcome ofthe transplantation. Some ofthese factors,
such as renal failure or liver ischemia time are very
important, and are considered high-risk indicators,
whereas others (e.g., the donor's age) are considered
less important riskfactors. Subsequent to
transplantation, the patient goes through a high-risk
post-transplantperiod during which graft or donor
failure has higher chances ofoccurring. This period
lasts for approximately 2 years and can be firther
decomposed into a number of smaller temporal
contexts corresponding to the first week, 2nd week to
3rd month, 4th month to 6th month, 6th month to 1st
year, and 2nd year periods. These periods differ little
in terms ofthe involved variables and more in terms of

the quantitative strength ofassociation among the
variables. Looking at the bottom right ofFigure 3, we
see that during the first week after transplantation, a
number of laboratory variables (hepatic enzymes -
AST/ALT, prorombin time - PT, bilirubin - BILIR,
and creatinine - CREAT) are closely observed so that
an assessment is being made as to whether the patient
is stable, or is having incipent or established multiple
system organ failure (MSOF), and also regarding the
need to administer fresh frozen plasma (FFP). The
type ofimmunosupression adminstered, the presence
of sepsis, and a possible rejection taking place, all
influence the laboratory findings, and the assessment
made by the surgical team about a possible
retransplantation. In turn, the decision for
retransplantation along with the preoperative risk
factors and the current systemic status will determine
the patient's chances for survival within this time
frame.

After the 2-year mark the patients enter a low-risk
post-transplant period with chances of death roughly
the same as the general population ofthe same age and
gender (Figure 3 - top right). At any time during the
high or low-risk periods the patients may need a

ransplantation, in which case they will enter a new
ESLD context and start the cycle anew. Note that the
duration ofthe pre and post-2-year transplantation
contexts is not constant Also, the temporal contexts of
Figure 3 can be replicated several times ifmultiple
transplantations take place. Given the applicable
retransplantation policies and the number ofprevious
transplants, the multiple retransplantation option may
not be available to some patients.

Assuming a granularity of I month, a maximum

time span of 10 years for the ESLD and low-risk
contexts, and a maximum of 10 transplantations, the

deployed liver transplantation model consists ofabout
10,000 nodes, whereas the undeployed model consists
ofapproximately 400 nodes, including context types,
instances, and meta-variables. This difference will be
explained in detail in Section 4.

3. Representational power and hybrid temporal
representation.
Representationalpowr refers to the ability to express
naturally and easily the desiredaspects of the
problem-solving domain (expressivity) and to the
corresponding knowledge acquisition tractability.

In the liver transplantation domain, we found that
the simultaneous representation of different
temporal units was necessary. Some questions and
pieces ofevidence are expressed at a small temporal

granularity (for instance, the granularity ofthe first
post-transplantation week variables is 1 day) while
others are expressed at larger granularity levels (e.g.,
at the 2nd post-LT year the time granularity is 1

month).
Through our interaction with the expert, we found

that another form ofhybrid temporal (-abstraction)
representation was also very helpful to him for
parameterizing the model. In all instances of
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subjective assessment of quantitative relationships, the
expert felt that he could not reliably assess the
probabilistic conditional distributions of a node given
all possible parents instantiations, but he could provide
reliable rules that abstract together many of the
parent nodes' values (e.g., "ifno positive
preoperative risk factors and no MSOF were present
then the chances of death within the first post-
transplantation week are <0.05").

Similarly, the expert often felt uncomfortable
giving assessments in one granularity but
comfortable in another. This led to an adjustment of
the initial granularities for the various high-risk post-
transplant period contexts to the granularities the
expert was most comfortable with.

4. Representational tractability and hybrid
temporal representation/dynamic temporal
abstraction.
Representational tractability refers to the complexity
ofstoring a model ofthe problem-solving domain.

Since the deployed liver transplantation model is
very large, to facilitate runtime analyses we
implemented a simplified version, which we call the
small liver transplantation model. The simplification
consists of allowing for up to two explicit
transplantation periods (instead of 10) and of
omitting some variables in the high-risk post-
transplant contexts.

Table 1: Number ofnodes and number of
conditional probability distributions
IMTBN-MG 110

The MTBN small model is declared using 250 elements
(110 nodes including context types, instances and meta-
variables, and 140 arcs and abstraction variables) and
100 conditional probability distributions. Since the
smallest granularity is one day and the model time
horizon is a maximum of 54 years, assuming we have
15 distinct variables in the model only, ifwe wanted to
express the small model in standard temporal belief
network form (i.e., using temporal uniformity), we
would need approximately: 54*365*15= 3* 105 nodes
and an equal number of probability distributions. This
is clearly intractable without even considering the
necessary arcs.

The MTBN-MG dynamic abstraction features enhance
even further representational tractability. A belief network
for the small model that would not use uniform temporal
representation requires a total of approximately 1,000
arcs, 400 nodes, and 400 conditional probability
distributions. Therefore, the MTBN small model uses

18% of total arcs and nodes needed for defining the same
model in BN form, and 25% of total probability
distributions (Table 1).
Once defined, the MTBN model can be modified very

efficiently when the overall temporal context and instance
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structure remains the same. For example, increasing the
maximum horizon of the first ESLD context from 10
years to 15 years requires changing just one number (the
duration of the ESLD context type). In the belief network
case, that change involves declaring 40 new death and
transplantation nodes for the first ESLD context instance.
To connect these nodes to the rest of the beliefnetwork
model, we would need to declare an additional 120 arcs
(query abstractions excluded) to capture the relations
among the new nodes. In the MTBN model this can be
done by changing 3 parameters. Furthermore, ifwe would
like to expand the basic structure ofthe model, for
example by adding a third explicit transplantation period
in the beliefnetwork model, we would need to increase
the model declaration size by 50% (700 nodes and arcs),
since currently each transplant period is approximately
50% ofthe current model. In the MTBN case, we need to
declare 28 new meta-variables, 30 new arcs, and change
one parameter in each one of existing 25 arcs. The total
size of the MTBN increases by 25% only. Similar
expansion for a fourth transplantation requires an increase
of33% in the size of the BN but only a 17% increase in
the size of the MTBN, and so on (Figure 4).
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Figure 4: Rate ofmodel size increase when adding new
transplant periods.

5. Inferential tractability and dynamic temporal
abstraction.
Inferential tractability refers to the complexity of
reasoning with a model ofthe problem-solving domain to
solve a set ofproblem instances.

To examine the effects of the 3 MTBN-MG
optimizations on inferential tractability we implemented
code that performs inference with the optimizations
turned on and off. We used a sample of 17 queries
generated from a set of 6 query types that the expert
indicated were pertinent in this domain [2].

Table 2 shows the average, minimum and
maximum runtime ratios ofno optimization versus full
optimization for a constant number of simulation
cycles. The ratios are to be interpreted as the factor by
which optimization allows reaching an answer (with
fixed accuracy) faster than with no optimization. We
see that averaged over all examined queries, the 3
MTBN-MG optimizations allow on the average for
172 times faster inference relative to no optimization.
Table 2 also shows the size ratios (expressed in
number of instantiated nodes) of the problem-specific



model produced by the optimizations. On the average,
the problem-specific model was 10.9 times smaller
than the full (non-optimized) model.

Table 2: Inference time and model-size improvement
ratios ofdynamic temporal abstraction (all
optimizations) versus inference with no optimizations
in small MTBN-MG model.

AVERAGE MIN MAX
TIME RATIO 172 107 340
SIZE RARTIO 10.9 6.4 I 32

CONCLUSIONS
The above results provide support in favor ofthe

following conclusions:
Conclusion #1: Dynamic temporal abstraction is a
desirable representation language property
because it enhances inferential tractability by
focusing computational inference resources on the
relevant temporal aspects of a problem instance.
Furthermore, dynamic temporal abstraction enhances
representational tractability by enabling efficient
representation of a model rather than using a
potentially intractable explicit model.
Conclusion #2: Hybrid temporal representation is
a desirable representation language property since
temporal uniformity (i.e., the lack of hybrid temporal
representation) makes inference and storage of
temporal models inefficient by focusing
representation and problem solving at the smallest
temporal common denominator. In addition,
knowledge acquisition is harder when there is no
flexibility to seek and represent knowledge at the
level of temporal detail in which this knowledge is
normally available.

DISCUSSION
We now discuss how to incorporate dynamic
temporal abstraction and hybrid temporal
representation in existing representations that lack
them, based on our extensions ofbelief networks and
single-granularity MTBNs.

To implement hybrid temporal representation, we
need an explicit representation of temporal units
(or relevant components of time) of different sizes, as
well as semantic rules that allow association ofthose
with the various objects ofthe language.

To implement dynamic temporal abstraction we: (a)
introduce (in the new language) structures that are defined
as collections of existing structures (ofthe old
language), based on problem-specific criteria. For
example, sets of variables in temporal belief networks are
declared as temporal context instances in MTBNs. (b)
Once collections of objects in the original representation
have been described as individual objects ofthe new
representation, these objects can be stored efficiently by
the new representation. For example, in MTBN-MGs, arc
variables represent arbitrarily large collections of
individual arcs that connect related variables. (c) Finally,
we need to extend the inference procedures so that they
take advantage ofthe efficient representation of objects in

the enhanced representation. In MTBN-MGs this is
accomplished by the backward search, variable/context-
deactivation, and dynamic context length optimizations of
the inference algorithm.

Since the above steps are not inherently language-
dependent we believe that they can serve as a high-level
guide for incorporating dynamic temporal abstraction and
hybrid temporal representation in a wide variety of
existing representations.
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