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ABSTRACT

Explicit temporal representation and reasoning
(TRR) in medical decision-support systems (MDSS) is
generally considered to be a useful but often
neglected aspect of system design and
implementation. Given the great burden of explicit
TRR both in knowledge acquisition and
computational efficiency, developers of general-
purpose large-scale systems typically utilize implicit
(i.e., abstracted) forms of TRR. We are interested in
understanding better the trade-offs of not
incorporating explicit TRR in large general-purpose
MDSS along the dimensions of system expressive
power and diagnostic accuracy. In particular, we
examine the types of abstracted TRR employed in
QMR, a diagnostic system in the domain ofgeneral
internal medicine, and the high-level effects of such
an implicit treatment of time in the system's
diagnostic performance. We present ourfindings and
discuss implications for MDSS design and
implementation practices.

INTRODUCTION

In a review of TRR in MOSS, Kahn [1] proposes an
empirical classification which separates systems in
two main categories, one based on temporal
ignorance, and one on explicit representation and
utilization of temporal concepts. More specifically he
demonstrates how the earlier systems overrode the
need for explicit Knowledge Representation and
Reasoning (KRR) by incorporating temporal
information into ordinary atemporal formalisms. For
instance, the INTERNIST-I system would ask
questions ofthe type "did the patient have a history of
disease x?", that clearly correspond to an implicit or
abstracted form of TRR It is obvious that the
systems' developers were operating on the assumption
that the user of the system would abstract relative
data from historical observations and provide it to the
program.

Explicitness in TRR practically entails the
existence of two main components. First we need a
model of time (i.e., a description of temporal
primitive entities from which time is composed, plus
a set of properties of time, as for example linearity
and finiteness). Second, we need an association of
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entities (objects and relations) to the model of time,
such that we can reason about them in one or more
temporal contexts, and represent/infer useful
temporal knowledge. For all but the most trivial
medical domains the use of temporal ignorance is a
heuristic approximation to modelling time explicitly.
It was applied in a number of influential systems like
MYCIN, PEP, DxPlain, CASNET, and ABEL [2].
This way, the developers ofMDSS were able to avoid
explicit reasoning about temporal concepts, an area
within which AI was not well developed in the 70's,
or even the early 80's.

On the other hand, a well-known problem in
KRR is what Levesque and Brachman call the
"fundamental trade-off in KRR" [3]: more expressive
power generally means less computational
tractability (and the opposite). Given the extensive
burden of TRR in terms of efficiency, as well as
knowledge acquisition, we believe that any effort to
incorporate explicit TRR in large-scale MOSS should
be well-justified in terms of expected gains in system
performance and/or knowledge engineering (i.e.,
expressivity of a temporal model vs the atemporal
one). In other words, we need to examine why and
how important is the ability to reason explicitly (as
contrasted to an abstracted manner) about temporal
processes and entities. The importance of TRR has
been considered more or less "obvious" and thus has
been inadequately explored in the medical Al and
medical informatics (MI) literature, especially with
respect to quantifying its importance.

The basic arguments that have been offered in
favor of the necessity of explicit TRR in medical
DSSs are:
(a) The epistemological argument: observations of
physicians diagnostic and therapeutic problem-
solving suggest that temporal models of normal and
abnormal processes are used, intricate temporal
abstractions are created and used to generate and
validate or rule-out competing hypotheses.
Additionally, physicians are able to utilize temporal
planning for either diagnosis (e.g., "watchful
expectancy") or therapy [4].
(b) The linguistic argument: analysis of discharge
summaries and other medical texts indicate an
impressive amount ofTRR [5].
(c) Pragmatics argument #1: certain medical domains
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are based on the premise of a time-evolving process,
and TRR is fundamental for them (characteristic
examples include the protocol-based therapy
management, ICU real-time monitoring and
intervention, signal processing as in EKG and
EEG interpretation) [6,7].
(d) Pragmatics argument #2: evaluation of DSSs
diagnostic performance shows that some failures to
reach the proper diagnosis is attributed to lack of
TRR capabilities [8,9].

By carefully examining these arguments, we can
make the following remarks: the epistemological and
linguistic arguments are purely descriptive and do not
justify directly the importance of TRR. The first
pragmatics argument is certainly true, but refers to a
clearly defined, limited subset ofDSSs with few or no
implications for the majority of systems that perform
diagnosis/treatment selections in wide areas of
medicine such as INTERNIST-I, MYCIN, etc. These
latter systems' need for TRR could be substantiated by
the second pragmatics argument, in the sense that,
ceteris paribus, if TRR accounts for a substantial
number of diagnostic failures and the problems can
not be fixed in a reasonable way (i.e., by respecting
KA and efficiency constraints), then we can conclude
that TRR is indeed necessary.

Unfortunately, support for the second pragmatics
argument comes in the form of anecdotal evidence
rather than from planned experiments designed to
prove or disprove the validity of this hypothesis. One
famous example is the 1982 NEJM evaluation of
INTERNIST-I (one of the most often cited instances
of the second pragmatic argument), which on the
basis of 3 cases (out of a total of 19 diagnostic
problems) supposedly indicates that explicit TRR is
indeed necessary. But the 99% confidence limits of
3/19 (16%) are between 2 and 47%, suggesting that
no strong conclusion can be reached from this data
regarding the effects of TRR. Even more importantly,
the cases were not representative of the average
encountered clinical case, since they were CPC cases
that were selected on the basis of being very
challenging [8].

The previous discussion indicates the need for
further investigation and quantitative analysis of the
importance of TRR in general-purpose DSSs. It
should be clear on the other hand, that for a variety of
DSS domains this need is well justified by the nature
of the domain (i.e., the nature of the entities
represented is so deeply temporal, that either we can
not reason about it without taking into account time,
or it is grossly ineffective to utilize some
implicit/abstracted form of KRR). These
domains/tasks include:
- Protocol therapy management,
- Biomedical signal processing,
- "Deep" causal models of diseases/physiology which

are grounded on dynamic systems.
- Intensive care unit (ICU) decision-support.
Additionally, it might be more parsimonious and/or
natural to represent some normal or abnormal
processes in temporal terms (for instance hormonal
cycles or compartmental models [6,7,9-11]).

The research presented here intends to investigate
the following hypothesis: In systems operating as aids
to clinicians (as opposed to systems that are fully
automated) the human operator of the system can
provide the necessary abstraction reasoning from
temporal entities to the system's atemporal knowledge
representation language, such that the system would
not have to explicitly incorporate TRR to achieve
equal levels of performance as in the temporally
explicit case.

There are a number of additional interesting
questions associated with this conjecture:
(i) What constitutes an appropriate collection of
abstracted (atemporal) knowledge representations,
corresponding to the domain to be modelled?
(ii) Are there specific temporal entities that are
crucial to DSS performance? What is the proper level
of description of those entities?
(iii) How would these results be useful for systems
that operate in automated mode?
In the following sections, we investigate this

hypothesis and the related questions by means of an
analysis of QMR, a well known MDSS, operating in
the domain of diagnosis for general internal
medicine, along the dimensions of:
- expressive power (what types of abstracted TRR can
be handled by the system)
- performance degradation due to temporal complexi-
ties of patient cases.

METHODS

1. Temporal analysis of QMR's terms
We devised a series of variables that correspond to

what previous theoretical and empirical work
suggests are important temporal reasoning and
representation attributes [12-17]. These were used by
the first author to classify each finding in QMR as
temporal or not based on the following criterion. A
QMR finding is temporal if any of the following is
true: explicit reference to either time points/intervals
or units, temporal relationships/reasoning, events or
facts described in some temporal context, processes
occurring over time (explicitly static/evolving, or in
sequence/overlapping), or patterns (temporal or
spatio-temporal).
We additionally recorded the QMR type (history,

physical, simple-inexpensive lab, intermediate lab,
advanced-expensive lab) and importance (the
"import" value of QMR indicating "need for a
finding to be explained iffound" [8]), for all findings,
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regardless of temporal nature. Temporal types (I and
II), ontology, and temporal reasoning were created
empirically in an incremental fashion, and refined as
new QMR findings were examined. Temporal types-II
correspond to simple abstractions over QMR findings.
A temporal type-I provides a way to describe
covariation of variables (i.e., it is a temporal pattern).
In essence it is an abstraction over temporal types-II.
Reasoning types, on the other hand, denote
fundamental relations and other properties that
can be put together to form temporal types I&II (for
examples of temporal types, and reasoning types see
results sections 1.2-1.4). To ensure consistency in the
categorization of temporal QMR findings (according
to temporal type, and reasoning type) the following
procedure was followed: first temporal findings were
identified. In the next step values for the variables for
each temporal type-il were assigned. Due to the
limited number of types-II (<120), consistency checks
(with previously established temporal types-II) were
easier and less error-prone to carry out than the full
set of temporal QMR findings. After the types-il had
been characterized, individual findings were
categorized as belonging to any of specific temporal
types-Il. As a consequence, each finding would
inherit the variable value assignments of the
corresponding abstract type-il. As a final step, each
individual finding was examined for differences with
the type-II it belonged to (due to the abstraction
process), and the necessary adjustments were made to
the deviating attributes of the individual findings.
Then, temporal types-I and temporal reasoning types
were abstracted and classified empirically. Standard
descriptive statistics were computed for all variables.
Bivariate associations were examined with Likelihood
Ratio (G2) tests of independence, Kendall's tau and
the gamma coefficient (for ordinal variables).
Multivariate relations were examined with the
previous statistics controlling for possible
confounders [18].

2. Effects of lack of explicit TRR on diagnostic
performance

Ideally we would like to test the following (null)
statistical hypothesis: Lack of explicit TRR in QMR
does not cause decreased diagnostic performance,
(compared to the case where explicit TRR is
employed). Figure 1 presents an idealized experiment
built around a post-test design [19] in which the same
group of cases is presented to the system. Assuming
that the diagnostic system has explicit TRR and that
it can be turned on and off at will, diagnoses are
performed twice, once with TRR being active and
once with TRR- being inactive. The performance in
the first case is compared to the second one.
Obviously this best-case experiment is unattainable.
There is no MDSS employing explicit TRR that
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operates with a scope comparable to that of general
internal medicine. Nor is TRR typically implemented
in a manner that can be turned on and off, leaving the
system reliability intact.

Figure 1: An idealized experiment

Since modifying QMR to incorporate an explicit
TRR model is equally infeasible for the purposes of
this study, we designed a modified version of the
previous experiment, represented in figure 2.

CASES GROUP I
(LOW TRR COMPLEXITY)

CASES GROUP 2
(HIGH TRR COMPLEXITY)

Figure 2: A modified experiment

In this second design two groups are presented to the
system. The two groups are similar in every aspect
that we would expect to affect performance, except for
temporal content. We would like to compare the
performance of the system in the two groups. All
other things being equal, one would attribute any
diagnostic performance discrepancy to the temporal
content of the cases (and equivalently to the lack of
explicit TRR by QMR). Note that it is important to
maintain a prospective design, to avoid a case-control
setup (and the associated potential biases with respect
to identifying the risk factor, and establishing case-
control comparability) [20]. Important considerations
in the execution of this design are:
(a) Selection of a representative sample of actual
patient cases. We used 105 cases from the latest
formal evaluation ofQMR (each consisting of history,
physical, initial laboratory tests, and discharge
summary and diagnoses). The third author (RB.) is
the primary investigator in that study. The coding of
the patient information was done by experienced



QMR users, and the cases are considered to be
representative of the cases admitted to a large
university hospital.
(b) Potential confounders: We considered, and
controlled for analytically, several potential
confounders (rareness of primary diagnosis, length of
case, uncertainty in the description of evidence,
spatial information references, causal information
references, multiple levels, and number of diseases in
true diagnosis).
(c) TRR assessment: The history and physical (H&P)
portion of each patient case was separated into a
number of individual pieces of information (POI). A
POI was defined as the smallest piece of clinically
relevant information that could be meaningful if
stated in the given document context(thus a POI
could be either a stand-alone statement or a
qualification of a previously established statement).
Each POI was characterized as temporal or not based
on the criteria described for QMR findings. For each
POI the values of the confounder attributes were
assessed. The percentage oftemporal POIs divided by
the total number of POIs in the case, constituted our
measure of TRR content for that case. For each POI
the temporal attributes utilized in the assessment of
explicit TRR (methods section 1) were evaluated and
snazed for each case. We utilized principal

components analysis to identify summary linear
combinations of those measures as more detailed
metrics of the case temporal content. Similar
measures of complexity and temporal content were
assessed for the QMR encodings for each case.
Finally we identified TRR types in the cases that
exceeded the expressive capacity of the QMR
abstractions (these are discussed in [21]). The
temporal attributes' value assignments (for both cases
and QMR inputs) were blinded with respect to the
case outcome.
(d) Performance assessment: Our criterion was the
percentage of cases for which QMR found the
primary diagnosis. The following matching criterion
was used:
- A match occurred iff the gold standard (GS)
primary diagnosis is clinically equivalent to one of
the q (%) first diagnoses in the QMR differential
diagnosis (DD) list. The primary discharge diagnosis
(ICD9 primary diagnosis) was considered to be the
GS.
- q is defined to be a percentage of diagnoses from
QMR's differential diagnosis list. As discussed later
in the results section, we chose a q that gave us a
mathematically convenient diagnosis rate in the
assessment of the effects ofTRR content of each case.
- Equivalence is one of the following: identity,
synonymy, or a close match.
- Close match was taken to mean a significantly
overlapping disease category or a disease which is at

most one level down or up in a recognized clinical
classification as those found in major textbooks of
medicine (e.g., Harrison's or Cecil's textbook of
medicine etc.).
Cases with no established true diagnoses were

excluded. When the first (primary) diagnosis in the
GS differential was asserted, or given as a finding in
QMR, or was not in QMR's KB, the next diagnosis
would be the primary one (with a recursive
application of the exclusion and skipping rules).
(e) Analysis: All variables associated potentially with
diagnostic performance were descretized (based on
their 50th percentile as a single cutoff point). Odds-
ratios of correct diagnoses were computed between
the explanatory variable categories [18].

Logit models (using the continuous variable
versions and a standard statistical package) and
Bayesian models (through the application of the K2
inductive learning algorithm) were built to assess
quantitatively the impact of TRR in the cases to the
system's diagnostic accuracy. The interrelations of
TRR content and the rest of the explanatory variables
were also examined with respect to diagnostic
accuracy [18,22].

RESULTS

1. Temporal analysis of QMR's terms
1.1. Ontology

It was found that QMR utilizes the following
temporal ontology to express temporal findings.
(a) Entities:

(i) Generic: disease, syndrome, finding, symptom,
laboratory value, test result, medical procedures,
drugs, causal factors, diagnostic factors.

(ii) Temporal: periods, points of time, seasons,
parts of the day, disease intervals, EKG - related
intervals, systolic/diastolic periods, units of time.
(b) Relationships/Properties: History of, during,
before, after, coincides with, repeating, properties
(frequency, speed, rhythm, regularity).

Also Boolean combinations of the above are used
to derive more complex propositions.

1.2. Temporal types-I
Forty-nine different TRR types-I were found (and
combinations of those). Table 1 presents the most
frequent ones, with frequencies.

1.3. Temporal types-U
A total of 116 temporal types-II were found to be
employed by QMR within its findings. Table 2
presents the most frequent ones, together with
frequencies (% of total number oftemporal findings).

1.4. Temporal reasoning
A total of 20 different temporal reasoning types
were identified (as well as combinations of those).
Table 3 presents the most frequent ones, and their
frequencies, together with the relation that they
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correspond to.

Table 1: Most frequent of temporal tpes-I (higher
level of abstraction over QMR findings)

Table 2: Most frequent oftemporal types-Il (lower
level of abstraction over QMR findings)

Table 3: Most frequent temporal reasoning types (in
parentheses the fundamental relation each
type corresponds to)

Figure 3 depicts a multiple-inheritance hierarchical
classification of temporal tyes I & II that captures
their main features. A similar classification was
developed for temporal reasoning (not shown here).

1.5. Frequency and importance of temporal
entities

Of all 4431 QMR findings 17.5% were classified as
temporal. Table 4 presents frequency distributions for
some of the findings attributes.

Figure 3: Temporal type (I & II) abstraction

Interesting associations include: Findings that
reference temporal units have higher importance (G2
p<.0001, gamma=-.51 with t-value=-3.6 ). Similarly
when we have explicit reference to procedures or

patterns, the importance is higher (G2 p=.015 and G2
p=.0005, gamma=.64 with t-value=3.44 respectively).
Overall, however, temporal findings have less import
than non-temporal ones (G2 p<.0001, gamma=.65
with t-value23.2). Symptoms and signs had less
import than more advanced lab findings ((2 p<.0001,
tau0O.11 with p<.OOO1). At the same time though,
temporal findings are characterized by smaller values
in the QMR TYPE scale of diagnostic sophistication
(see methods) (G2 p<.OOO1, tau=.49 with p<.0001).
When we control for QMR TYPE, the relationship
between temporality and importance vanishes.

Table 4: Frequency distributions for main attributes
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(1) Hx of disease prior to current one [19.5%]
(2) ix of event/factor exposure/finding before
disease [15.8%]
(3) Event/factor exposure/finding before disease
[13.0%]
(4) Hx of remote event/factor exposure/finding
before disease [8.2%%]
(5) Finding during period [5.6%]
(6) Finding/disease after drug/medical procedure
[4.8%]
(7) Increase/decrease in measurement [4.5%]
(8) Finding at onset/early/middle/late period (e.g.,
season) [3.5%]
(9) Hx of recurrent/chronic symptom/disease/
finding [2.7%]
(10) Abrupt onset [2.1%]

(1) Hx of syndrome/disease [11.2%]
(2) Hx of drug administration prior to current
illness [8%]
(3) Improvement/worsening of function
after/during test/medical procedure/state [7.3%]
(4) Hx of familial disease/behavior [7.2%]
(5) Abnormal/nonnal finding/syndrome after
drug/medical procedure [4.4%]
(6) Hx ofexposure to animals/factors [3.6%]
(7) Hx of recent medical procedure [3%]
(8) Hix of recent exposure to factor environment
/food/behavior [2.7%]
(9) Increased/decreased rhythm/rate/speed [2.4%]
(10) Measurement per unit oftime > C [2.3%]

(1) Hx of [42.6%] (before)
(2) Hx of recent [12.7%] (before with qualitative
distance)
(3) Finding during period [8.5%] (during)
(4) Finding after or during event [8%] (after or

during)
(5) Properties (e.g., duration etc.) of a temporal
primitive [7.7%] (arbitrary property)

Among allfindings:
TEMPORAL: yes 17.5%, no 82.5%
QMR TYPE : history 11.5%, symptom 5 %,
sign 25.4%, lab simple 6.5%, lab intermediate
30.7%, lab expensive/invasive 20.9%
IMPORT: low 2.3%, medium-low 15.8%,
medium 35.5% medium-high 32.4%, high 14%

Among temporalfindings only:
TIME PRAMITVES: implicit 93.3 %, explicit
points 0.3%, explicit intervals 6.4%
TIME UNITS: yes 5.5%, no 94.5%
TEMPORAL UNCERTAINTY: no 97%, yes 3%
PROCESSES: yes 45.9%, no 54.1%
REPEATING PATTERNS: yes 22.5%, no 77.5%

-- . -- -- - I -- "W,- - ----4=7-.,
m



2. Effects of lack of explicit TRR on diagnostic
performance

Based on our diagnostic success criteria, we had to
discard a number of patient cases, for any of the
following reasons: the diagnosis was a finding in
QMR, the diagnosis was not part of the QMR's KB,
the cases did not represent a straightforward
diagnostic problem (but a therapeutic or "rule-out"
problem), QMR did not produce a diagnostic list,
diagnoses were asserted (i.e., given to the system as
fact), or all the necessary information was not
available in the patient record. Thus 35 out of 105
cases were excluded from subsequent analyses. We
experimented with various values for the q parameter
(see methods), and decided to use q=100% to provide
a better balance of sample size between successful and
non-successful diagnostic groups (as it turns out, our
results are insensitive to this parameter for the tested
range of 20 to 100%).
From the examined confounding variables, most

were characterized by a small worsening of diagnostic
performance (odds ratios were between .54 and .74).
TRR content had an odds ratio of .7, which means
that the odds of getting a correct diagnosis versus an
incorrect one in the high TRR complexity group, was
70% the odds of a correct diagnosis in the low TRR
complexity group. Unfortunately, our modest sample
size did not allow for tight confidence limits (95% c.l.
= .27 to 1.83), and all the associations examined were
not statistically significant (at the .05 level), so they
must be interpreted as indicative only. Finally, we
built a Bayesian Network model utilizing the K2
algorithm. In the most probable model found for this
data (as shown in Figure 4), diagnostic correctness is
determined jointly by TRR content, uncertainty,
diseases number, and spatial information.

This model provides an interpretation of the
dependency of diagnostic performance on TRR
content and the rest of the variables in the form of a
conditional probability distribution:
p(correct-diagnosis diseases, uncertainty,

spatial info, TRR-content)

Figure 4: Determinants of diagnostic accuracy

By examining this distribution we concluded that no
clear form of covariation exists between TRR content
and successful diagnosis, when the rest of the
explanatory variables are taken into account. For
instance, high TRR content is associated with low
probability for correct diagnoses (p=.17) when the
other three predictors take the value 'high', while
high TRR content is associated with high probability
for a correct diagnosis (p=.8) when number of
diseases=high and uncertainty-low. Other interesting
observations have to do with holding the values of the
rest of the three variables constant and observing the
probabilities of successful diagnosis: sometimes the
probability of a correct diagnoses increases, other
times it decreases, when we go from low to high TRR
content (depending on the set values of the
confounders). Utilizing the principal components -
derived measures ofTRR case content yielded similar
findings. Although the interpretation of these results
is complicated and should be viewed with caution in
light of the modest sample size, it suggests that TRR
content per se is not a very strong indicator of the
diagnostic performance of QMR, in the context of
this study, which is evidence in favor of our initial
hypothesis.

DISCUSSION

In this paper we presented an initial analysis of
QMR's implicit TRR both in terms of expressive
power and performance. At the knowledge-
engineering level we were surprised to find out that
the QMR knowledge base contains an impressive
array of different temporal types, which we identified
and classified. The various temporal types are
composed of a small number of primitives. We
identified this ontology. We additionally abstracted
specific temporal patterns and types of temporal
reasoning employed, and examined their importance.
We believe that the identification of these temporal
entities offers three potential benefits:
(a) It explains the ability of the system to cope with
the rich temporal nature of most patient cases, since
it shows an abundance of TRR structures which can
be mapped to patient-specific information. In few
cases, the patient records were found to contain TRR
types that were not in the QMR lexicon [21].
Naturally, this success is highly dependent on the
human users of the system, who perform the
abstraction from the patient record to the program.
(b) In cases where the system is expected to function
independently from human users, it suggests the types
of temporal abstraction mechanisms (and thus
intelligent temporal data pre-processors)that should
be in place for the system to function properly. These
abstractions complement the set of suggested
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mechanisms offered by other researchers who have
presented well-defined temporal abstraction
mechanisms, aimed at having general applicability
[14,16]. In contrast to those mechanisms, the
abstractions from QMR can be used independently of
specific problem-solving methods and software tools.
The expected gains are flexibility and speed of
development, whereas the trade-off is in clarity of
specification and possibly in domain-independent
applicability.
(c) In an exploratory sense, it is a starting point for
identifying important TRR requirements for the
design offormal MDSS models employing explicit
TRR (for example, among other things, they raise
interesting questions about the proper temporal
granularity of representing disease-finding relations).

In the second part of the experiments described in
this paper, we focused at the performance level. We
found that TRR content has a fairly Amall, and
statistically non-significant, effect on the diagnostic
performance ofQMR.

Although we demonstrate satisfactory heuristic
power for the QMR system/domain with respect to the
temporal robustness of its heuristic, implicit handling
of time, we believe that by conditioning the diagnostic
performance of the system on a set of a well-specified
temporal criteria [23], we will be able to gain fiurther
insight into the limits of implicit TRR. Such an
analysis can be greatly facilitated by using a formal
language for TRR We plan to pursue this direction of
research. Finally it should be kept in mind that our
findings are specific to the QMR system and domain.
We hope that these results will stimulate similar
analyses for other medical systems and domans, so
that eventually MDSS developers will be able to make
more conscious and informed choices when it comes
to selecting among explicit and implicit TRR
methods, given their operational constraints and
domain of application.

ACKNOWLEDGEMENTS
The first author is indebted to Prof. B.G. Buchanan,
and Dr. RA. Miller for their invaluable guidance
throughout the design, implementation, and
interpretation of the research described in this paper.
The authors would also like to thank Dr. N. Giuse for
her assistance with the utilization of the QMR
diagnostic performance patient cases in this paper, as
well as for useful comments.

Reference
(1) Kahn MG "Modelling time in medical decision-
support programs" Med Dec Making 1991; 11:249-
264.
(2) E. Shortliffe and L. Perreault (eds.): Medical
Informatics: Computer applications in Health Care.
Addison-Wesley 1990.
(3) Levesque HJ, Brachman RI. A fundamental

tradeoff in knowledge representation and reasoning.
In: Readings in Knowledge Representation. Levesque
HJ, Brachman RJ (eds.) Morgan Kauffman
Publishers 1985, 42-70.
(4) Kassirer J. Kopelamn R "Learning clinical
reasoning" Williams and Wilkins 1991.
(5) Sager N "Medical language processing: computer
management of narrative data" Reading Mass:
Addison-Wesley 1987.
(6) Fagan LM "VM: representing time-dependent
relations in a medical setting" Doctoral dissertation,
Stanford 1980.
(7) Ackerman E, Gatewood L "Mathematical models
in the health sciences" Univ. ofMinnesota Press,
1979.
(8) Miller RA, Pople HE, Myers JD. INTERNIST-I,
an experimental computer-based diagnostic
consultant for general internal medicine. N Engl J
Med 1982; 307: 468476.
(9) Long W, Naimi S, CriscitieloM "Development of
a knowledge base for diagnostic reasoning in
cardiology" Comput Biomed Res 1992;25: 292-311.
(10) Stefanelli M "Therapy planning and monitoring"
(editorial) Artificial Intelligence in Medicine 1992;4:
189-190.
(11) Chandrasekaran B, Wong T, Pryor T " Deep'
models and their relation to diagnosis" Artificial
Intelligence in Medicine 1989;1: 2940.
(12) Allen JF, Hayes PJ "A common sense theory of
time" IJCAI proceedings 1985:528-531.
(13) Berzuini C, Bellazi R, Quaglini S, Spiegelhalter
D "Bayesian networks for patient monitoring"
Artificial Intelligence in Medicine 1992;4: 243-260.
(14) Shahar Y MusenMA "RESUME: a temporal-
abstraction system for patient monitoring". Comput
Biomed Res 1993; 26: 255-73
(15) Das A, Tu S, Purcell G, MusenM "An extended
SQL for temporal data management in clinical
decision-support systems" SCAMC 1992:128-132.
(16) Kohane I. "Temporal reasoning in medical
expert systems" MEDINFO 1986: 170-174.
(17) Shoham Y "Temporal logics in AI: Semantical
and ontological considerations " Artificial
Intelligence 1987;33: 89-104.
(18) Agresti A "Categorical data analysis" Wiley
1990.
(19) Spector P "Research designs" Sage 1981.
(20) Colton T "Statistics in Medicine" Little, Brown
1974.
(21) Aliferis CF, Cooper GF, Buchanan BG, Miller
RA, Bankowitz R, Giuse N "Temporal reasoning
abstractions in QMR" Report SMI-94-03, 1994.
(22) Cooper GF, Herskovits E "A Bayesian method
for the induction of probabilistic networks from data"
Machine Learning, 1992; 9: 309-347.
(23) Aliferis CF, Miller RA "On the heuristic nature
of Medical Decision Support Systems" Report SMI-
94-05. 1994.

715


