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Abstract 

This paper examines the use of stochastic simulation of Bayesian belief networks as a method for 
computing the probabilities of values of variables. Specifically, it examines the use of a scheme 
described by Henrion, called logic sampling, and an extension to that scheme described by Pearl. The 
scheme devised by Pearl allows us to "clamp" any number of variables to given values and to conduct 
stochastic simulation on the resulting network. We have found that this algorithm, in certain networks, 
leads to much slower than expected convergence to the true posterior probability. This behavior is a 
result of the tendency for local areas in the graph to become fixed through many stochastic iterations. 
The length of this non-convergence can be made arbitrarily long by strengthening the dependency 
between two nodes. This paper describes the use of graph modification. By modifying a belief network 
through the use of pruning, arc reversal, and node reduction, it may be possible to convert the network to 
a form that is computationally more efficient for stochastic simulation. 

1 . Introduction 
The graphical representation of probabilistic relationships between events has been the subject of 
considerable research. In the field of artificial intelligence, numerous systems have used a directed graph 
to represent probabilistic relationships between events [Duda 76, Weiss 78]. A particular probabilistic 
graphical representation has been independently defined and explored by several researchers. In addition 
to being called belief networks [Pearl 86], they have been termed causa/ nets [Good 61 ], probabilistic 
cause-effect models [Rousseau 68], probabilistic causal networks [Cooper 84], and influence diagrams 
[Howard 84, Shachter 86]. 

Graphical representation of probabilistic relationships allows for the efficient representation of all the 
existing dependencies between variables. It is only necessary to consider the known dependencies 
among the variables in a domain, rather than assuming that all variables are dependent on all other 
variables. This leads to a significant decrease in the number of probabilities needed to define the 
outcome space, and improved computational efficiency. 

Although probabilistic graphical representations often allow efficient probabilistic inference, some inference 
problems involving particular topological classes of belief networks have been resistant to any efficient 
algorithmic solution [Pearl 86]. Multiply-connected networks, the most general class of such problems, 
belong to a class of difficult problems which have are resistant to any general, efficient solutions, and 
have been shown to belong to the class of NP-hard problems [Cooper 87]. All known exact algorithms 
for performing inference over multiply-connected belief networks are exponential in the size of the belief 
network. 

2. Stochastic Simulation of Bayesian Belief Networks 
Because exact solution of multiply connected networks is ekponentially complex in the worst cases, the 
development of stochastic simulation techniques to generate probabilities for variables in the network has 
been an area of considerable research interest. One such method, presented by Henrion [Henrion 86], is 
logic sampling. In a Bayesian belief network where variables are represented by nodes, simulation is 
begun with the nodes that have no parent nodes. A value is assigned to each such node based on its 
prior probability of occurrence. For example, if the probabilities for the values of a node are P(HIGH) = 

0.4, P(MEDIUM) = 0.4, and P(LOW) = 0.2, then a value for this node can be simulated by generating a 
random number between 0 and 1.0. For numbers between 0 and 0.4, the node is set to the value HIGH; 
for numbers between 0.4 and 0.8, the node is set to MEDIUM; and for numbers above 0.8, the node is set 
to LOW. The children of these nodes can be similarly assigned values based on the conditional 
probabilities relating them to their parents. This process is continued until all the nodes in the network 
have been simulated. 

After many simulations, the probability of a value for a given variable can be approximated by dividing the 
number of times a variable is assigned a given value by the number of simulations performed. The 
proximity of this approximation to the true probability of a value for a node can be determined by 
calculating the statistical variance. 
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2. 1 . Simulation of a Partially Instantiated Network 
The difficulty with this technique lies in attempting to perform stochastic simulation in a network where 
some of the variables have known values. For example, given a belief network that represents medical 
knowledge, with nodes representing diseases and symptoms, we might want to know the probability of a 
disease given the occurrence of certain symptoms. 

The technique of stochastic simulation described by Henrion does not allow us to fix the value of any 
nodes other than those that have no parent nodes. For this reason, it does not lend itself well to 
determining the probability of certain nodes given the occurrence of others. One solution is to perform 
the simulation multiple times until it produces an instance in which all variables with known values have 
been assigned those values. This Instance is then counted as one positive Instance of a simulation, and 
the process is repeated until enough positive instances are generated to be statistically significant. In 
those cases where the combination of findings are rare, an inordinate number of simulations may be 
needed to produce one positive instance. 

Pearl cites this deficiency as the impetus to develop another method for stochastic simulation. 

The simulation proceeds only forward in time, there is no way to account in advance for 
evidence known to have occurred until variables corresponding to these observations are 
brought into play and get sampled. If they match the observed data, the run is counted; 
otherwise. it must be· discarded. The result is that the scheme requires an excessive· number 
of simulation runs. In cases comprising large numbers of observations (e.g., 20), all but a 
small fraction of the simulations may be discarded, especially when a rare combination of data 
occurs. ( [Pearl 87]) 

Pearl's solution uses local numerical computation followed by logical sampling: 

A more desirable way of accounting for the evidence would be to permanently clamp the 
evidence variables to the values observed, then conduct stochastic simulation on the clamped 
network. 

The first step involves computing, for some variable X, its conditional distribution, given the 
states of all its neighbor variables. The second phase involves sampling the distribution 
computed in step 1 and instantiating X to the state selected by the sampling. The cycle then 
repeats itself by sequentially scanning through all the variables in the system. ( [Pearl 87]) 

The nodes are processed in arbitrary order, and can be initially set to any arbitrary value. Pearl describes 
an algorithm that initially sets all unknown variables to TRUE. 

2.2. Local Intransigence 

0 • 

Although the simulation technique described by Pearl seems to work well with Bayesian belief networks 
that have nodes that are not highly dependent on one other, a problem arises when simulating graphs that 
contain nodes that are strongly dependent on one another. This problem can be illustrated by an example. 
Given the belief network shown in Figure 2-1 , our task is to compute the posterior probability of all the 
nodes given that node E is irue.1 

P(a) = 0.01 

P(bl a)= 0.99 
P(bl.....a) = 0.01 

P(el b, d)= 1.0 
P( el-.b, d) = 1.0 
P(el b,-.d) = 1.0 
P(el-.b,-.d) = 0.0 

P(c) = 0.01 

Figure 2-1: A five-node belief network that exhibits local intransigence. 

Nodes A and C both have prior probabilities of TRUE of 0.01 . These nodes in turn are closely linked to 
nodes B and D. Node B is TRUE with probability 0.99 if node A is TRUE, and Node B is FALSE with 

1 Uppercase letters represent variables. arid lowercase letters represent Instantiated variables. For example, A might represent tho variable 
brain tumor, wllh a representing brain tumor • TRUE. and �a represenllng brain tumor • FALSE. 
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probability 0.99 if node A is FALSE. Nodes C and D are similarly dependent. Finally, node E is TRUE if 
either node B or D is TRUE, and FALSE only if both B and D are both FALSE. 

Using Pearl's algorithm, we initially set all the nodes to TRUE and proceed with stochastic simulation for 
each variable by local sampling of its neighbors. Because of the symmetry of the graph, the actual 
probability of TRUE for node A is equal to that or node C. Similarly, the actual probability of nodes 8 and 
D are equal. 

Consider that, after a number of simulations, a state is reached where nodes B and E are TRUE, and 
nodes C and D are FALSE. Stochastic simulation at node B will give a probability of 8 remaining true of2 

If node A= e: 

P(6!WB) = __ .:....:P(tli�P(gl.b.,.:Q). ____ : 
P(bla)P(elb I -.d) + P( -.bla)P(e!-.b I -.d) 

0.99*1 = 1 
0.99*1 + 0.01*0 

If node A = -.c: 

P(Bl'w'B) = 
0.01*1 = 1 

0.01 * 1 + 0.99*0 

That is, on average, the probability of B remaining TRUE is 1, Independent of the value of node A. When 
we stochastically simulate node C. we find the probability of it switching from FALSE to TRUE to be 

P(CJWc) = P(£)£!:!!1i.k.l:..--- = 0.0 1 *0.0 1 = 0.000 1 
P(c)P( -.die) + P( -.c)P( -.dJ-.c) 0.01*0.01 + .99*.99 

Thclt is. the probability of node C switching from FALSE to TRUE is 0.0001. Stochastic simulation of node 
D (assuming that C stays FALSE) shows that the probability of it becoming TRUE to be 

P(Df'l¥D) = --�P<a!�.f!�IU.IU�-

P(dl .. c)P(eld1b) + P( -.dJ-.c)P(el-.dlb) 
: _ ___,O;.o0'-'1'-* .... t __ : 0.0 1 

0.01*1 + 0.99*1 
That is, node D will stay FALSE 99 times out of 100, and turn TRUE 1 time out of 1 00. We can see that 
nodes B, C, and D have become relatively fixed, with a probability of changing of 1 in 100 or less, for any 

- given simulation. When node D does becomes TRUE, simulation at node A gives 

P(A!WA): ___E,(.D,}P(Ql.Q)....._ __ 

P(a)P(bla) + P( .. a)P(bf ... a) 
: __..;::0�. 0:;,.:1_*�0 .-.:. 9;.::;9 __ = 0.5 

0.01 *0.99 + 0.99*0.0 1 
and simulation at node B gives 

If node A= e: 

P(BIWB) = __ :..JoP(Ql�l.f..{ti�Q).__ __ 

P(ble)P(elb�d) + P(-.ble)P(el-.bld) 

If node A = -.e: 

= 

P(BIWB) = --:..JoP!��E��� = 
P(bJ .. a)P(elbld) + p( .. bJ-.e)P(el .. b,d) 

0.99*1 = 0.99 
0.99*1 + 0.01*1 

001*1 = 0.01 
0.01*1 + 0.99*1 

Since node A has a 50:50 probability of being TRUE, node 8 has a 50:50 chance of being TRUE (0.5•0.99 
+ 0.5•0.01 ). Assuming that A and B do become FALSE in this iteration, we can see from the symmetry of 
the graph that D becomes fixed at TRUE, and A and 8 are now relatively fixed at the value FALSE. Due to 
the strong dependency between nodes, local areas in the graph tend to become fixed through many 
iterations rather than to change randomly according to their true probabilities. 

The central reason for the development of this intransigence to change is illustrated by the simple network 
of two nodes in Figure 2-2. We can see that given the apriori probability of node A as 0.5, and given the 
symmetry of the probability matrix linking the two nodes, the posterior probability of both node A and 8 
should be 0.5. However,. once node A has been set to TRUE. the probability that node B is TRUE is 
0.999. and the probability of node A staying TRUE with the next iteration (assuming that B has been set to 
TRUE) is 0.999. Both nodes will remain TRUE for an average of about 500 iterations. Any sampling of 
less than 500 iterations might well give the average probability of node A and B being TRUE as 1. Once 

2w 
A 

represents tho stntc of all other variables In tho network except A. Thus P(ajW 
A

) denotes the probability of A • TRUE, given tho state 

of all tho other vnrinbles in the network. 
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P(A=a) = 0.5 P (b I a) = 0 . 999 
P(bl-a) = 0.001 

Figure 2-2-: · A two-node belief network that exhibits local intransigence 

either node A or 8 becomes FALSE (on the average, this will occur once in 500 iterations), the other 
node becomes FALSE with probability 0.999, and the two nodes again become relatively fixed. Instead of 
quick stochastic convergence to the true posterior probability, the calculated probability from the 
stochastic simulation oscillates toward the true value, with convergence at infinity. 

Contrary to Pearl's claim that "dozens of runs are necessary for achieving reasonable levels of accuracy" 
( [Pearl 87]). the number of runs that will be needed is strongly dependent on the probabilistic 
dependence between nodes In a causal graph. For the two-node example given here, convergence 
around the true probability of 0.5 occurs 500 times slower than it would if the simulation was done truly at 
random (for example, using Henrion's algorithm in this particular case). 

In the limit, when there is a node pair that is deterministically dependent, Pearl's simulation algorithm fails 
completely. Once the deterministically dependent node pair is fixed at a certain value, each node will fix 
the other at that value for all subsequent Iterations. 

The problem that occurs with deterministically dependent nodes can be overcome by considering a group 
of deterministic nodes as one node for the purposes of simulation. The influences on any of the nodes in 
the group can be treated as an influence on the group as a whole, and the value of all the nodes in the 
group are determined with one simulation. Although this overcomes the limiting case of deterministically 
dependent nodes, this does not obviate the problem, in the worst case, that occurs with nodes that are 
strongly, but not categorically, dependent. 

2.3. Number of Simulations Required in a Two-node Network 
For a two-node network, the number or simulations required for convergence or a calculated probability to 
within a specified tolerance or the true probability increases exponentially as a function of the dependency 
between two nodes. reaching infinity a_t the limit where nodes are deterministically dependent. This 
relationship is seen in Figure 2-3. 
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_Figure �-3: The Simulation-multiple as a 
function of strength or dependence between two nodes. 

The Simulation-multiple (SM) on the vertical axis is the multiple of the simulations that would be needed if 
the simulations were truly random. In other words, if 1 00 random simulations would be needed to achieve 
the necessary level of accuracy, and the Simuiation-multiple is 40, then, using Pearl's algorithm, 4000 
( 100 times 40) simulations would be needed to achieve this same level of accuracy. 

The horizontal axis is the dependence (D) between two nodes. The dependence Is defined by the 
equation 
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D = �Min[P;· 1-p1] over all the pi probabilities that link the two nodes. 

A dependence value of 1 is the equivalent of random simulation. The dependence is highly influenced b y  
the weakest probability that links the two nodes; for any two-node network, the Simulation-multiple is 
equal to the inverse of the dependence ( 1 /D). 
The nodes shown in Figure 2-2 have a dependence value of 0.002 (0.001 plus 0.001 ), and would require 
500 times the number of simulations that would be needed if the simulations were done totally at random. 
In Figure 2-4, the weakest probability in the link matrix is P(bl-a) = 0.5. In this case, D = 0.501 (0.5 plus 
0.001). and SM 2. 

P(a) = 0.5 P(bl a) 
p (bi--a) 

0.999 
0.50 

Figure 2-4: A well-behaved two-node belief network. 

2.4. Extension of Results to a Multiply-Connected Network 
In an analogous way, these results can be extended to a more general belief network. The worst case 
local intransigence for any node can be calculated by the formula 

D = ETI Min[pi, 1-pi] over all the pi probabilities in the Markov blanket for that node3. 

The strength of this dependence. and thus the severity of local intransigence, can thus be a product of 
the dependences in multiple link matrices in a given Markov blanket. 

3. Modification of the Bayesian Belief Network 
The use of Pearl's algorithm for the network depicted in Figure 2-1 results in fixation of node values for 
100 simulations on average. That is, the convergence to the true value occurs 100 times more slowly 
than would be expected if the simulation was truly random. The use of Henrion's logic sampling algorithm, 
on the other hand, results in one usable sample for approximately every 25 simulations. The weighted 
sampling technique described by Henrion [Henrion 86] would yield many more usable samples; but in 
general it is, in the worst case, still exponential in the number of observed variables. For n observed 
binary variables, 1 out of 2n simulations would be usable. 

Methods to manipulate influence diagrams have been discussed extensively by Shachter [Shachter 
86, Shachter 87] in the context of influence diagram solution. One of the major problems in finding an 
exact solution to an influence diagram is that the time complexity to solution may be 0(2N), where N is 
the number of nodes in the graph. By applying the techniques described in [Shachter 87] to local areas 
in the belief network it may be possible to transform the belief network into one that will generate 
stochastic sample instances more efficiently. The techniques of graph pruning, arc reversal, and node 
reduction, in the context of stochastic simulation, are discussed in the following sections. 

3. 1. Graph Pruning 
For a given problem it may be possible to prune the graph to decrease the number of nodes that need to 
be simulated for that particular problem. If J is the set of nodes for which values are known, and K is the 
set of nodes for which probabilities are sought, then any node x in the belief network can be removed 
without affecting the solution, if a directed path cannot be drawn from node x to any of the nodes in the 
set J ,_. K (see [Shachter 87] for formal proof). For example, Figure 3-1a shows an example where n o  
pruning can b e  done, and the entire graph must b e  used i n  stochastic simulation. I n  Figure 3-1 b. the 
nodes in set A can be pruned away as no directed path exists from any or the nodes in set A to any of 
the nodes in J or K. In Figure 3-1 c, both the nodes in set A and 8 can be pruned, and stochastic 
simulation need only be done on the remaining graph. 

3.2. Arc Reversal 
For any given belief network, it is possible to reverse arcs that are pointing into known conditioning 
nodes, until the only arcs pointing into known nodes are arcs from other known nodes. The advantage of 
such a network is that the nodes with known values can now be fixed at those values, and Henrion's 

3 A Markov blanket Is the union of three type of neighbors: direct parents. direct successors and all direct parents of tho latter (sec 

[Pearl 87 f for a more complete discussion). 
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Figure 3-1: Examples of graph pruning. 

algorithm can be applied. Because each simulated Instance will have the appropriate values tor nodes 
with known values, each simulation will produce an appropriate sample Instance. 

The process of arc-reversal between twci nodes A and B Involves the calculation of the new conditional 
dependencies between node B and the immediate predecessors (if any) of node A, as well as the new 
conditional . dependencies between node A and . the immediate predecessors of node B. These 
dependencies are represented by new arcs where necessary (see [Shachter 87] for details). Since the 
complexity of arc-reversal is dependent on th(1 number of predecessors of the nodes at each end of the 
arc, the. applicability· of this methodology will depend on the number of total predecessors (weak 
predecessors in [Shachter 87]) of the two nodes at the ends of the arc being reversed. For this reason, 
certain. graphs will be more amenable to this technique than others, and for any given graph, it may be 
beneficial to reverse some arcs and not others. 

in add.ition, the optimal strategy for .a given problem will depend on the number of simulations that are 
necessary to achieve the specified degree of accuracy. The use of arc reversal is analogous to the 
!'!COnomlc ·concept of fixed' costs (the computational cost of arc-reversal) that will reduce future variable 
costs (th� decrease in the computational cost needed for each usable simulation). If only a limited 
number of simulations are needed, the optimal strategy might be logic sampling of the original network; .if 
the number of samples needed is greater than a certain threshold, the use of arc reversal will become 
Increasingly beneficial. Figure 3-2a shows a network with four known conditioning nodes (set J), and one 
node for which we wish to determine the probability (set K). If strong dependencies exist between 
nodes, the use of both Pearl's and Henrion's algorithms may be Inefficient. Even the use of Henrion's 
weighted sampling scheme, where probabilities between node values are set to 0.5 and appropriate 
adjustments are made to the weight of the node value, will result in only 1 usable sample for every 16 
simulations (0.54). This is because the simulation begins with the instantiation of nodes A and B first. 
When. the nodes in the set J are instantiated, only 1 sample out of 16 will have been instantiated to the 
appropriate values necessary f�r the simulation to be included as a positive instance. 

By the use of arc reversal, the network can be modified to that seen in Figure 3-2b. Nodes A and B can 
now be pruMd (as described in the previous section), and the network in Figure 3-2c is the result. From 
this network, the known nodes can be set· to their known values, and each simulation will result in a 
usable Instance. 

3.3. Node Reduction 
By removing nodes that have arcs with highly dependent values through the method of node reduction 
, [Shachter 87], it may be possible to reduce the dependency between nodes to decrease the local 
intransigence that can be seen In the use of Pearl's algorithm. For example, given the three nodes in 
Figure 3-3a, the use of Pearl's algorithm will result in convergence that Is 500 times slower than a 
completely random sampling. By the process of node reduction, node B can be removed, and the 
conditional probabilities propagated into node C. The resulting conditional probabilities for node C are 
shown In Figure 3-3b. The. strong dependence that existed between nodes B and C, which would have 
resulted in local intransigence, has now been eliminated, resulting In a much more random sampling when 
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Figure 3-2: An example or the use or arc reversal to Improve Henrlon's 
algorithm for stochastic simulation In a belief network. 

�A 1"::\8 J't----.iCC \ �· '\.::) � 
P(R•a) • 0.1 ?(bl a) • J.S 

PO:I-<.�> • a.s 
Pre! b) • 0.999 
?'cl-<.�1 • O.QCl P(ci o) • 0.5 

P(ci�oi • 0.5 P(A•a) • 0. I 

l':i.g.r• 3-3h 

Figure 3-3: The use of node reduction to improve Pearl's algorithm for the 
stochastic simulation of a Bayesian belief network. 

using Pearl's algorithm. 

4. Summary 
We have examined two previously described methods for performing stochastic simulation. We found that 
a method developed by Pearl had previously undescribed problems, and in certain cases, required a much 
larger number of simulations than expected to obtain convergence of the calculated probability. A method 
described by Henrlon has similar shortcomings in that numerous simulations are needed to generate one 
appropriate sample instance. In this paper we explore the use of network-manipulation techniques. to 
modify the Bayesian belief network Into. a for;m that· will more efficiently generate appropriate cases with 
stochastic simulation. Specifically, we discuss three techniques: Graph pruning, arc-reversal, and node 
reduction. Graph pruning has wide applicability to. all methods of solution. Arc-reversal results In 
significant improvement, in some cases, using Henrion's technique. The use of node reduction can in 
some cases yield significant benefits for Pearl's algorithm. The delineation of the trade-offs and criteria for 
the applicability of each method Is the focus of current research. 
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