
TECHNICAL ADVANCE Open Access

Spatial cluster detection using dynamic
programming
Yuriy Sverchkov1*, Xia Jiang2 and Gregory F Cooper1,2

Abstract

Background: The task of spatial cluster detection involves finding spatial regions where some property deviates
from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region
where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as
biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such
applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are
interested in finding the most accurate characterization of the cluster.

Methods: We present a general dynamic programming algorithm for grid-based spatial cluster detection. The
algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial
distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute
the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context
of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on
emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the
algorithm, and the algorithm is evaluated using the model and semi-synthetic test data.

Results: When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates
under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to
smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of
individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm
performs on-par with baseline methods in the task of Bayesian model averaging.

Conclusions: We conclude that the dynamic programming algorithm performs on-par with other available
methods for spatial cluster detection and point to its low computational cost and extendability as advantages in
favor of further research and use of the algorithm.

Background
The task of spatial cluster detection involves finding
spatial regions where some property deviates from the
norm or the expected value. In a probabilistic setting
this task can be expressed as finding a region where
some event is significantly more likely than usual.
Spatial cluster detection is of interest in fields such as
biosurveillance, mining of astronomical data, military
surveillance [1], and analysis of fMRI images [2]. A well-
known early method for spatial cluster detection is the
spatial scan statistic developed by Kulldorff [3]. This
approach is formulated as a frequentist method for

cluster detection and can be summarized as the process
of maximizing the likelihood ratio statistic

F(S) =
P(Data|H1(S))

P(Data|H0)
(1)

for each subregion of interest S and computing the sta-
tistical significance of the statistic using randomization
testing. Here H0 represents the null hypothesis that no
clusters (e.g., disease outbreak regions) are present, and
H1(S) represents the alternative hypothesis that subregion
S is the location of a cluster. While the original paper [3]
is restricted to scanning for a single circular cluster, the
method has been extended to ovals and other shapes as
well as to space-time statistics in later works [4-10].

* Correspondence: yus24@pitt.edu
1Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA
Full list of author information is available at the end of the article

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

© 2012 Sverchkov et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:yus24@pitt.edu
http://creativecommons.org/licenses/by/2.0

One of the main drawbacks of Kulldroff’s approach is
the computational expense associated with the randomi-
zation testing required to calculate statistical signifi-
cance. Neill and Moore [11] address this problem by
developing a method of cleverly reducing the number of
different possible subregions considered. While the cost
of randomization testing of each hypothesis stays the
same, reducing the number of hypotheses to consider
reduces the overall computational cost significantly.
Their method makes use of an overlap-kd tree data
structure to apply bounds on F(S) to prune the search.
This method was later extended to multiple dimensions
in [12].
Another approach taken in the literature is the devel-

opment of Bayesian variants on Kulldroff’s statistic
[13,14]. The Bayesian approach replaces the likelihood
ratio with a posterior probability

P(H1(S)|Data) =
P(H1(S))P(Data|H1(S))

P(Data)
(2)

The use of a Bayesian approach eliminates the need for
significance testing since the purpose of significance test-
ing is to measure how likely the alternative hypothesis is
given the data (more precisely, it tells us how likely we are
to obtain a likelihood ratio that is at least as extreme
under the null hypothesis). Since the posterior probability
gives us the probability of the alternative hypothesis given
the data directly, the need for time-consuming randomiza-
tion testing is eliminated. An additional benefit of the
Bayesian approach is that the introduction of prior prob-
abilities enables these methods to incorporate prior infor-
mation to potentially enhance detection [13,15]. In some
cases, however, the task of selecting useful priors can
prove challenging.
The methods mentioned above so far are “count-based”

methods which detect clusters based on aggregate counts
of data such as the total number of ED visits in a given
ZIP code on a given day, for example. An alternative
approach is “agent-based,” where each individual in the
population is modeled. This is the approach taken by
Cooper et al. [16] in developing a disease surveillance sys-
tem called PANDA. The work of Jiang et al. [17] extends
PANDA by incorporating spatial information, resulting in
an agent-based Bayesian scan statistic. The disease model
used in our work is also agent-based and can be viewed as
a simplified version of the model used by PANDA. It
should be noted that unlike the disease model that we use
to illustrate this algorithm, PANDA and its extensions
model multiple diseases and are designed to differentiate
between outbreaks of the different diseases modeled.
A common way of articulating the spatial scan problem

is one that considers the surveillance region to be a rectan-
gular R × C grid of cells. The methods that use this

approach, among which are [7,11-13,17,18], are sometimes
referred to as grid-based methods. With this representa-
tion every subset of cells is a possible cluster S, or in the
context of outbreak detection, a potential outbreak region.
Most grid-based methods have mainly focused on the

detection of single rectangular clusters aligned with the
grid.
However, since an outbreak may take other shapes,

or may occur in multiple disconnected regions of the
surveillance grid, it is of interest to develop algorithms
that are able to detect more general subregions. Jiang
and Cooper [18] developed a recursive algorithm that
operates by detecting the most likely rectangular sub-
region that contains a cluster and refines it through a
combination of unions with additional rectangular sub-
regions as well as refined scanning within each rectan-
gle. While this approach improves the detection of
non-rectangular subregions it comes at the cost of
repeatedly scanning the same region multiple times as
the recursion occurs.
Complementary to these approaches are methods for

calculating the posterior probability of the presence of
clusters anywhere in the region using Bayesian model
averaging, such as the work of Shen et al. [19]. They pre-
sent a method that is sensitive to the presence of irregu-
larly shaped or sparsely distributed outbreaks but does not
favor spatially grouped clusters since individual cells are
considered independently.
The task of detecting irregularly shaped clusters has

been addressed by distance-based methods which when,
given a set of points in (possibly many-dimensional)
space find clusters of elevated or uniform density [20,21].
While these methods may be considered more suitable
than grid-based methods for certain domains, they are
not addressed in the current paper, which aims to build
on previous grid-based methods.
We implement, develop, and test an algorithm for find-

ing multiple rectangular clusters on a grid that employs
dynamic programming in order to consider an exponential
number of hypotheses in polynomial time. The algorithm
finds a hypothesis H1(Si) which is most probable in the
Bayesian sense given the data.
We also present an adaptation of the algorithm that

averages over all considered hypotheses H1(Si) to obtain
a posterior probability for the presence of a cluster any-
where in the surveillance region.

Methods
Below, we describe and investigate an algorithm for the
detection of multiple rectangular spatial clusters. The
algorithm is applied to the simple outbreak model
described next. While we restrict the analysis to this par-
ticular model, the algorithm is general and can be applied
to any underlying model that can provide a likelihood

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 2 of 21

function such as the function lik described in Equation
(8) below. We then describe the scanning algorithm itself.

Outbreak model
We define the disease model as a Bayesian Network
(BN) model, which is a type of graphical model for
representing joint probability distributions; it is particu-
larly suited for modeling conditional independence
between variables. In the graphical representation each
node represents a random variable and the distribution
of each variable is defined as a conditional distribution
that is conditioned on the variables from which it
receives incoming edges, or as a prior probability distri-
bution if the node has no incoming edges [22]. An
extension to the BN representation employs plates when
subgraphs of the network are replicated many times. In
the graphical plate representation, plates are shown as
boxes, the nodes and edges that are on each plate are
replicated the number of times shown on the plate,
replicated nodes are indexed, and edges that cross plate
boundaries are also replicated [23]. In particular, in
Figure 1 we have m copies of nodes Li, Di, and Ii. We
further extend the notation by allowing the number of
replications to depend on random variables, as repre-
sented by the dotted arrow from SUB to the plate
indexed by j. Here, the values that SUB takes are
ordered sets and the number of replications n is defined
to equal the size of the set |SUB|. The model is
explained in further detail below, where we first describe
the model and the meanings of the variables in general
terms, and then provide the particular parameterization
that we used to instantiate the variables in our tests.
Model definition and likelihood function
We employ an agent-based model where each cell of the
R × C grid contains a number of individuals. The entire
population, made up of m individuals, is modeled.

Figure 1 shows a BN plate representation of the model
that governs the state of each individual: SUB = (rect1, ...,
rectn) represents the (possibly disconnected) hypothe-
sized location of an ongoing outbreak as an ordered col-
lection of n non-intersecting rectangles, OBj are binary
variables each of which determines whether an outbreak
is present in a given rectangle indexed by j, and Fj Î [0,1]
represent frequencies of outbreak disease cases per day,
each corresponding to an outbreak rectangle indexed by
j. We will use the vector notation shorthand F = (F1, ...,
Fn) where convenient. K Î [0,1] represents the propor-
tion of the population that visits the ED per day in the
absence of an outbreak, Di represents the disease state of
a given individual, Ii represents the observable evidence
about the individual, Li Î 1, ..., R} × {1, ..., C} represents
the grid cell in which the individual is located, and Fi is
the manifested outbreak frequency, which is the fre-
quency of the outbreak disease per day in the individual’s
grid cell. The dotted arrow pointing from SUB to the
plate containing OBj and Fj is meant to make explicit
that the number of indexes j, and hence copies of these
nodes, is dependent on the size of SUB.
The random variable Fi, which represents the out-

break frequency manifested in individual i’s grid cell, is
not used to capture uncertainty as random variables
normally do, but rather plays the role of a logic switch.
It is defined as follows:

If ∃rectj ∈ SUB : Li ∈ rectj, then P(�i = Fj|Li, SUB, F) = 1(3)

If �rectj ∈ SUB : Li ∈ rectj, then P(�i = 0|Li, SUB, F) = 1 (4)

Note that this is a well-defined probability distribution
only under the constraint that the members of SUB do
not intersect. We could alternatively merge this logic
into the definition of Di, however, this decomposition of
the model yields a clearer presentation.
The presence of OBj as separate from Fj serves a simi-

lar logical purpose. The distribution of OBj will depend
on the hypothesis space and is left for the model instan-
tiation section. The distribution of Fj is defined below in
terms of OBj and a “template” frequency distribution F
that is also a detail of model instantiation.

P(Fj = 0|OBj = false) = 1 (5)

(Fj|OBj = true) ∼ F (6)

Where (Fj|OBj = true) ~ F indicates that Fj is i.i.d.
according to the distribution of F when OBj = true.
The primary purpose of the model is to enable us to

calculate the likelihood of the presence of an outbreak
in a given subregion, where a subregion is taken to be
any set of cells. Throughout this paper, we will often

Figure 1 Simple disease model. A plate representation of the
simplified entity-based model used.

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 3 of 21

also refer to rectangular subregions, or simply rectan-
gles, to make explicit instances where we require the
sets of cells to form multi-cell rectangles on the grid.
We will also introduce below the concept of tilings and
tiles. In the context of this paper, tiles are always rectan-
gular subregions.
The data likelihood of the presence or absence of an

outbreak in a subregion is given by the likelihood of the
data about individuals located within the subregion’s
limits supporting a uniform outbreak of some frequency
f from the frequency distribution F or the absence of an
outbreak, respectively. In order to arrive at the likeli-
hood of an outbreak, consider the case of calculating
the likelihood of a particular observation Ii given a man-
ifested outbreak frequency Fi and a particular K:

P(Ii|�i) =
∑
Di

P(Di|�i, K)P(Ii|Di) (7)

Note that the likelihood for the individual given the
absence of an outbreak can be obtained from the expres-
sion above by letting Fi = 0. To obtain the likelihood of an
outbreak state (not just a particular outbreak frequency) in
a subregion of the grid S, we obtain a likelihood for each
frequency by taking the product over all per-person likeli-
hoods and take an expectation over those likelihoods to
get the expected likelihood of the desired outbreak state.
Formally, we will use the variable x to represent the out-
break state. Let x = 0 indicate that a subregion S contains
no outbreak, x = 1 indicate that S is an outbreak subre-
gion, and let the notation EK,F represent the expectation
over the random variables K and F. Then the likelihood
for any set of grid cells S under an outbreak state x is
given by:

lik(x, S) = EK,F

∏
i|Li∈S

P(Ii|�i = F · x) = EK,F

∏
i|Li∈S

∑
Di

P(Di|�i = x · F, K)P(Ii|Di) (8)

Here we are simplifying some of the calculation by cap-
turing the logic behind determining the manifested fre-
quency Fi. Particularly, we are using the fact that the
manifested outbreak frequency in a non-outbreak cell is 0,
which is the end result of multiplying x by F when x = 0
to indicate the absence of an outbreak.
Model instantiation
Three disease states are modeled: noED, flu, and other,
which respectively represent the events that an individual
did not come in to the ED, came in to the ED due to influ-
enza, or came to the ED for some other reason. The prob-
ability that an individual i comes in to the ED due to
influenza is equal to the manifested outbreak frequency
Fi. Those individuals that do not come in to the ED due
to influenza have a probability K of coming in to the ED
for some other reason (e.g. due to acute appendicitis).
Under this model the distribution of Di is defined by:

P(Di|�i, K) =

⎧⎨
⎩

�i

(1 − �i)K
(1 − �i)(1 − K)

for Di = flu
for Di = other
for Di = noED

(9)

In the initial stages of the investigation K was treated
as a constant value, i.e., a distribution with probability
mass 1 at K = 3.904 × 10-4 which is an estimate that
comes from data obtained for ED visits in Allegheny
County, Pennsylvania in May of the years 2003-2005.
We also consider a model where K is a discrete distribu-
tion with positive mass at multiple values estimated
from that data. However, due to practical limitations
mentioned in our discussion of additional tests below,
most tests were performed with the model that uses a
constant K.
To estimate the distribution F that ultimately governs

the distributions of outbreak frequencies in the model,
we base it on a distribution previously used for a similar,
more complex disease model in [17]. We adjusted the
distribution to reflect a uniform density over the interval
(0, 6.50 × 10-4].
Four evidence states are modeled for the evidence

variable Ii, in the form of chief complaints, taking the
values cough, fever, other, and missing. Ii is governed by
the following distribution:

P(Ii = cough|Di = flu) = 0.335 (10)

P(Ii = fever|Di = flu) = 0.4 (11)

P(Ii = other|Di = flu) = 0.265 (12)

P(Ii = cough|Di = other) = 0.025 (13)

P(Ii = fever|Di = other) = 0.036 (14)

P(Ii = other|Di = other) = 0.939 (15)

P(Ii = missing|Di �= noED) = 0 (16)

P(Ii = missing|Di = noED) = 1 (17)

A value of “missing” indicates that individual i did not
come in to the ED. The values that Ii takes for indivi-
duals that did come in to the ED (either due to influ-
enza or other reasons) are governed by a probability
distribution that is based on expert assessments that are
informed by the medical literature.
The proper choice of prior distributions is closely tied

to the proper choice of the prior probability of an influ-
enza outbreak being present anywhere in the region. For

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 4 of 21

that purpose, we take the value P(outbreak) = 0.04 from
previous work [17,24]. This value will appear at multiple
points throughout this paper.

The distributions of the subregion, outbreak, and
frequency variables
The distributions of SUB, OBj, and Fj are inherently tied
together, as made explicit in the BN structure, and since
the space of SUB is the space of considered outbreak
subregions, it is different for different algorithms that
consider different hypothesis spaces. This section
describes the distributions of SUB and Fj for the two
baseline methods we use in our evaluation and for the
dynamic programming algorithm.
The single-rectangle case
The simplest case is the case where only single-rectangle
hypotheses are considered. Under that model, SUB can
represent any of the R(R + 1)C(C + 1)/4 rectangles that
can be placed on the R × C grid, each representing a
hypothesis of an outbreak within the rectangle and no out-
break outside the rectangle. SUB can take an additional
value to represent a non-outbreak hypothesis. Since we
defined SUB to be an ordered set of rectangles, formally,
each single-rectangle hypothesis is represented as a single-
element set, and the non-outbreak hypothesis is repre-
sented by the empty set ∅. The associated prior distribu-
tion of SUB is:

P(SUB = ∅) = 1 − P(outbreak) (18)

P(SUB = (S)) =
4

R(R + 1)C(C + 1)
P(outbreak) For any rectangle S (19)

Note that when SUB is the empty set, OBj and Fj do not
need to appear in the BN as they play no role in the distri-
bution of Fi and the rest of the BN. In the case when SUB
represents a rectangle, it is a single-element set, and there
is only one j, namely j = 1. OB1 is then taken to be true
and consequently F1 ~ F.
The multi-rectangle case
The case that corresponds to the greedy algorithm to
which we will be comparing our algorithm is the case
where each element sub of the hypothesis space is an
ordered set of non-overlapping rectangles. Call this
hypothesis space SUB , that is, SUB is a set of values
that the random variable SUB can take, where each value
sub is an ordered set of rectangles. Here the prior distribu-
tion of SUB is governed by a structure prior parameter q
as follows:

P(SUB = (rect1, . . . , rectn)) =
qn

ZM
For n > 0 (20)

P(SUB = ∅) =
α

ZM
(21)

The parameter a can be used to adjust the prior prob-
ability of the absence of an outbreak, while the para-
meter q controls the relative prior probability of having
a more complex outbreak hypothesis (that is, a hypoth-
esis with more hypothesized rectangles) vs. a less com-
plex outbreak hypothesis. ZM is a normalization
constant described by:

ZM = α +
∑

sub∈SUB\{∅}
q|sub|

(22)

Where \ is the set difference operator and |sub|
denotes the size of the ordered set sub (a particular
value that SUB can take) in terms of the number of rec-
tangles in the set.
Since in our experiments this model is used only in

the context of selecting the most likely outbreak hypoth-
esis, there is no need to specify a or calculate ZM. The
value q = P(outbreak) × 4/(R(R + 1)C(C + 1)) was used
for the structure prior parameter.
Since in this model every rectangle that appears in

SUB is an outbreak rectangle, we again have OBj = true
for all j and consequently Fj ~ F are i.i.d., one per
rectangle.
The tiling case
The hypothesis space used by the dynamic program-
ming algorithm, the centerpiece of this work, is a space
of tilings (discussed in more detail in the next section).
To express this hypothesis space, each value of SUB is a
tiling: a collection of non-overlapping rectangles such
that every cell of the grid is covered by exactly one of
these rectangles. In order to represent an outbreak
hypothesis as a tiling we use the variable OBj to indicate
whether a tile is hypothesized to represent an outbreak
or an outbreak-free region. In the tiling context the dis-
tribution over the variables SUB and OBj is defined as
follows:

P(SUB) =
1
ZT

For every tiling SUB (23)

P(OBj = true|SUB) = p For every tiling SUB (24)

P(OBj = false|SUB) = 1 − p For every tiling SUB (25)

Here ZT is a normalization constant and p is a struc-
ture prior representing the conditional probability that
the rectangle rectj Î sub (where sub is a value in the
range of the r.v. SUB) is an outbreak rectangle given
that it is indeed a rectangle of the hypothesis. The prior
distribution of SUB is taken to be uniform since we

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 5 of 21

assume that we have no information that leads us to
favor one tiling over another. The calculation of ZT is
left for a later section that also discusses the relationship
between p and the prior probability of an outbreak, as
well as the process which was used to select the value of
p that corresponds to the prior probability of a flu out-
break equaling P(outbreak) = 0.04.
In the text that follows, we will refer to the choice of a

set of tiles sub and the associated assignment of the
variables OB1, ..., OBn as a colored tiling, or when it is
clear from the context we may refer to colored tilings
simply as tilings. We also discuss the particular space of
colored tilings that the dynamic programming algorithm
considers in more depth, since this space is a subset of
the space of all possible tilings. The possibility of using
a structure prior P(OBj = true|SUB) that is not identical
for every rectangle in every tiling SUB is also discussed.

Tilings
The algorithm presented in this paper searches a space
of hypotheses where each hypothesis is a possible tiling
of the surveillance grid by non-outbreak and outbreak
rectangles. For example, Figure 2 shows the six possible
tilings of a 1 × 2 grid.
Note that we make a distinction between two adjacent

outbreak tiles (e.g., Hypothesis 5) and one large out-
break tile (e.g., Hypothesis 6). The rationale for this is
that each tile represents a region over which the out-
break frequency is uniform. In the 1 × 2 example, we
would expect Hypothesis 5 to be more likely than
Hypothesis 6 in a case where, for example, 5% of the
population in the left cell has the outbreak disease and
10% of the population in the right cell has the outbreak

disease. Conversely, if the outbreak disease cases are dis-
tributed uniformly among the two cells we would expect
Hypothesis 6 to be more likely.
Computing tiling scores
In computing tiling scores, we assume conditional inde-
pendence among separate tiles given a particular tiling,
even if the tiles are adjacent. As an alternative, modeling
dependencies could help in the cluster detection task to
adjust the prior probability of the presence of a disease in
one cluster when it is near another cluster. A model that
takes such effects into account could achieve improved
outbreak detection, especially when modeling infectious
diseases like influenza where being near an infected indi-
vidual increases the probability of transmission of an
infection. Modeling such dependencies incorrectly, how-
ever, could also hinder detection. In this sense, our
choice not to model spatial dependencies can be seen as
a cautious approach to avoid making informative spatial
dependence assumptions that may be incorrect and
therefore deleterious to outbreak detection performance.
Even so, our basic choice of priors does favor finding a
smaller number of tiles for a region, which often leads to
spatially grouping neighboring disease cases.
The independence assumptions we make enable the dra-

matic computational efficiency that we gain by using
dynamic programming, as explained in detail below.
Assuming conditional independence does not constrain
the outbreak hypotheses that can be identified in principle
from the data, if given enough data. Although valid
assumptions of conditional dependence may yield a more
accurate performance in light of available data, represent-
ing and reasoning with conditional dependence carries an
enormous computational burden that we avoid. It may be
possible to extend our method to take spatial dependencies
into account and still maintain computational tractability.
We leave this issue as an open problem for future research.
Conditional independence allows us to define the

score of a given tiling to be the product of the scores of
the individual tiles it is composed of. The score of each
individual tile is given by the data likelihood of that tile,
as defined by Equation (8), multiplied by the prior prob-
ability of the tile’s outbreak state. That is, the score of
the hypothesis that tile T contains an outbreak is p ⋅ lik
(1, T) and the score of the hypothesis that it does not
contain an outbreak is (1 - p) ⋅ lik(0, T).
To illustrate the effects of multiplying the likelihood by a

prior, suppose that in the 1 × 2 example in Figure 2 the
likelihoods of the tiles in Hypothesis 5 and Hypothesis 6
were the same, both equal to some value l. In that case the
score of Hypothesis 6, which contains only one tile, would
be lp while the score of Hypothesis 5, which contains two
tiles, would have the lower value of lp2. Hence, all other
things being equal, our prior favors tilings composed of
fewer tiles.

Figure 2 1 by 2 colored tilings The 6 possible tilings of a 1 × 2
grid. White tiles represent hypothesized non-outbreak regions and
gray tiles represent hypothesized outbreak regions.

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 6 of 21

A multiplicative prior for each tile is used to allow the
decomposition of a tiling score into a product of indivi-
dual tile scores. While we use the same prior for all tiles,
it is possible to assign a different prior probability for
each tile based on its location and size while maintaining
the multiplicative property that the score of a tiling is a
product of tile scored. Also note that while the priors for
each tile add up to 1, the priors for tilings, which are a
product of tile priors, are not normalized. We discuss the
details of normalization when we present Bayesian model
averaging, since it is especially relevant in that context.
The process of selecting the value of the structure prior p
and its relationship to the prior probability that an out-
break is present anywhere in the region (the “global
prior”) is also discussed alongside normalization. Below,
let us denote the score of an outbreak state x for a tile T
that spans rows RL through RH and columns CL through
CH by

score(x, RL, RH, CL, CH) = score(x, T) = px(1 − p)1−xlik(x, T) (26)

Dynamic programming algorithm
It is clear that the space of possible outbreak hypotheses
is exponential in the size of the grid, since there are
2R×C possible outbreak subregions and an even larger
number of possible tilings. In order to efficiently search
the space of hypotheses, a dynamic programming algo-
rithm is presented for finding the most likely tiling that
exploits the fact that the tiling of a large grid can be
decomposed into multiple tilings of smaller grids.
To present the operation of the algorithm, we will first

describe the algorithm for finding the highest-scoring til-
ing of a 1 × C horizontal strip in general terms, then walk
through an example of tiling the top row of a 5 × 5 grid
illustrated in Figure 3. Next we describe how the algo-
rithm is extended to two dimensions with the aid of the
example on a 5 × 5 grid illustrated in Figure 4, and finally
we provide a formal definition of the algorithm as
pseudocode.
In order to find the best (highest scoring) tiling of a 1 ×

C strip, we first number the cells consecutively from 1 to
C. Let TCL−1 denote the best tiling of cells numbered CL -
1 (inclusive) and lower. When CL = 1, TCL−1 (or equiva-
lently T0) is a tiling of an empty set of cells. There is only
one such possible tiling, the empty tiling, and we assign it
a score of 1 because it is the multiplicative identity. Having
laid out this grounding we can describe the operation of
the algorithm iteratively: Given that we have found the
best tiling TCL−1 for each CL such that 1 ≤ CL ≤ CH, we
can determine the best tiling TCH for cells 1, ..., CH as fol-
lows: For each CL ≤ CH, determine whether the tile TCLCH

that spans the cells CL, ..., CH (inclusive) should be an out-
break tile or a non-outbreak tile to maximize its score,

then multiply the score by the score of the best tiling
TCL−1 . This product is the score of the tiling obtained by
appending tile TCLCH to tiling TCL−1 , and this resulting til-
ing is then a candidate for tiling TCH . Then out of all the
candidates obtained for the different values of CL in 1, ...,
CH, the highest scoring one is guaranteed to be the highest
scoring tiling of the range of cells 1, ..., CH. Thus we obtain
the best tiling for the entire strip by iterating over values of
CH from 1 to C.
Figure 3 illustrates a single iteration of this algorithm

when looking for the best scoring tiling of the first (top)
row of a 5 × 5 grid. The cells are numbered left to right.
Particularly, the figure shows us the iteration that obtains
the best tiling T4 of the first (leftmost) four cells, thus,
throughout this iteration, CH = 4. At this point, we have
already obtained the best tilings of the lower ranges of
cells T0, . . . ,T3 in previous iterations. These are shown in
Figure 3(a). Figure 3(b) shows that for each value of CL

from 1 through CH = 4, we consider whether an outbreak
or a non-outbreak tile TCLCH scores higher. The best scor-
ing tile from each pair is indicated. In Figure 3(c), we
show each of those highest scoring tiles TCLCH combined
with the corresponding best tiling TCL−1 from Figure 3(a).
In our example suppose that of those resulting tilings the
bottom one (obtained with CL = 4) resulted in the highest
score. This tiling is then the best tiling T4 of cells 1...4,
and it is cached for use in the next iteration.
This method is extended to the two-dimensional case by

performing the same iteration over rows, where each row
takes the role analogous to a cell in the one-dimensional
version discussed above. For example, Figure 4 is analo-
gous to Figure 3(c) in that we know the best tiling for the
rectangular region that spans rows 1 through RL - 1, and
we are adding the column-wise tiling of the rectangular
region spanning rows RL through RH to get a candidate til-
ing of the entire area above the line labeled RH. The main
difference is that, where in Figure 3(b) we were consider-
ing whether to add an outbreak tile or a non-outbreak tile,
in Figure 4 we are simply adding the best column-wise til-
ing of the range of rows between RL and RH, as is illu-
strated by the fact that the best tiling of row 1 comes from
an extension of the example in Figure 3.
For readability purposes, a version of the algorithm

that only computes the score of the best tiling is pre-
sented in Figure 5. A version of the algorithm that
keeps track of the actual tiling is detailed in Additional
file 1: Appendix A.
The algorithm takes Θ(R2 ⋅ C2) iterations. In the gen-

eral case, the computational cost of each iteration
depends on the likelihood model used. In our particular
implementation we compute a table of likelihoods for all
possible grid rectangles prior to running the algorithm.
Since our model is agent-based, the computational cost

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 7 of 21

of populating the table is linear in the population of the
surveillance region. The computational advantage that
dynamic programming gives us is the ability to scan an
exponential number of possible outbreak subregions. The

exact number of possible tilings scanned is (2 × 3C-1 + 1)
R-1 × 2 × 3C-1 = Θ(2R(Clg3+1-lg3)); of these tilings, (2C-1 + 1)
R -1 × 2C-1 are non-outbreak hypotheses, and the rest are
outbreak hypotheses, that is, hypotheses where at least

Figure 3 One-dimensional tiling selection. Illustration of an iteration of the tiling selection algorithm on a 1 × 5 strip of the grid. Tick marks
indicate the boundaries of between the potential tile to be added and the rest of the tiling. See text for more details. (a) Best tilings TCL−1 for
CL Î {1, 2, 3, 4}. (b) Candidate tiles TCLCH for each value of CL. Highest scoring tile for each pair is shown as “best.”. (c) Candidate tilings
TCL−1 ∪ {TCLCH} for each value of CL. Highest scoring tiling shown as “best.”

Figure 4 Two-dimensional intermediate tilings. Illustration of intermediate candidate tilings on a 5 × 5 grid for RH = 4.

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 8 of 21

one tile is colored. The calculation of the number of til-
ings is presented in Additional file 2: Appendix B.
We can express the value computed by the algorithm

formally as follows: Let a row-wise partition of the grid
be denoted by R ∈ V where V is the space of all row-
wise partitions of the grid. Each partition R is a set of
pairs of row indexes, where each pair (RL, RH) bounds
the rectangular region RLH that spans the width of the
grid (columns 1 through C) and rows RL through RH

(inclusive). Let a column-wise partition of the rectangu-
lar region RLH be denoted by C ∈ H(RL, RH) , where
H(RL, RH) is the space of all column-wise partitions of
RLH. We use the notation (CL, CH) ∈ C to mean that
there is a tile spanning columns CL through CH (and
rows RL through RH) in the partition. Using this nota-
tion, the algorithm finds:

max
R∈V

∏
(RL,RH)∈R

max
C∈H(RL,RH)

∏
(CL,CH)∈C

max
x∈{0,1}

score(x, RL, RH, CL, CH) (27)

The space of tilings considered by the algorithm can
be described as the space of row-wise tilings of column-
wise sub-tilings. Intuitively, this space has the desired

property of being able to capture every cell-wise color-
ing of the grid, however, this is not an exhaustive search
over all general colored tilings. Figure 6 illustrates this
on a 10 × 10 grid with a pair of examples: Figures 6(a)
and Figure 6(c) show two configuration of outbreak rec-
tangles representing multiple outbreaks. It is desirable
for a tiling found by the algorithm to be able to (1)
cover all outbreak regions with outbreak tiles and all
non-outbreak regions with non outbreak rectangles (that
is, get the coloring right), (2) cover each outbreak rec-
tangle with a single tile, and (3) minimize any unneces-
sary fragmentation of the non-outbreak region. For the
outbreak configuration in 6(a), there exists a tiling in
the search space of the algorithm that satisfy all three
conditions, namely, the tiling in Figure 6(b). However,
such a tiling does not always exist: The outbreak config-
uration in Figure 6(c) shows this limitation. A tiling in
the space of all colored tilings that satisfies all three
conditions is shown in Figure 6(e). Note that this tiling
is not a row-wise tiling of column-wise sub-tilings and
is hence not in the search space of the algorithm. In
fact, a row-wise tiling that minimizes the fragmentation
of the outbreak rectangles (to the extent possible for a

Figure 5 Highest tiling score selection algorithm. Pseudocode for the dynamic programming algorithm for highest tiling score selection.

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 9 of 21

row-wise tiling) is shown in Figure 6(d). Note that in
Figure 6(d) the non-outbreak region has to be broken
up into eleven tiles (as opposed to just eight in Figure 6
(e)) and the three outbreak rectangles need to be broken
up into five tiles. Thus, the most parsimonious row-wise
tiling shown in Figure 6(d) is still not as parsimonious
as the tiling in Figure 6(e).

Model averaging
In the above algorithm it was assumed that the task at
hand is model selection, that is, finding the most likely
tiling given the data. Below we present an adaptation of
the dynamic programming algorithm to perform Baye-
sian model averaging as well, in order to derive a pos-
terior probability that an outbreak is occurring given the
data. In simple terms, this is done by replacing maximi-
zation with summation to obtain two sums: S0(Data),
the sum of the scores of all tilings that do not include
outbreaks (blank tiles only); and S01(Data), the sum of
the scores of all tilings considered. More specifically,
replacing maximization by summation leads to the
dynamic programming algorithm for summation over
tilings in Figure 7.
The summation algorithm calculates the sum

Sh =
∑
R∈V

∏
(RL,RH)∈R

∑
C∈H(RL,RH)

∏
(CL,CH)∈C

h(RL, RH, CL, CH) (28)

Here, the function h(RL, RH, CL, CH) defines the tile-wise
values we would like to sum over. By substituting each of
the following alternative functions for h we obtain the
desired sums S01(Data) and S0(Data), respectively:

h01(RL, RH, CL, CH) = score(0, RL, RH, CL, CH) + score(1, RL, RH, CL, CH) (29)

h0(RL, RH, CL, CH) = score(0, RL, RH, CL, CH) (30)

Score normalization
Under the above setup, the tiling scores need to be nor-
malized in order to have the prior probabilities over all
hypotheses sum to 1. The normalization constant ZT

can be simply calculated as a sum over the priors asso-
ciated with all tilings:

ZT =
∑
R∈V

∏
(RL,RH)∈R

∑
C∈H(RL,RH)

∏
(CL,CH)∈C

∑
x∈{0,1}

px(1 − p)1−x

=
∑
R∈V

∏
(RL,RH)∈R

∑
C∈H(RL,RH)

∏
(CL,CH)∈C

((1 − p) + p)

=
∑
R∈V

∏
(RL,RH)∈R

∑
C∈H(RL,RH)

∏
(CL,CH)∈C

1

(31)

Hence the normalization constant ZT is simply the
sum over tilings in (28) with h ≡ 1. Additional file 3:
Appendix C shows that for an R × C grid, this value can
be calculated in closed form as ZT = f(R, C, y) using
Equation (32) with y = 1:

f (R, C, y) = y(1 + y)C−1
(

1 + y(1 + y)C−1
)R−1

(32)

Similarly, the prior probability, as governed by the
structure prior parameter p, of the absence of an out-
break anywhere in the grid can be calculated as a sum
over the priors of all non-outbreak tilings:

P(no outbreak) =
1
ZT

∑
R∈V

∏
(RL,RH)∈R

∑
C∈H(RL,RH)

∏
(CL,CH)∈C

(1 − p)

=
f (R, C, 1 − p)

ZT
=

f (R, C, 1 − p)
f (R, C, 1)

(33)

This relationship was used to pick the value of p that
matches the particular value of P(outbreak) = 0.04 for
the prior probability of an influenza outbreak based on
expert assessment. Since we have not found a closed-
form inverse to this relationship, the appropriate the
value of p was found numerically using a binary search
over numbers in [0,1].
In order to obtain the posterior probability of an out-

break, we normalize the sums of scores to obtain: S0,1
(Data)/ZT = P(Data) and S0(Data)/ZT = P(Data, no out-
break). This allows us to obtain the posterior probability
of an outbreak

P(outbreak|Data) = 1−P(no outbreak|Data) = 1 -
P(Data, nooutbreak)

P(Data)
= 1− S0(Data)

S01(Data) (34)

Figure 6 Matching tilings to rectangles. Two arrangements of rectangles and corresponding tilings that illustrate the capabilities and
limitations of the dynamic programming algorithm’s tilings. (a) The first sample outbreak configuration. (b) An optimal tiling of the first sample
outbreak configuration that is within the algorithm’s search space. (c) The second sample outbreak configuration. (d) The most optimal tiling of
the second sample outbreak configuration within the algorithm’s search space.(e)An optimal tiling of the second sample outbreak configuration
outside the algorithm’s search space.

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 10 of 21

In a typical biosurveillance application this is the pos-
terior that we would use to detect whether an outbreak
is occurring anywhere in the surveillance region by test-
ing whether it rises above a pre-defined alert threshold.

Evaluation methods
This section describes an evaluation of the dynamic pro-
gramming (DP) algorithm, both in terms of model selec-
tion and in terms of model averaging. The evaluation was
preformed using real background data consisting of
information about chief complaints and home ZIP codes
of ED patients who are presumed not to have an out-
break disease. Synthetic data were generated to simulate
the presence of influenza outbreak cases. The evaluation
consists of a comparison to a baseline that scans over sin-
gle-rectangle hypotheses (SR), as well as a comparison for
model selection against a greedy algorithm (GR) that
hypothesizes one or more non-overlapping outbreak rec-
tangles. The next section describes these algorithms and
the section that follows it describes the data in further
detail.
Baseline methods
The simpler of the baseline methods that the DP algo-
rithm is compared to is a method of scanning over sin-
gle-rectangle hypotheses (SR). For model selection, it
consists of iterating over all possible placements of a
single rectangle on the grid and finding the placement
that maximizes the posterior probability of an outbreak,
calculated as:

P(H1(Si)|Data) =
P(H1(Si)) · lik(1, Si) · lik(0, S̄i)

P(Data)
(35)

where Si represents some rectangular region on the
grid and S̄i is its complement. In the implementation
used in this evaluation, the prior probability P(H1(Si)) of
having an outbreak in rectangle Si is set to be equal for
all rectangles, hence maximization of the posterior prob-
ability here is equivalent to maximization of the likeli-

hood lik(1, Si) · lik(0, S̄i) . The prior probabilities P(H1

(Si)) are chosen so that the prior probability P(Outbreak)
of an outbreak anywhere in the region matches the one
for the dynamic programming algorithm.
Let the notation S(RL, RH, CL, CH) denote the rectan-

gle Si defined by those row and column boundaries, and

let P(Data, H1(Si)) = P(H1(Si)) · lik(1, Si) · lik(0, S̄i) .
Then model averaging using the SR algorithm consists
of simply calculating the posterior:

P(Outbreak|Data) =

R∑
RH=1

RH∑
RL=1

C∑
CH=1

CH∑
CL=1

P(Data, H1(RL, RH, CL, CH))

P(H0) · lik(0, S(1, R, 1, C)) +
R∑

RH=1

RH∑
RL=1

C∑
CH=1

CH∑
CL=1

P(Data, H1(RL, RH, CL, CH))
(36)

The other baseline method that is used in the evalua-
tion is the greedy algorithm (GR) without recursion by
Jiang and Cooper [18]. We use this algorithm for model
selection only, and it operates iteratively: First it selects
the single rectangle Si1 that maximizes the score

q · lik(1, Si1) · lik(0, S̄i1) , where q is a structure prior.

Figure 7 Tiling summation algorithm. Psuedocode for the dynamic programming algorithm for summing over tiling values that are products
of individual tile values defined by a function h(⋅).

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 11 of 21

Next the non-overlapping rectangle Si2 that maximizes

the score q · lik(1, Si1) · q · lik(1, Si2) · lik(0, Si1 ∪ Si2) is

selected. This process of adding one rectangle at each
step and multiplying by the structure prior q with each
new added rectangle is repeated until the score can no
longer be increased. The result is a collection of non-
overlapping rectangles {Si1 , . . . , Sin } with the associated
score

qn · lik

⎛
⎝0,

n⋃
j=1

Sij

⎞
⎠ ·

n∏
j=1

lik(1, Sij) (37)

Outbreak rectangles are considered to be independent
conditioned on their positions. The value of q is chosen
to be equal to the value used in the SR algorithm for P
(H1(Si)).

Data generation
Multiple outbreak scenarios were generated on a 10 × 10
grid with a population distribution based on ZIP Code
Tabulation Area populations in Allegheny County, Penn-
sylvania as reported in the 2000 Census. Real ED data with
home ZIP code information was used as a non-outbreak
background scenario. Data from the months of June-
August of the years 2003-2005, a total of 181 days, were
used to evaluate the background scenario. The data for
each day consisted of a de-identified list of records for
patients who visited emergency departments in Allegheny
county on that day, where each record contained the
patient’s home zip code and chief complaints. Ethics
approval for use of the data was provided by the University
of Pittsburgh IRB.
Outbreaks of varying shapes, sizes, and frequencies were

then injected into the data to obtain outbreak scenarios. In
simulating outbreaks, the outbreak frequency F was
sampled as a continuous uniform random variable from
one of the following four frequency ranges: low (0 to
5.91 × 10-5), mid (5.91 × 10-5 to 3.55 × 10-4), high (3.55 ×
10-4 to 6.50 × 10-4), and very high (6.50 × 10-4 to 0.5).
For each frequency range, four sets of outbreak speci-

fications were generated where the rectangle sizes were
limited to a maximum of 10, 40, 60, and 100 cells. Each
of these sets was in turn composed of five sets of speci-
fications with n = 1 to 5 non-overlapping rectangles,
10 scenarios for each value of n, giving a total of 800
outbreak specifications. The positioning of each rectan-
gle on the grid was uniformly random. Figure 8 shows a
sample of the randomly generated outbreak shapes that
were used. Each rectangle j was assigned an outbreak
frequency Fj sampled from the previously determined
frequency range.
For each of the 181 days of background data, each of

the 800 outbreak specifications was used to create an

outbreak scenario by injecting disease cases into that
day by selecting an individual in a an outbreak rectangle
indexed by j with probability Fj and setting the corre-
sponding symptom Ii by sampling the distribution of
P(Ii|Di = flu) defined in our disease model.
For each outbreak scenario, the outbreak’s coverage

(the proportion of the grid that is covered by outbreak
rectangles) was also recorded. This value is later used to
stratify the test results.

Results and discussion
Evaluation of outbreak presence detection
We evaluated model averaging of the dynamic program-
ming (DP) and the single rectangle (SR) algorithms by
obtaining the posteriors for each day in the background
data (when no outbreak is occurring) and for each day
in the outbreak scenarios, and aggregating these results
to obtain Receiver Operating Characteristic (ROC)
curves. Note that days are treated as single snapshots of
the surveillance region with no temporal context, and
the area under the ROC curve gives us a measure of the
quality of detection of an outbreak from observing only
a single day of the outbreak regardless of how far into
the outbreak’s progression that day is. This is unlike
another popular metric in the outbreak detection litera-
ture, the Activity Monitoring Operating Characteristic
(AMOC) curve, where a progressing outbreak is simu-
lated over a span of multiple days and the time to detec-
tion is measured. We use an evaluation measure that
does not take time into account because the algorithms
in question themselves are purely spatial. Additionally,
the need to simulate outbreak progression for AMOC
analysis inadvertently introduces additional assumptions
about the dynamics of the outbreaks to be detected,
which is not the focus of the current evaluation.
In these tests the disease model used assumes a sin-

gle-valued K. Table 1 reports the areas under the curve
(AUC) and the results of a statistical significance test
based on [25] of the difference in areas under the curve
of the two methods. The table shows the AUC for each
algorithm, the lower and upper 95% confidence limits
for the difference in areas (DP-SR) and the associated p-
values. Note that in the mid-range frequencies and
above, the posteriors for all outbreaks with coverage
35% and above were all equal to 1 up to numerical pre-
cision for both methods. As a result, the ROC curves
obtained for those samples are identical making the
comparison trivial. In the “very high” frequency range
all outbreaks yielded posteriors that are 1 up to numeri-
cal precision, and for this reason this frequency range is
omitted from Table 1.
The results show that both methods perform similarly

and do not achieve statistically different results, except
in the case of mid-range frequencies with outbreak

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 12 of 21

coverage of 16-34% of the surveillance grid where the
SR method performs statistically significantly better, but
the performance difference was inconsequential from a
practical standpoint. We can also see that for both

methods the area under the ROC curve is strongly influ-
enced by both the frequency and coverage of the out-
break, increasing as these parameters increase, as
expected.

Figure 8 Randomly generated outbreaks. A sample of some randomly generated outbreak shapes for testing.

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 13 of 21

Additional investigation
The result that the DP algorithm does not perform bet-
ter than the SR algorithm is surprising since the DP
algorithm is able to consider multiple-rectangle hypoth-
eses which would be expected to drive the posterior
probability up significantly when there are multiple
simulated outbreaks.
Since it is not immediately obvious from inspection of

the algorithms why the anticipated improvement is
absent, we performed targeted tests with the same back-
ground data and specially-designed outbreaks, such as
the one illustrated in Figure 9. Such “doughnut shaped”
outbreaks are expected to be more challenging for the SR
algorithm because any placement of a single rectangle on
the grid will either miss a significant portion of the out-
break cells or include a significant number of non-out-
break cells. The outbreak shape in Figure 9 and the
possible combinations of three, two, and one rectangle of
the four shown in Figure 9 (making a total of 15 different
outbreak shapes) were injected into the background data
at the low, mid, and high frequency ranges to obtain
ROC curves. As the statistical comparison in Table 2
shows, these tests show that even in multi-rectangle out-
breaks designed to be difficult to approximate with a sin-
gle-rectangle cluster, the SR algorithm performs at least
as well as the DP algorithm in terms of area under the
ROC curve.
In light of these results we also followed another line of

investigation, namely, one of changing the underlying like-
lihood function with the thought that a model that more
accurately represents the background scenarios would
yield more representative likelihoods, and possibly better
differentiation between the nuances of the two algorithms.
Since in reality the proportion K of people coming to the
ED for non-outbreak diseases varies from day to day, mod-
eling K as a random variable with a nontrivial distribution
is more realistic. Under this new model, the DP algorithm
performed similarly to its performance under the old
model. The SR algorithm, however, took a severe turn for

the worse as it marked almost every non-outbreak sce-
nario with a very high posterior probability, numerically
indistinguishable from one. For this reason, we do not pre-
sent a comparison between the methods using the distri-
bution-based model. We have carefully checked the
correctness of the implementation of the SR algorithm
and must therefore conclude that this behavior is indeed a
drawback of the the SR algorithm. Further investigation is
required to fully understand this behavior, however.
Comparison to SaTScan™
We have compared DP to SaTScan™,a the software
package developed by Kulldorff that can use spatial, tem-
poral, or space-time scan statistics [26]. SaTScan™
implements a popular set of algorithms that (1) have
been extensively evaluated by its creators, (2) perform

Table 1 Model averaging comparison in terms of area under the ROC curve

Frequency range Coverage DP AUC SR AUC (DP-SR) 95% confidence interval limits p-value

Low < 16% 0.95047 0.95016 - 0.00746 0.00808 0.9384

16-34% 0.86260 0.86852 - 0.01261 0.00078 0.0831

≥ 35% 0.97409 0.97911 - 0.01005 0.00001 0.0505

Mid < 16% 0.96019 0.96079 - 0.00530 0.00410 0.8014

16-34% 0.98246 0.98613 - 0.00575 - 0.00159 0.0005

≥ 35% 1.00000 1.00000

High < 16% 0.98468 0.98379 - 0.00173 0.00352 0.5044

16-34% 0.99990 0.99984 - 0.00001 0.00013 0.1096

≥ 35% 1.00000 1.00000

Comparison of the DP and SR ROC curves obtained from model averaging. The table shows the AUC for each algorithm, the lower and upper 95% confidence
limits for the difference in areas (DP-SR) and the associated p-values

Figure 9 Doughnut-shaped outbreak. An example of a specially
designed outbreak for further comparison of SR and DP model
averaging.

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 14 of 21

well in practice, (3) are made available for free download
for research purposes, and (4) have been used by others
as a benchmark ofscanning performance. Therefore, we
believe SaTScan™ provides a good point of comparison
to DP, although we describe below some caveats regard-
ing this comparison. Since the current implementation of
DP is purely spatial, we restricted the comparison only to
the spatial scan statistic.
It is important to note that there are fundamental dif-

ferences between the DP algorithm and SaTScan™.
Firstly, SaTScan™ is designed to detect clusters of higher
or lower than normal values of some measurement and
report those as clusters, while our method uses a disease
model to calculate a likelihood of a state of interest based
on observations. This means that in our testing, we can-
not use SaTScan™ to directly detect high numbers of
influenza cases per se, since the disease state is never
directly observed in the data. For this reason, we used
SaTScan™ to detect abnormally high counts of patients
that came in with a chief a complaint of either “cough” or
“fever”, as they are indicative of the locations of influenza
cases. We leave the information provided to the DP algo-
rithm unchanged (the values of the chief complaint vari-
able are provided) in this comparison. Secondly,
SaTScan™ does not scan over rectangular regions, but
rather over circular or ellipse-shaped regions [4]. We still
use the same generated outbreaks for this comparison,
meaning that the true outbreaks are rectangular. SaTS-
can™ does have the ability to detect multiple clusters in
an iterative process that is similar to the greedy algo-
rithm. In this mode, SaTScan™ scans for the most likely
ellipse-shaped cluster, then removes the data it captures,
and repeats the process until the p-value (the probability
of the observed data under the null hypothesis that no
cluster exists) of the newly detected cluster falls above
0.05 [27]. Since this is the setting which is most suited

for detecting multiple and irregularly-shaped clusters, it
is the one we used in our comparison. Of the models
available to SaTScan™ we used the Poisson-based model
[3] since it is the most appropriate for the setting where
we are detecting abnormally high event counts for a
known population at risk.
Table 3 reports the AUC and the statistical significance

of ROC differences comparing the DP algorithm to
SaTScan™. In order to obtain ROC curves from SaTS-
can™, we used the p-value of the most likely cluster
found as the criterion variable, with lower p-values corre-
sponding to a positive decision (in favor of an outbreak).
The table shows that SaTScan™ performs statistically
significantly worse than DP in all tests.
A possible factor influencing the poor performance of

SaTScan™ is that the task that it performs is not a per-
fect fit for our evaluation measure. We are measuring
performance in the task of identifying injected disease
outbreaks, while SaTScan™ performs the task of detect-
ing elevated counts of the “cough” or “fever” chief com-
plaint. Also, we injected rectangular outbreaks, whereas
SaTScan™ is looking for elliptical shaped outbreak
regions. Another potential factor to the performance of
SaTScan™ is that the background (no-outbreak) scenar-
ios also contain clusters of elevated chief complaint
counts of cough and fever, even in the absence of injected
influenza outbreak cases. DP itself is not free from the
same problem, however, since it does assign high poster-
iors to some background scenarios, but to a lower extent.

Evaluation of outbreak location detection
In order to compare the quality of the detection of the
location of outbreak clusters, the cell-wise spatial preci-
sion and recall of each algorithm were measured in each
outbreak scenario. In terms of the most likely outbreak
subregion Q detected by each algorithm and the actual

Table 2 Additional model averaging comparison

Frequency range Number of rectangles DP AUC SR AUC (DP-SR) 95% confidenceinterval limits p-value

Low 1 0.51545 0.51647 - 0.01450 0.01247 0.8830

2 0.52214 0.52353 - 0.01462 0.01185 0.8373

3 0.55150 0.55355 - 0.01652 0.01244 0.7824

4 0.55416 0.55637 - 0.02003 0.01561 0.8080

Mid 1 0.66873 0.67618 - 0.01967 0.00478 0.2326

2 0.80826 0.82422 - 0.02771 - 0.00420 0.0078

3 0.78402 0.79984 - 0.03444 0.00650 0.0520

4 0.88198 0.88272 - 0.01471 0.01324 0.9177

High 1 0.88433 0.91615 - 0.04173 - 0.02191 < 0.0001

2 0.96696 0.97218 - 0.01147 0.00105 0.1027

3 0.97819 0.98139 - 0.00749 0.00109 0.1438

4 0.99626 0.99567 - 0.00224 0.00340 0.6852

Comparison DP and SR ROC curves obtained from model averaging for outbreaks composed of various combinations of the rectangles in Figure 9

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 15 of 21

subregion SUB covered by the simulation-generated out-
break rectangles in each scenario, the cell-wise spatial
precision is taken to be the proportion |Q ∩ SUB|/|Q|
and the cell-wise spatial recall to be |Q ∩ SUB|/|SUB|
where the notation |X| signifies the area of subregion X.
The measurement is restricted to populated cells only.
The disease model used in these tests is also the one

that assumes a single-valued K, due to details of the
greedy algorithm implementation. Recall from equation
(37) that the likelihood of an irregular region,

lik
(

0,
⋃n

j=0 Sij

)
needs to be calculated at each step.

When K is a distribution, this calculation needs to be
re-done for every considered hypothesis because the
expression is a sum of products, leading to much longer
runtime. However, when K is a single value, since the
likelihood of that region is a simple product, we can
take advantage of canceling terms and calculate it much
faster from cached values as

lik

⎛
⎝0,

n⋃
j=0

Sij

⎞
⎠ =

lik(0, 1, R, 1, C)
n∏

j=0
lik(0, Sij)

(38)

Table 4 shows the average cell-wise spatial precision
for the DP, GR, and SR methods. The table also shows
the result of paired t-tests for significance of the differ-
ence between the DP and GR algorithms. Since it is clear
that the single-rectangle algorithm performs worse than
the other two, the statistical comparison to SR is not
shown here. Table 5 shows a similar table for cell-wise
recall.
First note that all differences observed between the DP

and GR algorithms, while small, are statistically signifi-
cant at the large sample sizes used. In terms of both spa-
tial precision and recall, the results show that the greedy
algorithm does slightly better than the dynamic program-
ming algorithm at low frequencies, even though the per-
formance of both is very poor. This may be an indication

that the greedy algorithm is more sensitive to small dif-
ferences in likelihood. For the most part, as frequency
and coverage of the outbreak increase, the performance
of the dynamic programming algorithm overtakes that of
the greedy algorithm. Most notably, the dynamic pro-
gramming algorithm yields much better spatial precision
for outbreaks with higher spatial coverage (and therefore
more outbreak rectangles). The differences in recall,
while statistically significant, do not amount to much
from a practical standpoint.
We also compare the DP algorithm to SaTScan™ in

terms of spatial precision and recall. Table 6 compares
the algorithms in terms of spatial precision and Table 7
compares the algorithms in terms of spatial recall. In
order to obtain precision and recall readings from SaTS-
can™, we considered locations that are contained in a
detected cluster with a p-value below 0.05 to be marked
as outbreak locations, and all others to be marked as
non-outbreak locations.
The spatial precision results show that SaTScan™

achieves precision not statistically significantly different
from DP for outbreaks of low coverage and frequency,
while for other cases DP achieves statistically significantly
higher precision. The spatial recall results show that
SaTScan™ achieves recall that is statistically significantly
higher than DP for outbreaks of coverage below 35% and
low frequency. Both methods perform generally poorly in
this range. In the remainder of the cases DP outperforms
SaTScan™ in terms of recall as well as precision.
We emphasize that DP has the advantage of performing

inference about whether an individual has influenza using
the same disease model that was used to generate the
injected outbreaks. SaTScan™, however, merely searches
for elevated chief complaint counts. Also note that the
injected outbreaks are rectangular in shape, while SaTS-
can™ uses elliptical search windows. An ellipse is not able
to fit some of the outbreak scenarios well. Additionally,
unlike our model which has prior parameters defining a
distribution over the chief complaints that are observed

Table 3 DP compared to SaTScan™ in terms of area under the ROC curve

Frequency range Coverage DP AUC SaTScan™ (DP-SaTScan™) 95% confidence interval limits p-value

Low < 16% 0.95047 0.49570 0.41018 0.49936 < 0.0001

16-34% 0.86260 0.46070 0.35816 0.44562 < 0.0001

≥ 35% 0.97409 0.42947 0.50375 0.58549 < 0.0001

Mid < 16% 0.96019 0.65946 0.26789 0.33356 < 0.0001

16-34% 0.98246 0.85287 0.11099 0.14818 < 0.0001

≥ 35% 1.00000 0.81147

High < 16% 0.98468 0.82496 0.14089 0.17856 < 0.0001

16-34% 0.99990 0.99490 0.00387 0.00611 < 0.0001

≥ 35% 1.00000 0.94950

Comparison of the DP posteriors obtained from model averaging and SaTScan™ p-values in terms of ROC curves. The table shows the AUC for each algorithm,
the lower and upper 95% confidence limits for the difference in areas (DP-SaTScan™) and the associated p-values

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 16 of 21

when no outbreak is present, SaTScan™ computes the
expected counts for the absence of a cluster based on the
counts outside the search window. As a result, when an
elliptical window fails to accurately enclose the outbreak,
SaTScan™’s assessment of the expected level of chief
complaint counts is affected. We believe that the combina-
tion of these factors is what is responsible for SaTScan™’s
lower performance.

Evaluation of running time
A major motivating factor for developing a dynamic
programming spatial scan is that brute force multi-
region spatial scans are computationally intensive. In
order to evaluate the feasibility of using the DP algo-
rithm in a practical application setting, we performed a
variety of timing tests on input data of varying grid sizes
and populations. The population size affects the running

time not due to any feature of the dynamic program-
ming itself, but rather due to the agent-based disease
model. In order to properly interpret the timing results,
it is first useful to briefly describe some technical
aspects of our implementation.
The implementation consists of two modules, one

module reads in the data to be scanned and uses the dis-
ease model to compute the log-likelihood of each possi-
ble grid rectangle for each value of the flu incidence
frequency F (and the “other” disease state frequency K
when it is a distribution rather than a constant), includ-
ing F = 0, and stores this table of likelihoods in a data
structure. The second module is the actual DP scanning
algorithm which queries the data structure constructed
by the first module every time the likelihood of a tile
needs to be calculated. We actually reuse the first module
in the implementations of the SR and greedy algorithms

Table 4 Comparison of model selection in terms of spatial precision

Frequency range Coverage DP precision GR precision SR precision (DP-GR) 95% confidence interval limits p-value

Low < 16% 0.09365 0.11775 0.07022 - 0.02412 - 0.02408 < 0.00001

16-34% 0.28551 0.33207 0.27251 - 0.04659 - 0.04654 < 0.00001

≥ 35% 0.57974 0.62428 0.60255 - 0.04462 - 0.04447 < 0.00001

Mid < 16% 0.31987 0.34414 0.11212 - 0.02430 - 0.02425 < 0.00001

16-34% 0.67969 0.66288 0.31934 0.01679 0.01683 < 0.00001

≥ 35% 0.92269 0.86046 0.55602 0.06211 0.06235 < 0.00001

High < 16% 0.50417 0.53018 0.15127 - 0.02604 - 0.02599 < 0.00001

16-34% 0.84815 0.78839 0.34174 0.05974 0.05978 < 0.00001

≥ 35% 0.91292 0.83541 0.54478 0.07740 0.07763 < 0.00001

Very high < 16% 0.66221 0.51208 0.14081 0.15010 0.15017 < 0.00001

16-34% 0.84584 0.44728 0.26127 0.39854 0.39859 < 0.00001

≥ 35% 0.92306 0.66563 0.48019 0.25728 0.25758 < 0.00001

Comparison of the DP, GR, and SR spatial precisions obtained from model selection. The table shows the mean precision for each algorithm, the lower and upper
95% confidence limits for the difference in precision (DP-GR) and the associated t-test p-values

Table 5 Comparison of model selection in terms of spatial recall

Frequency range Coverage DP recall GR recall SR recall (DP-GR) 95% confidence interval limits p-value

Low < 16% 0.08729 0.09759 0.04993 - 0.01031 - 0.01029 < 0.00001

16-34% 0.13665 0.14801 0.10795 - 0.01137 - 0.01135 < 0.00001

≥ 35% 0.18579 0.19636 0.17592 - 0.01060 - 0.01055 < 0.00001

Mid < 16% 0.39280 0.38533 0.11793 0.00745 0.00749 < 0.00001

16-34% 0.56118 0.55025 0.24091 0.01092 0.01095 < 0.00001

≥ 35% 0.74869 0.75813 0.42978 - 0.00956 - 0.00932 < 0.00001

High < 16% 0.62454 0.60666 0.13601 0.01786 0.01789 < 0.00001

16-34% 0.82999 0.82147 0.29433 0.00850 0.00852 < 0.00001

≥ 35% 0.91850 0.91130 0.50550 0.00716 0.00724 < 0.00001

Very high < 16% 0.93248 0.92970 0.24123 0.00277 0.00278 < 0.00001

16-34% 0.99829 0.99809 0.62275 0.00020 0.00020 < 0.00001

≥ 35% 0.99813 0.99815 0.74743 - 0.00002 - 0.00001 < 0.00001

Comparison of the DP, GR, and SR spatial recall obtained from model selection. The table shows the mean recall for each algorithm, the lower and upper 95%
confidence limits for the difference in recall (DP-GR) and the associated t-test p-values

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 17 of 21

since queries to the same tables of likelihoods need to be
made by each of those algorithms as well.
Figures 10 and 11 show median timing results for the

likelihood calculation module, the scan modules of the
SR and DP algorithms, and SaTScan™. All tests were
performed on a desktop PC with a quad core 2.66 GHz
processor and 4 GB of RAM. Figure 10 shows timing
results for grids of size 10 × 10, 20 × 20, 50 × 50, and
100 × 100. We produced data with these varying grid
sizes by dividing the same original map of Allegheny
county into smaller cells to obtain “larger” grids (in
terms of cell counts). The results are in line with our
theoretical analysis that the runtime of the DP scan, like
that of the SR scan, scales as a square of the number of
cells in the grid. The results also show that grid size
does not appreciably affect the time taken to compute
the table of likelihoods that the DP algorithm uses. It

can be seen that SaTScan™ takes approximately five
minutes to complete a scan on a 50 × 50 grid, while the
DP algorithm can complete a scan on a 100 × 100 grid
in the same amount of time. A scan on a 100 × 100
grid by SaTScan™would take on the order of hours
(not shown). The longer runtimes incurred by SaTS-
can™ for larger size grids are largely influenced by the
999-fold randomization testing that SaTScan™ uses to
compute p-values for the scan statistic. The same obser-
vation was made by Neill, Moore, and Cooper in pre-
vious work [13].
Figure 11 shows timing results for 1, 5, 25, and 100

times the original census population of Allegheny
County. We produced data with these varying popula-
tion sizes by merely counting each individual multiple
times. The results are consistent with our theoretical
analysis that the likelihood calculation phase of the

Table 6 Comparison of spatial precision against SaTScan™

Frequencyrange Coverage DP precision SaTScan™ precision (DP-SaTScan™) 95%confidence interval limits p-value

Low < 16% 0.09365 0.09218 0.00395 - 0.00100 0.12159

16-34% 0.28551 0.27073 0.01871 0.01084 < 0.00001

≥ 35% 0.57974 0.47264 0.11638 0.09781 0.00128

Mid < 16% 0.31987 0.24489 0.07877 0.07118 < 0.00001

16-34% 0.67969 0.59986 0.08355 0.07612 < 0.00001

≥ 35% 0.92269 0.87176 0.05817 0.04369 < 0.00001

High < 16% 0.50417 0.33449 0.17408 0.16526 < 0.00001

16-34% 0.84815 0.66405 0.18728 0.18093 < 0.00001

≥ 35% 0.91292 0.82920 0.08906 0.07839 < 0.00001

Very high < 16% 0.66221 0.41769 0.24879 0.24027 < 0.00001

16-34% 0.84584 0.62706 0.22190 0.21568 < 0.00001

≥ 35% 0.92306 0.79866 0.11971 0.12911 < 0.00001

Comparison of the DP and SaTScan™ spatial precision. The table shows the mean recall for each algorithm, the lower and upper 95% confidence limits for the
difference in recall (DP-SaTScan™) and the associated t-test p-values

Table 7 Comparison of spatial recall against SaTScan™

Frequency range Coverage DP recall SaTScan™ recall (DP-SaTScan™) 95% confidence interval limits p-value

Low < 16% 0.08729 0.15045 - 0.05982 - 0.06649 < 0.00001

16-34% 0.13665 0.18430 - 0.04485 - 0.05045 < 0.00001

≥ 35% 0.18579 0.16384 0.02682 0.01708 < 0.00001

Mid < 16% 0.39280 0.37422 0.02227 0.01489 < 0.00001

16-34% 0.56118 0.48644 0.07769 0.07180 < 0.00001

≥ 35% 0.74869 0.58639 0.17157 0.15305 < 0.00001

High < 16% 0.62454 0.49413 0.13376 0.12706 < 0.00001

16-34% 0.82999 0.70011 0.13170 0.12805 < 0.00001

≥ 35% 0.91850 0.76347 0.15955 0.15052 < 0.00001

Very high < 16% 0.93248 0.69904 0.23695 0.22993 < 0.00001

16-34% 0.99829 0.78494 0.21539 0.21132 < 0.00001

≥ 35% 0.99813 0.78448 0.21034 0.21697 < 0.00001

Comparison of the DP and SaTScan™ spatial recall. The table shows the mean recall for each algorithm, the lower and upper 95% confidence limits for the
difference in recall (DP-SaTScan™) and the associated t-test p-values

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 18 of 21

Figure 10 Comparison of running time across a range of grid sizes. Comparison of running time across grid sizes of 10 × 10, 20 × 20, 50 ×
50, and 100 × 100 using the original 2000 census population of Allegheny County. The plot shows the running time of the calculation of the
table of likelihoods, the scan of the SR algorithm, the scan of the DP algorithm, and SaTScan™.

Figure 11 Comparison of running time across a range of population sizes. Comparison of running time for a 10 × 10 grid across
populations of 1, 5, 25, and 100 times the original 2000 census population of Allegheny County. The plot shows the running time of the
calculation of the table of likelihoods, the scan of the SR algorithm, the scan of the DP algorithm, and SaTScan™.

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 19 of 21

implementation scales linearly with the population size
due to the agent-based nature of our model. The DP
and SR scan times are not affected by variations in
populations size, since those algorithms always query
likelihoods for entire rectangles. The runtime of SaTS-
can™ is not appreciably affected by changes in the
population size, which can be explained by the fact that
as a count-based method, it deals with per-location
counts.

Conclusions
This paper described a dynamic programming algorithm
for spatial cluster detection. The algorithm specifies
alternative clustering hypotheses in terms of colored til-
ings of the surveillance grid. We showed how the algo-
rithm can be used both for characterizing the location
and shape of the most likely clusters and for calculating
the posterior probability of the presence of clusters in
the data.
Tests of general detection in terms of area under the

ROC curve show that the new method is not statistically
significantly better than the naïve calculation that only
averages over single-rectangle hypotheses. This result
appears to remain the case even when the true out-
breaks cannot be reasonably approximated by a single
rectangle. We conjecture that the additive nature of the
process of model averaging either gives the naïve
method more detection power than expected or hinders
the dynamic programming method. On the one hand,
even though the single-rectangle method cannot accu-
rately capture multiple clusters with a single hypothesis,
it can accurately capture parts of the multi-cluster sce-
nario (the single rectangles that compose a multi-rectan-
gle scenario). These partial agreements may make a
sufficient contribution to the likelihoods so that aver-
aging over all hypotheses results in relatively high pos-
terior probability for the multi-cluster scenario. On the
other hand, while the dynamic programming algorithm
is able to accurately capture a multi-cluster scenario in
a single hypothesis, it does consider an exponential
number of alternative hypotheses that do not accurately
describe the outbreak scenario. It is possible that when
averaging over the entire hypothesis space the score of
the accurate hypotheses is simply outweighed by the
alternative scores. The reasons for why the two methods
perform similarly may be a combination of both of
these reasons and possibly others. Further investigation
is needed to explain these results fully.
In spite of the lack of improvement in general detec-

tion power, tests of location and shape characterization
show that under certain conditions the dynamic pro-
gramming method performs better than the naïve SR
method and the greedy method. The most notable
improvement is in the precision of cluster locations

detected, as DP algorithm tends to output fewer false-
positive outbreak cells than the other algorithms. Recall
of cluster locations is on par with the greedy method.
Measurements of the DP algorithm’s running time

over varying grid and population sizes showed that it
scales well to larger grids, being able to complete a scan
of a 100 × 100 grid in about five minutes. The measure-
ments also show that the dynamic programming algo-
rithm has a general advantage of taking no more time
than the naïve single-rectangle scan. Since the scan itself
relies on having access to a likelihood function for the
likelihood of an outbreak in a particular rectangle, the
runtime will depend on nature of the likelihood calcula-
tion. In our implementation and using our particular
disease model, this calculation could be performed in a
separate module and timed separately. We observed that
the likelihood calculation scales linearly with the popula-
tion using our agent-based model, taking under four
minutes for a population of almost 150 million.
Just like the baseline methods considered, the

dynamic programming algorithm can be applied to
other likelihood models as long as they provide a likeli-
hood as a function of location. In particular, this
means that even though an agent-based model was
used in the experiments, these methods are also suited
for use with a count-based model. These methods can
also be extended to additional space dimensions as well
as time, and multiple cluster classes (outbreak states).
The DP algorithm can be also modified to perform
finer characterization such as finding the most likely
values of F and K associated with each tile. By exten-
sion, using a different underlying model the algorithm
could be modified to estimate the most likely values
for that model’s parameters. In that sense, there are
many potential applications for the dynamic program-
ming algorithm, as well as many potential avenues for
further investigation.

Endnotes
aSaTScan™ is a trademark of Martin Kulldorff. The
SaTScan™ software was developed under the joint aus-
pices of (i) Martin Kulldorff, (iii) the National Cancer
Institute, and (iii) Farzad Mostashari of the New York
City Department of Health and Mental Hygiene.

Additional material

Additional file 1: Appendix A: Tiling selection code. Pseudocode of
the tiling selection algorithm that returns the highest scoring tiling and
its score.

Additional file 2: Appendix B: The number of tilings. Calculation of
the number of tilings considered by the algorithm.

Additional file 3: Appendix C: Normalization function. Proof of
equation (32).

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 20 of 21

http://www.biomedcentral.com/content/supplementary/1472-6947-12-22-S1.PDF
http://www.biomedcentral.com/content/supplementary/1472-6947-12-22-S2.PDF
http://www.biomedcentral.com/content/supplementary/1472-6947-12-22-S3.PDF

Acknowledgements
This work was funded by CDC grant P01HK000086 and NSF grant IIS-
0911032.

Author details
1Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.
2Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh,
PA, USA.

Authors’ contributions
GF Cooper conceived of the basic dynamic programming algorithm
presented here, advised and supervised all stages of research, and
participated in the drafting of the manuscript. X Jiang performed initial tests
and initial implementation of the model selection version of the dynamic
programming algorithm and performed the analysis of the number of tilings
searched. Y Sverchkov contributed to the development of the model
averaging version of the dynamic programming algorithm, implemented
and tested all the algorithms presented in this paper, and took the lead in
drafting this paper. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 15 June 2011 Accepted: 25 March 2012
Published: 25 March 2012

References
1. Kulldorff M: Spatial scan statistics: models, calculations, and applications.

In Scan Statistics and Applications Edited by: Glaz J, Balakrishnan M,
Birkhauser 1999, 303-322.

2. Wang X, Hutchinson R, Mitchell TM: Training fMRI Classifiers to Detect
Cognitive States across Multiple Human Subjects. Advances in Neural
Information Processing Systems 2004, 18:709-716.

3. Kulldorff M: A Spatial scan statistic. Commun Stat Theory Methods 1997,
26(6):1481-1496.

4. Kulldorff M, Huang L, Pickle L, Duczmal L: An elliptic spatial scan statistic.
Stat Med 2006, 25:3929-3943.

5. Kulldorff M, Athas W, Feuer E, Miller B, Key C: Evaluating cluster alarms: A
space-time scan statistic and cluster alarms in Los Alamos. Am J Public
Health 1998, 88:1377-1380.

6. Kulldorff M: Prospective time-periodic geographical disease surveillance
using a scan statistic. J R Stat Soc A 2001, 164:61-72.

7. Neill DB, Moore AW, Sabhnani MR: Detecting elongated disease clusters.
Morb Mortal Wkly Rep 54, doi:2005. Supplement on Syndromic
Surveillance.

8. Duczmal L, Assunção R: A simulated annealing strategy for the detection
of arbitrary shaped spatial clusters. Comput Stat Data Anal 2004,
45:269-286.

9. Patil GP, Taillie C: Upper level set scan statistic for detecting arbitrarily
shaped hotspots. Environ Ecol Stat 2004, 11:183-197.

10. Tango T, Takahashi K: A flexibly shaped spatial scan statistic for detecting
clusters. Int J Health Geogr 2005, 4:11.

11. Neill DB, Moore AW: Rapid Detection of Significant Spatial Clusters. In
Conference on Knowledge Discovery in Databases (KDD) 2004 Edited by:
Guerke J, DuMouchel W 2004.

12. Neill DB, Moore AW, Pereira F, Mitchell T: Detecting Significant
Multidimensional Spatial Clusters. Advances in Neural Information
Processing Systems 2004, 17.

13. Neill D, Moore A, Cooper G: A Bayesian spatial scan statistic. In Advances
in Neural Information Processing Systems Edited by: Y Weiss ea 2005,
18:1003-1010.

14. Neill DB, Cooper GF: A Multivariate Bayesian Spatial Scan Statistics. Adv
Dis Surveill 2007, 2:60.

15. Neill DB, Cooper GF, Das K, Jiang X, Schneider J: Bayesian network scan
statistics for multivariate pattern detection. In Scan Statistics: Methods and
Applications Edited by: Glaz J, Pozdnyakov V, Wallenstein S, Birkhäuser 2009.

16. Cooper GF, Dash DH, Levander JD, Wong WK, Hogan WR, Wagner MM:
Bayesian Biosurveillance of Disease Outbreaks. Proceedings of the 20th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-04) AUAI Press;
2004, 94-103.

17. Jiang X, Neill DB, Cooper GF: A Bayesian network model for spatial event
surveillance. Int J Approximate Reasoning 2010, 51(2):224-239, Bayesian
Model Views.

18. Jiang X, Cooper GF: A Recursive Algorithm for Spatial Cluster Detection.
Proceedings of the Symposium of the American Medical Informatics
Association (AMIA) 2007, 369-373.

19. Shen Y, Wong WK, Levander JD, Cooper GF: An Outbreak Detection
Algorithm that Efficiently Performs Complete Bayesian Model Averaging
Over All Possible Spatial Distributions of Disease. Adv Dis Surveill 2007,
4:113.

20. Ester M, peter Kriegel H, S J, Xu X: A density-based algorithm for
discovering clusters in large spatial databases with noise. 2nd
International Conference on Knowledge Discovery and Data Mining, Portland,
OR AAAI Press; 1996, 226-231.

21. Pei T, Jasra A, Hand DJ, Zhu AX, Zhou C: DECODE: A new method for
discovering clusters of different densities in spatial data. Data Min Knowl
Discov 2009, 18(3):337-369.

22. Heckerman D: A tutorial on learning with Bayesian networks. Tech rep,
Learning in Graphical Models 1995.

23. Buntine WL: Operations for Learning with Graphical Models. J Artif Intell
Res 1994, 2:159-225.

24. Jiang X: A Bayesian Network Model for Spatio-Temporal Event
Surveillance. PhD dissertation University of Pittsburgh, Department of
Biomedical Informatics; 2008.

25. DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the Areas under
Two or More Correlated Receiver Operating Characteristic Curves: A
Nonparametric Approach. Biometrics 1988, 44(3):837-845.

26. Kulldorff M, Information Management Services, Inc: SaTScan™ v8.0:
Software for the spatial and space-time scan statistics. 2009 [http://www.
satscan.org].

27. Zhang Z, Assunçãdo R, Kulldorff M: Spatial Scan Statistics Adjusted for
Multiple Clusters. Journal of Probability and Statistics 2010, 2010.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1472-6947/12/22/prepub

doi:10.1186/1472-6947-12-22
Cite this article as: Sverchkov et al.: Spatial cluster detection using
dynamic programming. BMC Medical Informatics and Decision Making
2012 12:22.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Sverchkov et al. BMC Medical Informatics and Decision Making 2012, 12:22
http://www.biomedcentral.com/1472-6947/12/22

Page 21 of 21

http://www.ncbi.nlm.nih.gov/pubmed/16435334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9736881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9736881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15904524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15904524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.satscan.org
http://www.satscan.org
http://www.biomedcentral.com/1472-6947/12/22/prepub

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Outbreak model
	Model definition and likelihood function
	Model instantiation

	The distributions of the subregion, outbreak, and frequency variables
	The single-rectangle case
	The multi-rectangle case
	The tiling case

	Tilings
	Computing tiling scores

	Dynamic programming algorithm
	Model averaging
	Score normalization

	Evaluation methods
	Baseline methods

	Data generation

	Results and discussion
	Evaluation of outbreak presence detection
	Additional investigation
	Comparison to SaTScan™

	Evaluation of outbreak location detection
	Evaluation of running time

	Conclusions
	Endnotes
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

