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Abstract

Defining processes that are synthetic lethal with p53 mutations in cancer cells may reveal possible 

therapeutic strategies. In this study, we report the development of a signal-oriented computational 

framework for cancer pathway discovery in this context. We applied our bipartite-graph-based 

functional module discovery algorithm to identify transcriptomic modules abnormally expressed 

in multiple tumors, such that the genes in a module were likely regulated by a common, perturbed 

signal. For each transcriptomic module, we applied our weighted k-path merge algorithm to search 

for a set of somatic genome alterations (SGA) that likely perturbed the signal, i.e., the candidate 

members of the pathway that regulate the transcriptomic module. computational evaluations 

indicated that our methods identified pathways perturbed by SGA. In particular, our analyses 

revealed that SGA affecting TP53, PTK2, YWHAZ and MED1 perturbed a set of signals that 

promote cell proliferation, anchor-free colony formation and epithelial-mesenchymal transition 

(EMT). These proteins formed a signaling complex that mediate these oncogenic processes in a 

coordinated fashion. Disruption of this signaling complex by knocking down PTK2, YWHAZ, or 

MED1 attenuated and reversed oncogenic phenotypes caused by mutant p53 in a synthetic lethal 

manner. This signal-oriented framework for searching pathways and therapeutic targets is 

applicable to all cancer types, thus potentially impacting precision medicine in cancer.
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Introduction

Cancer is driven by aberrations in cellular signaling pathways, commonly caused by SGAs, 

such as somatic mutations and copy number alterations, and epigenetic alterations that affect 

signaling proteins (1,2). Large-scale cancer genomic studies, such as The Cancer Genome 

Atlas (TCGA) provide an unprecedented opportunity to comprehensively investigate cancer 

pathways perturbed by SGAs.

Discovering cancer drivers and pathways is an active research area. Different algorithms 

have been designed to search for cancer driver genes using cancer genomic data availed by 

large-scale projects such as The Cancer Genome Atlas (TCGA) and the International Cancer 

Genome Consortium (ICGC) (3–5) (see Djosta Nono et al (6) for a comprehensive review). 

However, a majority of the current methods concentrates on finding genes that are mutated 

above a baseline frequency according to a certain statistical model, without information 

regarding the functional impacts of mutation events, such as the biological processes 

perturbed by the mutation events. As such, it is difficult to organize candidate drivers 

observed in different tumors into pathways. To address this challenge, researchers have 

designed a family of algorithms that searches for a set of mutated genes that exhibit 

mutually exclusive patterns in tumors and identifies them as members of a candidate 

pathway, based on the observation that SGA events affecting a pathway seldom co-occur in a 

tumor (7–12). This framework has limitations in that mutual exclusivity is neither a 

necessary nor a sufficient condition for genes involved in a pathway. That is, not all genes in 

a pathway show mutual exclusivity, and not all mutually exclusive genes are in a common 

pathway. Other researchers resort to the knowledge of biological networks, e.g., protein-

protein interaction (PPI) networks, to search for genes that are closely located within a 

biological network and are commonly perturbed by SGAs (13–16). The limitation of this 

approach is that PPI data can be noisy and that member proteins of a pathway do not always 

physically interact. Importantly, the aforementioned driver-identification or pathway-

discovery algorithms do not take into account the functional impacts of SGA events, which 

is critical in order to determine if an SGA-perturbed gene is a driver and whether a set of 

SGAs perturb a common cellular signal.

In this study, we developed a novel signal-oriented computational framework, which utilizes 

the intrinsic relation between the perturbation of a signaling pathway and the expression 

changes of down-stream genes regulated by the pathway, to search for driver SGAs and 

reconstruct signaling pathways. To this end, we first applied a bipartite-graph-based 

functional module discovery (BFMD) algorithm to identify transcriptomic modules (17,18) 

as signatures of cellular signals that are perturbed in tumors. We then applied a weighted k-

path merge (WKM) algorithm to identify a set of SGAs that perturb a common signal 

(12,19) with respect to a transcriptomic module as a means to discover the members of a 

cancer pathway.

Applying our framework to breast cancer tumors from TCGA, we defined the most 

commonly perturbed transcriptomic modules and investigated the candidate pathways 

driving their aberrant expression. We discovered a p53-centered signaling complex involving 

TP53, PTK2, YWHAZ, and MED1, which drives multiple oncogenic processes in breast 
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cancer and is associated with worse clinical outcome. We show that disrupting the complex, 

by knocking down PTK2, YWHAZ and MED1 proteins, specifically attenuates or reverses 

the oncogenic phenotypes induced by mutant p53. Given that p53 is the most frequently 

mutated gene (>40% of all types of tumors) and is associated with worse outcome (1,20), the 

effective targeting of p53-mutation-mediated signals could have a significant impact on a 

large number of cancer patients.

The signal-oriented framework is a general approach that can be used to find other cancer 

pathways and signaling complexes, which could potentially have a broad impact on 

precision medicine in cancer.

Materials and Methods

Identification of response modules

An overview of our study is shown in the supplementary Fig S1a – S1f. In each tumor, 

differentially expressed genes annotated with closely related GO terms in the Biological 

Process domain were grouped into non-disjoint sets, with each set summarized by a GO 

term using a method previously reported (18,21) (Algorithm S1). Genes summarized by a 

common GO term and tumors were organized in a tumor-vs-gene bipartite graph (Fig 1a). 

Search for a densely connected sub-graph was performed using a previously reported 

algorithm (18) (Algorithm S2–1, S2–2). Since the differentially expressed genes in such a 

transcriptomic module were repeatedly co-differentially expressed in multiple tumors, we 

hypothesized that they were likely regulated by a common cellular signaling pathway that 

was perturbed in these tumors, and thus we refer to them as a response module.

Searching for members of a candidate pathway

To search for the SGAs in tumors perturbing a pathway that regulates the expression of a 

response module, we designed the WKM algorithm (Supplementary Fig S1e, Algorithm S3–

1, S3–2, S4) with the following steps: 1) Apply Fisher’s exact test to assess the strength of 

statistical association between each SGA and the expression state of the response module. 2) 

Instantiate a human protein-protein interaction (PPI) network in which nodes represent 

proteins and edges reflect physical interactions between them. In the network, the proteins 

that were perturbed by SGAs in TCGA data are assigned a positive weight (the negative log 

of the p-value from Step 1), and the unaffected proteins are assigned a weight of 0. Thus, the 

weight of a protein reflects the amount of information a gene/protein carries with respect to 

the expression state of the response module (the smaller the p-value, the bigger the weight). 

3) Iteratively search for k-paths (22) consisting of a set of k proteins (including SGA-

affected proteins and the nodes connecting them) with maximal total weight. 4) Iteratively 

merge intersecting k-paths (by order of descending weight) to construct a subnetwork, such 

that the total amount of information carried by the sub-network with respect to the response 

module is maximal. After merging each k-path into the sub-network, we reassessed the 

strength of the collective association of the SGAs in the sub-network with respect to the 

response module, and we stopped the procedure when subsequent merges resulted in a less 

than 10% increase of the negative log p-value. Detailed information for computational 

algorithms and cell biology experiments are provided in the Supplementary Method section.
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Cell experimental procedures—Breast cancer cell lines were obtained from the 

Integrative Cancer Biology Program (ICBP) 45 breast cancer cell line kit (ICBP45) of the 

National Cancer Institute. The cell lines were obtained by the ICBP program in 2010 and 

were thawed two weeks before experiments (2013–2014). There were less than 10 passages 

between thawing of the cells, and the experiments described in this study. In general, 

mycoplasma testing is performed periodically on all cell lines used in the laboratory (approx 

every 3 months), but in this case this was not necessary since all lines were passaged less 

then 10 times since obtaining from NCI-ATCC ICBP program. Detailed experimental 

procedures for cell biology experiments are provided in the Supplementary Methods section.

Results

Transcriptomic signatures reflect the cellular states of tumors

In order to identify aberrant pathways as potential therapeutic targets, we first searched for 

transcriptomic modules that reflect aberrations in cellular signaling, i.e., expression 

signatures of aberrant pathways. Our approach is based on the assumption that if a module 

of genes is involved in a common biological process and exhibits coordinated changes in 

multiple tumors, this transcriptomic module is likely regulated by a common signaling 

pathway (17,18,23,24) that is aberrant in these tumors. We have developed the BFMD 

algorithm (see Methods and supplementary Fig S1a, S1b, Algorithm S2–1, S2–2) to 

discover such transcriptomic modules.

We obtained the genomic (somatic mutations and copy number alterations) and 

transcriptomic data of 533 breast cancer tumors in TCGA (25). For each tumor, we first 

identified differentially expressed genes by contrasting the expression value of a gene 

against the distribution of the control breast samples profiled by TCGA (see Methods). We 

then grouped differentially expressed genes into subsets, with each set consisting of genes 

involved in a common biological process summarized by a Gene Ontology (GO) term (26), 

using the methods developed in our previous studies (18,21,27) (see Supplementary 

Methods). To search for a module of genes that was co-differentially expressed in multiple 

tumors, we organized the genes annotated by a common GO term and all tumors as a 

bipartite graph (Fig 1b) and searched for a dense subgraph (18) enclosing a set of tumors 

and a module of genes, i.e., a response transcriptomic module. To avoid finding trivial 

modules that contained few genes or were differentially expressed in few tumors, we 

discarded the subgraphs that enclosed less than 10 genes or less than 30 tumors (< 5% of 

tumors). Since each response module is annotated with a unique GO term, we used the GO 

term to represent the response module.

We identified 88 putative response modules (Table S1) among the TCGA breast cancers. 

Many response modules contained genes that are involved in biological processes intrinsic to 

cancer cells (28), such as cell cycle checkpoint (GO:000075), cell migration (GO:0016477), 

and programmed cell death (GO:0012501), whereas other response modules reflected 

biological processes related to the changed environment of tumors, such as wound healing 
(GO:0042060) and inflammatory response (GO:0006954).
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Signal-oriented response modules are informative features for cancer subtyping and 
clinical outcome prediction

The expression state of these response modules provided a more concise representation of 

the state of signaling pathways in a tumor than did individual genes (17,29). To investigate 

whether this pathway-oriented representation is informative of patient outcome, we 

examined the expression state of these 88 putative response modules in another large breast 

cancer cohort, METABRIC (30), which had been followed for a longer period than the 

TCGA cohort and was thus more suitable for survival analysis. We trained a classifier for 

each of the 88 response modules to detect the expression statuses of these modules in 

METABRIC samples, and clustering analysis indicates that the expression statuses of the 

modules exhibit similar patterns among the two cohorts (Fig S2a – S2h). There is no 

significance in the distribution of patient age and race across the clusters.

We then set out to test the hypothesis that, because they reflect the state of cellular signals, 

the expression states of response modules can be used as informative features for predicting 

patient survival. Conditioning on the expression state of each response module, we 

iteratively divided the METABRIC cohort into two groups and conducted a survival analysis 

to assess whether each modular feature was informative of outcome. After correcting for 

potential false discoveries (31) due to multiple testing and random discovery of informative 

modules, we identified 11 response modules that are significantly informative of patient 

outcome (Fig 1b, Fig S3).

Since some of the remaining 88 response modules, though not predictive when evaluated 

alone, could have enhanced predictive power when analyzed in combination with others, we 

examined all combinations of 4 (from the full set of 88 response modules) as features and 

used these to build decision trees (Fig S4a, S4b, supplementary Methods) to divide the 

patients into subgroups, followed by a survival analysis. We retained the top 10 

combinations that yielded significant survival differences, which were derived from 8 

response modules (Table S2). Interestingly, this procedure included response modules 

annotated as inflammation response (GO:0006954) and blood coagulation (GO:0007596, 

which is a subordinate concepts of the biological process wound healing GO:0042060), both 

of which were deemed non-informative when evaluated alone. These 8 response modules 

can be organized into 3 main axes important to cancer (17,28,32): cell proliferation, 

cytoskeleton organization/cellular mobility, and inflammation/wound healing. Among the 8 

modules, 3 are related to different stages of cell cycle and their states are highly correlated; 

therefore we merged them into a combined module, which results in 6 informative response 

modules.

Using the above 6 response modules as features, we performed consensus clustering analysis 

(33) to search for breast cancer subtypes. Unlike the 4 breast cancer subtypes reported by 

TCGA, our analysis divided breast cancer into 8 new subgroups (Fig 1c, 1d, S5a, S5b) that 

exhibited significant differences in survival. The results indicate that the response modules 

provide a signal-oriented perspective for identifying novel subtypes of tumors. Compared 

with conventional breast cancer subtyping based on individual genes, our approach not only 

identified response modules highly predictive of patient outcome, but it also enabled us to 
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search for a candidate pathway underlying the aberrant expression of each response module 

as a potential therapeutic target.

Combining genomic alteration data and response modules enables pathway discovery

Availability of TCGA genomic data enabled us to search for SGAs that likely perturbed 

signaling pathways regulating each response module. We hypothesize that if a set of SGAs is 

consistently associated with the aberrant expression of a response module, and if the 

proteins affected by these SGA events are closely located within a PPI network, then the 

SGAs likely perturb a signaling pathway that regulates the response module of interest.

We applied the WKM algorithm to search for the perturbation module regulating each 

response module (n=88), the results of which are available at a supplementary website 

(http://breastcancersignalingsignatures.dbmi.pitt.edu/). The relationship between genes in 

response and perturbation modules are biologically sensible. For example, for a response 

module containing genes annotated by GO:0016477 (cell migration), we examined the genes 

in its corresponding perturbation module by performing an extensive literature search, and 

we found that 30 of the 40 genes in the perturbation module are related to cell migration or 

metastasis (Table S3), including AKT1, CREB1, GAB2, and CCT2. In another example, for 

a response module containing 23 genes annotated by GO:0012501 (programmed cell death), 

we found that 35 of the 46 proteins (genes) in its corresponding perturbation module are 

reported to regulate cell death, apoptosis, or autophagy (Table S4).

In depth analysis of a pathway influencing breast cancer outcome

To validate that our approach is capable of identifying biologically meaningful pathways, we 

further investigated the candidate pathway that drove the aberrant expression of the mitosis 
response module (GO:0007067), which was the pathway most highly predictive of patient 

survival (P < 1.87−16). We performed detailed computational analyses of the relationships 

between the members of this candidate pathway and further experimentally tested the 

hypothesis that members of this candidate pathway (revealed by our methods) truly regulate 

common signals.

Fig 2a shows the members of the perturbation module and their genomic alteration status in 

TCGA breast cancer tumors. We organized tumors along the x-axis and SGAs along the y-

axis, such that a block indicates a subset of tumors in which a gene was perturbed by certain 

types (color-coded) of SGAs. In the figure, the vertical line between Groups D and E 

dichotomizes tumors into those that aberrantly expressed the response module (to the left) 

and those that did not (to the right). Fig 2a shows that mutations of TP53 and copy number 

amplifications of YWHAZ, FADD, PTK2, and MED1 were significantly associated with the 

expression of the mitosis response module. In 134 tumors (Groups B & C), SGAs affecting 

any of these genes (i.e., mutation of TP53 or amplification of any of YWHAZ, FADD, 
PTK2 and MED1) were sufficient to drive the aberrant expression of the mitosis response 

module, and these SGA events exhibited a mutually exclusive pattern in these tumors, which 

strongly suggests that they perturb a common signal (7,9). On the other hand, 76 tumors 

(Group A) harbored a TP53 mutation in combination with copy number amplification of 

one or more of YWHAZ, FADD, PTK2, and MED1, and the frequency of their being co-
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perturbed was significantly greater than by chance (Table 1). The high prevalence of 

combinatorial perturbations indicates that genetic interactions (34) among these genes 

provides an oncogenic advantage in these tumors. In the PPI network, p53 is a hub directly 

interacting with PTK2, YWHAZ, and MED1 proteins (Fig 2b) (35,36), providing a 

molecular basis for the genetic interactions at the protein level. Since the PPI interactions 

among these proteins provide a strong indication that they may function together, we 

concentrate on studying the relationships among these four proteins in the following 

subsections.

SGAs affecting TP53, PTK2, YWHAZ, and MED1 perturb a common set of signals

Based on the discovered genetic interactions and known physical interactions among TP53, 

PTK2, YWHAZ, and MED1 (hereafter abbreviated as TPYM), we hypothesized that their 

corresponding proteins form a signaling complex that cooperatively encodes a common set 

of signals. To test this hypothesis, we identified all the response modules regulated by the 

TPYM SGAs, such that each SGA was associated with a collection of response modules 

reflecting the distinct cellular signals perturbed by the SGA. We then organized the SGAs 

and the response modules regulated by them in a directed acyclic graph to reveal the nested-

effects relationships among the target response modules regulated by these SGAs (18,37) 

(Fig 2c). In this graph, a directed edge (or a path) from an SGA to a response module 

indicates that the SGA regulates the expression of the response module, and an edge 

between two SGAs indicates that the response modules regulated by the child SGA are 

subsumed by those regulated by the parent SGA. Fig 2c shows that perturbing TP53 led to 

the aberrant expression of a broad range of response modules, and the response modules 

affected by PTK2, YWHAZ, and MED1 were largely overlapping and subsumed by those 

affected by TP53. The results indicate that the SGAs affecting TPYM perturb a common set 

of signals manifested by the common response modules.

Because it is reported that the individual genes in TPYM are involved in epithelial-

mesenchymal transition (EMT) (38–40), we examined the relationships of the SGAs 

perturbing these genes and the expression profiles of EMT-signature genes (41) in TCGA 

breast cancer tumors, and indeed the SGAs affecting TPYM were associated with the 

differential expression of EMT signature genes (Fig 2d, Table S5). In sum, our results 

demonstrate that SGAs perturbing TPYM affect cell cycle progression, cell proliferation, 

and EMT.

TPYM form a protein complex

Based on the observed genetic interaction (frequent joint alteration of TPYM) and the 

known protein interactions from PPI databases, we hypothesized that the 4 proteins form a 

physical complex that mediates the aforementioned set of signals. To test this hypothesis, we 

first examined whether the 4 proteins form a protein complex in breast cancer cell lines 

(Table 2). Fig 3a shows the baseline expression of each of the 4 proteins in different cell 

lines. Co-immunoprecipitation results show that the 4 proteins form a complex in the MDA-

MB231 cell line (Fig 3b) and in other cell lines (Fig S6). When we used siRNA to knock 

down each of the proteins individually followed by co-immunoprecipitation (Fig 3c – 3e, Fig 

S7), the complex was disrupted.
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Since we observed that a single SGA affecting one of TPYM proteins was often sufficient to 

mediate the signals of the entire complex in some tumors (Fig 2a), we hypothesized that an 

SGA affecting one member of the complex was sufficient to activate a feed-forward 

mechanism to induce the formation of the signaling complex. To test this hypothesis, we 

examined whether the transcription of PTK2, YWHAZ, and MED1 were coordinated, and 

we also investigated the impact of TP53 mutations on their expression. Fig 3f shows that 

expression of PTK2 and YWHAZ are overexpressed and strongly correlated (R = 0.613, P ≤ 

1.0E-16) in tumors with different combinations of mutation or copy number alterations in 

TP53, PTK2, and YWHAZ. Interestingly, copy number amplification of either PTK2 or 

YWHAZ (with or without TP53 mutation) tended to be accompanied by over-expression of 

the other (Fig 3f). Mutations in TP53 alone were sufficient to induce the expression of both 

PTK2 and YWHAZ (Fig 3f, 3g, 3h) in tumors without copy number alterations of the latter 

genes. We found that transcriptomic expression of MED1 was not correlated with the other 

members.

In summary, the results indicate that a transcriptomic mechanism likely coordinates the 

expression between PTK2 and YWHAZ and with respect to TP53 status, whereas MED1 is 

likely regulated by unknown post-transcriptional mechanisms.

Disrupting TPYM complex attenuates oncogenic behaviors

Because TPYM form a protein complex and the SGAs perturbing TPYM affect a common 

set of signals, we hypothesized that formation of the TPYM complex mediates the 

oncogenic signals that are commonly associated with the SGAs perturbing its members (e.g., 

mutations of p53 or amplification of PTK2) and that disrupting this signaling complex could 

block the pathologic aberrant signals.

To test this hypothesis, we performed a series of knockdown experiments to disrupt the 

complex in breast cancer cell lines (Fig 3c – 3e). Based on our computational analyses 

(results from Fig 2c and 2d), we predicted that disrupting the complex would affect cell 

cycle progression, cell proliferation, colony formation, and cell migration (the latter two 

phenotypes are related to EMT), and we examined the impact of knockdown on these 

phenotypes. We found (Fig 4a – 4d, S8) that knocking down any member of the complex 

significantly attenuated the above oncogenic phenotypes in cell lines hosting p53 mutations 

(HCC38 and MDA-MB231), whereas the impact of knock-downs was moderate in cell lines 

with wild type TP53 (MCF7 and ZR75.1).

To examine whether knocking down PTK2, YWHAZ, and MED1 specifically blocks the 

oncogenic signal originated by p53 mutations, we introduced a mutant p53 (R231K) cDNA 

into cell lines with wild type TP53 (ZR75.1 and MCF-7) and a cell line with mutant TP53 
(MDA-MB231) to examine the impact of p53 mutation on oncogenic behavior. Our results 

(Fig 4e – 4f) showed a significant increase in the proportion of cells in S and G2/M phase 

and in cell proliferation induced by mutant p53. As expected, the introduction of mutant p53 

into MDA-MB231 did not change cellular phenotype. Importantly, our results (Fig 4e – 4f) 

demonstrate that the impact of mutant p53 in ZR75.1 and MCF-7 was reversed by depletion 

of PTK2, YWHAZ, or MED1. Taken together, our results indicate that the oncogenic effect 

of mutant p53 requires the presence of the other members of TPYM and that the oncogenic 

Lu et al. Page 8

Cancer Res. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effect of mutant p53 can be blocked by knocking down PTK2, YWHAZ, and MED1, 

presumably through disrupting the TPYM complex.

Discussion

We designed and applied a signal-oriented computational framework, in which we first 

characterize perturbed cellular signals in the form of response modules, and then we identify 

the SGAs (and presumably associated signaling pathways) regulating these response 

modules. This framework enables us to discover the relationships between SGAs and the 

transcriptomic modules by teasing out specific information buried in highly convoluted 

transcriptomic and genomic alteration data. While this study mainly concentrates on breast 

cancer, the framework is generally applicable to study cancer pathways for all cancer types. 

We anticipate this framework will be applied broadly to different types of cancers for 

discovering novel cancer pathways and therapeutic targets per the example shown in this 

paper.

Our analyses highlight a previously unappreciated signaling complex that drives multiple 

oncogenic processes and is associated with poor outcome in breast cancer. Although the 

oncogenic effects of SGAs affecting individual genes in TPYM are well known (38–

40,42,43) and their relationships have been studied separately (36,44), the interplay among 

these genes in cancer, in particular their coordinated “mutual activation” to form a signaling 

complex, had not been well appreciated. Identification of this pathway reflects the strength 

of signal-oriented multi-omic analyses in discovering novel pathways, which reveals 

connections that are difficult to discern when studying different types of omics data 

separately.

Our results provide a novel hypothesis for the “gain of function” (45–47) of p53 mutations. 

It is well appreciated that tumors with mutations in TP53 are more aggressive than tumors 

with homozygous loss of TP53. That is, mutant p53 not only loses the tumor suppressor 

function but also gains oncogenic properties (45–47). However, the exact mechanism of such 

gain of function remains unclear. Our results demonstrate that mutations in p53 are 

associated with formation of the TPYM signaling complex, which in turn mediates multiple 

oncogenic processes such as EMT. Thus, the “gain of function” of mutant p53 is likely 

mediated by the formation of the complex.

Our results show that mutations in TP53 often result in the accumulation of mutant p53 

proteins, due to the loss of a feedback regulation of p53 protein (2,48); our results also show 

that mutation of TP53 is often associated with coordinated transcription induction of PTK2 
and YWHAZ, thus leading to an optimal stoichiometry that would facilitate the formation of 

the TPYM complex. The higher than expected co-occurrence of mutation in TP53 and copy 

number amplification of PTK2 or WYHAZ also indicates that such joint alterations may 

provide oncogenic advantages. As for the mechanism by which mutation in TP53 induces 

expression of PTK2, it is known that wild type p53 binds to the promoter of PTK2 (44), 

potentially suppressing the gene. Thus loss of the transcription factor function of mutant p53 

would release such a suppression and lead to the induction of PTK2. It can be hypothesized 

that regulation of YWHAZ is controlled in a similar fashion. We hypothesize that wild type 
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p53 may also be able to form the TPYM complex. However, the p53 protein is usually 

tightly controlled in TP53-wt cells, thus the rate and the quantity of the TPYM complex may 

be limited. This may explain why the p53-mutant cell lines are more sensitive to disrupting 

the TPYM complex than the cell lines with wild type p53 are, because the former may be 

more addicted to the oncogenic propertiesy of the complex.

Identification of the TPYM signaling complex could translate into a therapeutic strategy for 

treating tumors with aberrations in the TPYM pathway by disrupting the complex, which is 

supported by our proof-of-concept experiments. Although the knockdown of each individual 

member of TPYM could uniquely affect each oncogenic phenotype (e.g., cell cycle 

proliferation, cell proliferation, colony formation, cell migration) via a distinct mechanism 

(independent of other complex members), it is a more concise and plausible hypothesis that 

the loss of oncogenic phenotypes associated with each knockdown results from the 

disruption of the complex. As such, all four proteins could be targeted to disrupt the 

signaling complex to block its signal, thus expanding treatment options. For example, for 

tumors hosting p53 mutations, one can target any of the other three members, even if their 

genomic statuses are wild type. Furthermore, targeting the complex creates a “synthetic 

lethal” effect (49) with respect to p53 mutations. Our results show that targeting the 3 

members of TPYM other than p53 has a more prominent impact on cell lines with p53 

mutations, indicating that the oncogenic properties of these cell lines are more dependent on 

the complex.

Although our results are derived from breast cancer, the TPYM pathway is perturbed in 

multiple cancers (collectively covering over 90% of ovarian cancers, uterine carcinosarcoma, 

and lung squamous cancers, and over 70% of small cell lung cancers, head and neck 

squamous carcinomas, and esophageal adenocarcinoma in TCGA) (50). Therefore, any 

successful therapeutic strategy targeting the members of the TPYM complex would have a 

broad impact. Furthermore, our signal-oriented computational framework will facilitate the 

discovery of additional novel pathways capable of being exploited by targeted therapeutic 

strategies.

One limitation of the method reported in this study is the requirement of GO annotations in 

order to find transcriptomic modules related to a common function, which may miss genes 

that are not well annotated. Another potential limitation is that the k-path algorithm relies on 

a PPI network to search for candidate driver SGAs, which subjects the method to the 

incompleteness and noisiness of our knowledge in PPIs. Nonetheless, we show that the 

method in general can identify important response and perturbation modules that are 

informative of patient survival. Future studies may include using the statuses of response or 

perturbation modules to predict the efficacy of anticancer drugs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of response modules predictive of clinical outcomes
a) Diagram illustrating the search for a response module by finding a densely connected 

bipartite graph. Tumors and DEGs annotated by a common GO term are represented as the 

nodes in the graph. An edge indicates that a gene is differentially expressed in a tumor. A 

response module consists of a set of co-differentially expressed genes in multiple tumors 

satisfying a specified connectivity. b) A volcano plot illustrating response modules that are 

predictive of patient outcomes. A row corresponds to a response module, and a red dot 

indicates the Kaplan-Meier p-value of METABRIC patients dichotomized according to the 

state of the response module. The pink area indicates the upper 95% of p-values that can be 

obtained when dividing patients conditioning on randomly drawn gene sets of the same size 
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as the corresponding response module. c) A heat map illustrating the averaged within-

module expression values of response modules (response modules annotated with GO:

0000278, GO:0000087, and GO:0007067 are merged and indicated by an asterisk). The 

pseudo-color represents the relative expression value of a response module in tumors by the 

number of standard deviations from the mean. The tumors were clustered into subgroups 

with group IDs indicated below the heat map; the proportion of tumors belonging to PAM50 

subtypes within a cluster are shown as colors. d) Kaplan-Meier survival curves of the 8 

patient groups identified by clustering analysis.
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Figure 2. TPYM encodes a common set of signals
a) The distribution patterns of SGAs significantly associated with the expression state of the 

mitosis response module (GO:0007067). Tumors are on the x-axis, and SGA-perturbed 

genes are along the y-axis. A color-coded box indicates the tumors in which a gene is 

altered. The solid line separates the tumors with the response module aberrantly expressed 

(left) from those with normal expression (right). Dotted lines separate tumors into subsets 

with different combinations of TPYM alterations. b) PPI interaction between TPYM and 

their close neighbors. c) The relationships between TPYM alterations and their target 

response modules are organized as a directed acyclic graph. d) The expression status of 

EMT signature genes and the SGA status of TPYM. TCGA breast cancers are arranged 

along the x-axis, and EMT signature genes are arranged along the y-axis. The expression 

value of a gene is normalized to have a mean of 0 and unit standard deviation, and the 

pseudo-color is mapped to the range covering 90% of the tumors. PAM50 classifications of 

the tumors are shown as a color bar below.
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Figure 3. P53, PTK2, YWHAZ, and MED1 form a protein complex
a) Baseline protein expression of TPYM proteins in different cell lines. b) Co-IP of the four 

proteins. Results are organized according to antibody for Co-IP (“−” denotes control IgG, 

“+” indicates specific antibody) and antibody for Western blot (rows). c) Western blot 

showing the impact of siRNA treatments on the expression of the four proteins. d – e) The 

impact of depleting member proteins of the tetramer complex. f) Scatter plot of PTK2 (y-

axis) and YWHAZ (x-axis) expression in tumors. Each point represents a tumor, and its 

genomic status of TP53, PTK2, and YWHAZ are indicated by color and shape. Samples are 

normalized according to the mean and standard deviation (SD) of normal breast samples; the 

unit of axis represents the number of SDs from the mean of the normal samples for the 

corresponding genes. The dashed lines indicate 2 SDs above the mean of the normal samples 

for PTK2 and YWHAZ respectively. The solid line is the regression line with R-squared and 

p-values shown. g – h) Histograms of normal samples (black), tumor samples without SGAs 

affecting TP53, PTK2, or YWHAZ (blue), and tumor samples with TP53 mutation but 

normal status for PTK2 and YWHAZ (red). The P-values for the contrasts between TP53 
mutant tumors and those from the tumors without SGAs are shown.
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Figure 4. Knocking down TPYM proteins attenuates oncogenic cellular phenotypes
The impact of knocking down TPYM on a) cell cycle, b) cell proliferation, c) colony 

formation, and d) cell migration. e) Impact of introducing mutant p53 (R231K) on cell cycle 

and impact of co-transfection of mutant p53 and siRNA against PYM. f) Impact of 

introducing mutant p53 (R231K) on cell proliferation and impact of co-transfection of 

mutant p53 and siRNA against PYM.
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Table 2

Genomic status of TPYM in the studied cell lines

TP53 PTK2 YWHAZ MED1

MDA-MB-231 p53(R280K)/p53(null) wt wt wt

HCC38 p53(R273L)/p53(wt) wt wt wt

MCF-7 wt wt copy number amplified wt

ZR75.1 wt wt wt wt
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