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Abstract

This paper presents an algorithm for performing early
detection of disease outbreaks by searching a database
of emergency department cases for anomalous patterns.
Traditional techniques for anomaly detection are unsat-
isfactory for this problem because they identify individ-
ual data points that are rare due to particular combina-
tions of features. When applied to our scenario, these
traditional algorithms discover isolated outliers of par-
ticularly strange events, such as someone accidentally
shooting their ear, that are not indicative of a new out-
break. Instead, we would like to detect anomalous pat-
terns. These patterns are groups with specific character-
istics whose recent pattern of illness is anomalous rel-
ative to historical patterns. We propose using a rule-
based anomaly detection algorithm that characterizes
each anomalous pattern with a rule. The significance
of each rule is carefully evaluated using Fisher’s Exact
Test and a randomization test. Our algorithm is com-
pared against a standard detection algorithm by mea-
suring the number of false positives and the timeliness
of detection. Simulated data, produced by a simulator
that creates the effects of an epidemic on a city, is used
for evaluation. The results indicate that our algorithm
has significantly better detection times for common sig-
nificance thresholds while having a slightly higher false
positive rate.

Introduction
Multidimensional data with a temporal component is avail-
able from numerous disciplines such as medicine, engineer-
ing, and astrophysics. This data is commonly used for mon-
itoring purposes by a detection system. These systems in-
spect the data for anomalies and raise an appropriate alert
upon discovery of any deviations from the norm. For exam-
ple, in the case of an intrusion detection system, an anomaly
would indicate a possible breach of security (Lane & Brod-
ley 1999; Eskin 2000; Maxion & Tan 2001).

We would like to tackle the problem of early disease out-
break detection in a similar manner. In our situation, we
have a database of emergency department (ED) cases from
several hospitals in a city. Each record in this database con-
tains information about the individual who was admitted to
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the ED. This information includes fields such as age, gen-
der, symptoms exhibited, home location, work location, and
time admitted. (To maintain patient confidentiality, personal
identifying information, such as patient names, addresses,
and identification numbers were not in the dataset used in
this research.) Clearly, when an epidemic sweeps through
a region, there will be extreme perturbations in the number
of ED visits. While these dramatic upswings are easily no-
ticed during the late stages of an epidemic, the challenge is
to detect the outbreak during its early stages and mitigate
its effects. Different diseases cause different signals to ap-
pear in temporal, spatial and demographic data (Wagner et
al. 2001). In order for any anomaly detection algorithm to
be successful in early detection of disease outbreaks, it must
be able to detect abnormalities in these three aspects of ED
data.

Although we have posed our problem in an anomaly de-
tection framework, the majority of anomaly detection algo-
rithms are inappropriate for this domain. In this section, we
will illustrate the shortcomings of traditional anomaly detec-
tion techniques in our task of early epidemic detection.

A simplistic first approach would be to report an ED case
as an anomaly if it has a rare value for some attribute. As
an example, we would signal an anomaly if we encountered
a patient over a hundred years old. While this method de-
tects the outliers for a single attribute, it fails to identify
anomalies that occur due to combinations of features which
by themselves might not be abnormal but together would
certainly be unusual. For instance, the first technique would
not find anomalies in cases where the patients were male and
under the age of thirty but exhibited symptoms that were
associated with a disease that affects primarily female se-
nior citizens. Fortunately, there are plenty of anomaly de-
tection algorithms that can identify outliers in multidimen-
sional feature space. Typically these detection algorithms
build a probabilistic model of the “normal” data using a va-
riety of techniques such as neural nets (Bishop 1994) and a
mixture of naive Bayes submodels (Hamerly & Elkan 2001)

However, even that kind of sophisticated outlier detection
is insufficient for our purposes. Outlier detection succeeds at
finding data points that are rare based on the underlying den-
sity, but these data points are treated in isolation from each
other. Early epidemic detection, on the other hand, hinges
on identifying anomalous groups, which we will refer to as
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anomalous patterns. Specifically, we want to know if the
recent proportion of a group with specific characteristics is
anomalous based on what the proportion is normally. Tradi-
tional outlier detection will likely return isolated irregulari-
ties that are insignificant to the early detection system.

We might then argue that aggregate daily counts of a sin-
gle attribute or combination of attributes should be moni-
tored in order to detect an anomalous group. For instance,
we could monitor the daily number of people appearing in
the ED with respiratory problems. A naive detector would
determine the mean and variance of the monitored signal
over a training set which is assumed to capture the normal
behaviour of the system. Then, a threshold would be estab-
lished based on these values. Whenever the daily count ex-
ceeds this threshold, an alert is raised. This technique works
well if the monitored features are known. However, the spa-
tial, temporal, and demographic signatures of diseases are
simply too wide a space for us to know a priori what fea-
tures to monitor. We could well miss some combination
of features that would indicate an outbreak of a particular
disease. Thus, we need an algorithm that is able to detect
anomalous patterns rather than pre-defined anomalies.

Our approach to this problem uses a rule-based anomaly
pattern detector. Each anomalous pattern is summarized by
a rule, which in our current implementation consists of one
or two components. Each component takes the form Xi =
V j

i , where Xi is the ith feature and V j
i is the jth value of

that feature. Multiple components are joined together by
a logical AND. For example, a two component rule would
be Gender = Male and Age Decile = 4. One benefit to a
rule-based system is that the rules are easily understood by
a non-statistician.

However, we need to be wary of the pitfalls of rule-based
anomaly pattern detection. Since we are finding anoma-
lous patterns rather than isolated anomalies, we will be per-
forming multiple hypothesis tests. When multiple hypoth-
esis tests are performed, the probability of a false positive
becomes inflated unless a correction is made (Benjamini &
Hochberg 1995). In addition, as we add more components
to a rule, overfitting becomes a serious concern. A careful
evaluation of significance is clearly needed. Furthermore,
temporal healthcare data used for disease outbreak detec-
tion, are frequently subject to “seasonal” variations. As an
example, the number of influenza cases is typically higher
during winter than summer. Additionally, the number of ED
visits vary between weekends and weekdays. The definition
of what is normal will change depending on these variations.

Rule-based Anomaly Pattern Detection
The basic question asked by all detection systems is whether
anything strange has occurred in recent events. This ques-
tion requires defining what it means to be recent and what
it means to be strange. Our algorithm considers all patient
records falling on the current day under evaluation to be re-
cent events. Note that this definition of recent is not restric-
tive – our approach is fully general and recent can be defined
to include all events within some other time period. In or-
der to define an anomaly, we need to establish the concept

of something being normal. Our algorithm is intended to be
applied to a database of ED cases and we need to account
for environmental factors such as weekend versus weekday
differences in the number of cases. Consequently, normal
behaviour is assumed to be captured by the events occur-
ring on the days that are exactly five, six, seven, and eight
weeks prior to the day under consideration. The definition of
what is normal can be easily modified to another time period
without major changes to our algorithm. We will refer to the
events that fit a certain rule for the current day as Ctoday.
Similarly, the number of cases matching the same rule from
five to eight weeks ago will be called Cother.

From this point on, we will refer to our algorithm as
WSARE, which is an abbreviation for “What’s strange about
recent events”. WSARE operates on discrete data sets with
the aim of finding rules that characterize significant patterns
of anomalies. Due to computational issues, the number of
components for these rules is two or less. The description of
the rule-finding algorithm will begin with an overview fol-
lowed by a more detailed example.

Overview of WSARE The best rule for a day is found by
considering all possible one and two component rules over
events occurring on that day and returning the one with the
best “score”. The score is determined by comparing the
events on the current day against events in the past. Fol-
lowing the score calculation, the best rule for that day has
its p-value estimated by a randomization test. The p-value
for a rule is the likelihood of finding a rule with as good a
score under the hypothesis that the case features and date are
independent. The randomization-based p-value takes into
account the effect of the multiple testing that went on dur-
ing the rule search. If we were running the algorithm on a
day-by-day basis we would end at this step. However, if we
were looking at a history of days, we would need the addi-
tional step of using the False Discovery Rate (FDR) method
(Benjamini & Hochberg 1995) to determine which of the p-
values are significant. The days with significant p-values are
returned as the anomalies.

One component rules In order to illustrate this algorithm,
suppose we have a large database of 1,000,000 ED records
over a two-year span. This database contains roughly 1000
records a day, thereby yielding approximately 5000 records
if we consider the cases for today plus those from five to
eight weeks ago. We will refer to this record subset as DBi,
which corresponds to the recent event data set for day i. The
algorithm proceeds as follows. For each day i, retrieve the
records belonging to DBi. We first consider all possible
one-component rules. For every possible feature-value com-
bination, obtain the counts Ctoday and Cother from the data
set DBi. As an example, suppose the feature under con-
sideration is the Age Decile for the ED case. There are 9
possible Age Decile values, ranging from 0 to 8. We start
with the rule Age Decile = 3 and count the number of cases
for the current day i that have Age Decile = 3 and those that
have Age Decile �= 3. The cases from five to eight weeks
ago are subsequently examined to obtain the counts for the
cases matching the rule and those not matching the rule. The
four values form a two-by-two contingency table such as the

218    AAAI-02 



one shown in Table 1.

Scoring each one component rule The next step is to
evaluate the “score” of the rule using a hypothesis test in
which the null hypothesis is the independence of the row
and column attributes of the two-by-two contingency table.
In effect, the hypothesis test measures how different the dis-
tribution for Ctoday is compared to that of Cother. This test
will generate a p-value that determines the significance of
the anomalies found by the rule. We will refer to this p-
value as the score in order to differentiate this p-value from
the p-value that is obtained later on from the randomization
test. We use the Chi Squared test for independence of vari-
ables whenever the counts in the contingency table do not
violate the validity of the Chi Squared test. However, since
we are searching for anomalies, the counts in the contin-
gency table frequently involve small numbers. In this case,
we use Fisher’s Exact Test (Good 2000) to find the score for
each rule. Running Fisher’s Exact Test on Table 1 yields a
score of 0.00005058, which indicates that the count Ctoday

for cases matching the rule Age Decile = 3 are significantly
different from the count Cother.

Ctoday Cother

Age Decile = 3 48 45
Age Decile �= 3 86 220

Table 1: A Sample 2x2 Contingency Table

Two component rules At this point, the best one compo-
nent rule for a particular day has been found. We will refer
to the best one component rule for day i as BR1

i . The al-
gorithm then attempts to find the best two component rule
for the day by adding on one extra component to BR1

i . This
extra component is determined by supplementing BR1

i with
all possible feature-value pairs, except for the one already
present in BR1

i , and selecting the resulting two component
rule with the best score. Scoring is performed in the exact
same manner as before, except the counts Ctoday and Cother

are calculated by counting the records that match the two
component rule. The best two-component rule for day i is
subsequently found and we will refer to it as BR2

i
BR2

i , however, may not be an improvement over BR1
i .

We need to perform further hypothesis tests to determine
if the presence of either component has a significant effect.
This can be accomplished by determining the scores of hav-
ing each component through Fisher’s Exact Test. If we label
BR2

i ’s components as C0 and C1, then the two 2-by-2 con-
tingency tables for Fisher’s Exact Tests are as follows:

Records from Today
matching C0 and C1

Records from Other
matching C0 and C1

Records from Today
matching C1 and differ-
ing on C0

Records from Other
matching C1 and differ-
ing on C0

Table 2: First 2x2 Contingency Table 1 for a Two Compo-
nent Rule

Records from Today
matching C0 and C1

Records from Other
matching C0 and C1

Records from Today
matching C0 and differ-
ing on C1

Records from Other
matching C0 and differ-
ing on C1

Table 3: Second 2x2 Contingency Table 2 for a Two Com-
ponent Rule

Once we have the scores for both tables, we need to de-
termine if they are significant or not. We used the standard
α value of 0.05 and considered a score to be significant if it
was less than or equal to α. If the scores for the two tables
were both significant, then the presence of both components
had an effect. As a result, the best rule overall for day i is
BR2

i . On the other hand, if any one of the scores was not
significant, then the best rule overall for day i is BR1

i .

Finding the p-value for a rule The algorithm above
for determining scores is extremely prone to overfitting.
Even if data were generated randomly, most single rules
would have insignificant p-values but the best rule would
be significant if we had searched over 1000 possible rules.
In order to illustrate this point, suppose we follow the
standard practice of rejecting the null hypothesis when the
p-value is < α, where α = 0.05. In the case of a single
hypothesis test, the probability of making a false discovery
under the null hypothesis would be α, which equals 0.05.
On the other hand, if we perform 1000 hypothesis tests,
one for each possible rule under consideration, then the
probability of making a false discovery could be as bad
as 1 − (1 − 0.05)1000 ≈ 1, which is much greater than
0.05 (Miller et al. 2001). Thus, if our algorithm returns
a significant p-value, we cannot accept it at face value
without adding an adjustment for the multiple hypothesis
tests we performed. This problem can be addressed using a
Bonferroni correction (Bonferroni 1936) but this approach
would be unnecessarily conservative. Instead, we turn to
a randomization test in which the date and each ED case
features are assumed to be independent. In this test, the
case features in the data set DBi remain the same for each
record but the date field is shuffled between records from
the current day and records from five to eight weeks ago.
The full method for the randomization test is shown below.

Let UCPi = Uncompensated p-value ie. the score
as defined above.

For j = 1 to 1000
Let DB

(j)
i = newly randomized dataset

Let BR
(j)
i = Best rule on DB

(j)
i

Let UCP
(j)
i = Uncompensated p-value of BR

(j)
i on

DBj
i

Let the compensated p-value of BRi be CPVi ie.

CPVi =
# of Randomized Tests in which UCP j

i > UCPi

# of Randomized Tests
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It is clear from this procedure that CPVi is an estimate
of the chance that we would have seen an uncompensated
p-value as good as UCPi if in fact there was no relationship
between date and case features. In practice, for computa-
tional reasons, we involve the old idea of “racing” (Maron
& Moore 1997) during the randomization procedure. If BRi

is highly significant, we run the full 1000 iterations but we
stop early if we can show with very high confidence that
CPVi is going to be greater than 0.05.

Using FDR to determine which p-values are significant
This algorithm can be used on a day-to-day basis similar
to an online algorithm or it can operate over a history of
several days to report all significantly anomalous patterns.
When using our algorithm on a day-to-day basis, the com-
pensated p-value CPVi obtained for the current day through
the randomization tests can be interpreted at face value.
However, when analyzing historical data, we need to com-
pare the CPV values for each day in the history. Compari-
son of multiple CPV values results in a second overfitting
opportunity analogous to that caused by performing mul-
tiple hypothesis tests to determine the best rule for a par-
ticular day. As an illustration, suppose we took 500 days
of randomly generated data. Then, approximately 5 days
would have a CPV value less than 0.01 and these days would
naively be interpreted as being significant. Two approaches
can be used to correct this problem. Again, the Bonfer-
roni method (Bonferroni 1936) aims to reduce the proba-
bility of making at least one false positive to be no greater
than α. However, this tight control over the number of
false positives causes many real discoveries to be missed
(Miller et al. 2001). The other alternative is the False Dis-
cover Rate (FDR) method (Benjamini & Hochberg 1995;
Miller et al. 2001), which guarantees that the fraction of the
number of false positives over the number of tests in which
the null hypothesis was rejected will be no greater than α.
The FDR method is more desirable as it has a higher power
than the Bonferroni method but still has reasonable control
over the number of false positives. We incorporate the FDR
method into our rule-learning algorithm by first providing
an α value and then using FDR to find the cutoff threshold
for determining which p-values are significant.

The Simulator

Validation of our algorithm is a difficult task due to the type
of data required. Data consisting of ED cases during a dis-
ease outbreak is extremely limited and there are few avail-
able databases of ED cases during a bioagent release. To
make matters more difficult, evaluation of our anomaly pat-
tern detector requires a large amount of data that has records
that are labeled as either anomalies or normal events. 1 In
most cases, this task requires a human to perform the la-
belling by hand, resulting in an insufficient amount of data.
As a result of these limitations, we resort to evaluating our
algorithm using data from a simulator.

1Of course, labelled data is only needed for evaluation and val-
idation. In regular deployment, WSARE is applied to unlabelled
data

The simulator is intended to simulate (to a first approx-
imation) the effects of an epidemic on a population. The
world in this simulator consists of a grid in which there are
three types of objects – places, people, and diseases. These
three objects interact with each other in a daily routine for
a fixed number of days. Each of these objects will be de-
scribed in detail below.

Places The three types of places in the simulator include
homes, businesses, and restaurants. Their roles are evident
from what they represent in real life. People reside in homes,
work in businesses and eat in restaurants.

People Each person in the simulation has a specified gen-
der and age. Genders for the population are distributed uni-
formly between male and female while ages follow a normal
distribution with mean 40 and standard deviation of 15. Peo-
ple have a home location, a work location, a list of restau-
rants that they eat at and a list of homes of friends that they
like to visit. The locations of work, restaurants, and friends’
homes are chosen to be in close proximity to a person’s
home. On each day, a schedule is generated for a person.
In this schedule, people sleep at home until it is time to go
to work. They go to work, stop for a lunch break at a restau-
rant, and then return to work. After work, they spend some
time at home before going to a restaurant for dinner. Follow-
ing dinner, they visit a random selection of friends at their
houses. Finally they return home to sleep.

Diseases Diseases are the most complex objects in the
simulator as they are designed to allow the creation of a large
variety of disease models. People, places and grid cells can
all serve as infection agents since they can all carry a disease.
With infected places, we can create diseases that spread by a
contaminated food supply while with infected grid cells, we
can model airborne infections. Associated with each disease
is a spontaneous generation probability which corresponds
to how likely the disease is to appear in the population at
each timestep. Typically, this probability is extremely small.
Each disease also progresses through several stages at dif-
ferent rates. On each stage, the infected person can exhibit
a variety of symptoms. The current simulation chooses ran-
domly from a list of symptoms at each stage of the disease.
At the final stage, an infected agent can either recover or die.
The deceased are removed from the simulation.

The entire infection process revolves around the infection
probability, which controls how easily an infected person
can pass the disease on to another on each timestep. A ra-
dius parameter determines how close a person needs to be
to catch the disease. The simulator only allows a person
to have one disease at a time. Should more than one dis-
ease infect a person, the priority of an epidemic arbitrates
which disease is assigned to the person. Diseases can be de-
signed to spread from one particular type of agent to another
for example place to person, person to person, or grid cell
to person. Additionally, each disease has a specific demo-
graphic group that it infects. Whenever it has an opportunity
to spread to a person outside of this demographic group, the
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infection probability is reduced to a small percentage of its
original value.

We do not have hospitals in the simulation. Instead, when
people exhibit a certain symptom, we create an ED case by
adding an entry to a log file. This entry contains information
such as the person id, the day, the time, the current loca-
tion of the person, the home location of the person, and any
demographic information about the individual. Most impor-
tantly, we add to each entry the actual disease carried by that
person, though this last piece of information is hidden from
the anomaly detector.

Results
Simulation Settings Our results were obtained by running
the simulator on a 50 by 50 grid world with 1000 people,
350 homes, 200 businesses, and 100 restaurants. The sim-
ulation ran for 180 simulated days with the epidemic be-
ing introduced into the environment on the 90th day. There
are nine background diseases that spontaneously appeared
at random points in the simulation. At certain stages, these
background diseases caused infected people to display the
monitored symptom. These background diseases had low
infection probabilities as they were intended to provide a
baseline for the number of ED cases. The epidemic, on the
other hand, had a higher priority than the background dis-
eases and it had a relatively high infection probability, mak-
ing it spread easily through its target demographic group.

The epidemic that we added to the system will be referred
to as Epidemic0. This disease had a target demographic
group of males in their 50s. Additionally, the disease is per-
mitted to contaminate places. Epidemic0 had 4 stages with
each stage lasting for two days. The disease was contagious
during all four stages. At the final stage, we allowed the
person to recover instead of dying in order to keep the total
number of people in the simulation constant. Epidemic0 also
exhibited the monitored symptom with probability 0.33 on
the third stage, probability 1.0 on the final stage, and prob-
ability 0 on all other stages. This disease was designed to
produce a subtle increase in the number of daily ED counts
rather than causing extreme perturbations that could easily
be picked up by the naive algorithm.

Evaluation of performance We treated our algorithm as
if it ran on a day-by-day basis. Thus, for each day in the sim-
ulation, WSARE was asked to determine if the events on the
current day were anomalous. We evaluated the performance
of WSARE against a standard anomaly detection algorithm
that treated a day as anomalous when the daily count of ED
cases for the monitor symptom exceeded a threshold. The
standard detector was allowed to train on the ED case data
from day 30 to day 89 in the simulation to obtain the mean
µ and variance σ2. The threshold was calculated by the for-
mula below, in which Φ−1 is the inverse to the cumulative
distribution function of a standard normal.

threshold = µ + σ ∗ Φ−1(1 − p-value
2

)

In order to illustrate the standard algorithm, suppose we
trained on the data from day 30 to 89. The mean and

variance of the daily counts of the monitored symptom on
this training set were determined to be 20 and 8 respec-
tively. Given a p-value of 0.05, we calculate the threshold as
20 + 1.96 ∗

√
8 = 25.54. After training, the standard algo-

rithm is run over all the days of data from day 0 to day 179.
Any day in which the daily count of the particular symptom
exceeds 25.54 is considered to contain anomalous events.

Both the standard algorithm and WSARE were tested us-
ing five levels of p-values (0.1, 0.05, 0.01, 0.005, and 0.001).
In order to evaluate the performance of the algorithms, we
measured the number of false positives and the number of
days until the epidemic was detected. Note that there were
two files used in this evaluation step. The first file is the
database of ED cases produced by the simulator, which we
will refer to as DBED. The second file is the list of anoma-
lous days reported by the algorithm, which we will refer to
as DBAnom. We will call the subset of anomalies having a
p-value below the ith p-value level as DBi

Anom.

1. Counting the number of false positives
The number of false positives for the ith p-value level was
determined by checking each day in DBi

Anom against
DBED. If a case of the epidemic was not reported in
DBED for that day, then the false positive count was in-
cremented. However, since WSARE relies on data from
five to eight weeks prior to the current day, detection does
not begin until Day 56. In order to be fair, any false posi-
tives found before Day 56 in the standard algorithm were
not included.

2. Calculating time until detection
The detection time for the ith p-value level was calculated
by searching for the first day in DBi

Anom in which an epi-
demic case appeared in DBED. If no such days are found,
the detection time was set to be 90 days ie. the maximum
length between the introduction of the epidemic until the
end of the simulation.

Figures 1 and 2 plot the detection time in days versus the
number of false positives for five different p-value thresholds
used in both the standard algorithm and WSARE. In Figure
1, the error bars for detection time and false positives are
shown. Figure 2 fills in the lines to illustrate the asymptotic
behaviour of the curves. These values were generated by
taking the average over 100 runs of the simulation.

Results from Simulated Data
These results indicate that for p-value thresholds above 0.01,
the detection time for WSARE is significantly smaller than
that of the standard algorithm. On the other hand, as the p-
value threshold decreases, the detection time for WSARE is
somewhat worse than that of the standard algorithm. How-
ever, choosing an extremely low threshold would be unprof-
itable since all anomalies except those at an unusually high
significance level would be ignored. For example, using a
threshold of 0.01 corresponds to a 99% significance level.

The results also demonstrate that WSARE signals more
false positives for higher p-value thresholds. While this
behaviour is not desirable, it is tolerable since the number
of false positives produced by WSARE differs by a small
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amount from the count generated by the standard algorithm.
In this particular graph, there are at most 3 more false pos-
itives identified by WSARE that were not identified by the
standard algorithm.
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Figure 1: Scatterplot of Detection Time vs False Positives
with Error Bars for Detection Time and False Positives
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Figure 2: Plot of Detection Time vs False Positives

We now show some of the rules learned by WSARE. The
rules below were obtained from one of the result generating
simulations.

### Rule 1: Sat Day97 (daynum 97, dayindex 97)
SCORE = -0.00000011 PVALUE = 0.00249875
33.33% ( 16/ 48) of today’s cases have Age Decile = 5 and Gender = Male
3.85% ( 7/182) of other cases have Age Decile = 5 and Gender = Male

### Rule 2: Tue Day100 (daynum 100, dayindex 100)
SCORE = -0.00001093 PVALUE = 0.02698651
30.19% ( 16/ 53) of today’s cases have Age Decile = 5 and Col2 less than 25
6.19% ( 12/194) of other cases have Age Decile = 5 and Col2 less than 25

In rule 1, WSARE demonstrates that it is capable of find-
ing the target demographic group that Epidemic0 infects.
This rule proves to be significant above the 99% level. On

the other hand, Rule 2 discovers something that was not de-
liberately hardcoded into Epidemic0. Rule 2 states that on
Day 100, there is an unusually large number of cases involv-
ing people in their fifties that were all in the left half of the
grid. Since we had designed the people in the simulation to
interact with places that are in close geographic proximity
to their homes, we suspected that the locality of interaction
of infected individuals would form some spatial clusters of
ED cases. Upon further inspection of the log files, we dis-
covered that 12 of the 16 cases from the current day that
satisfied this rule were in fact caused by Epidemic0. This
example illustrates the capability of WSARE to detect sig-
nificant anomalous patterns that are completely unexpected.

Results from Real ED data
We also ran WSARE on an actual ED data collected from
hospitals in a major US city. This database contained ap-
proximately 70000 records collected over a period of 505
days. Since we are looking at historical data, we need to use
FDR to determine which of the p-values are significant. The
results are shown below with α for FDR equal to 0.1.

### Rule 1: Tue 05-16-2000 (daynum 36661, dayindex 18)
SCORE = -0.00000000 PVALUE = 0.00000000
32.84% ( 44/134) of today’s cases have Time Of Day4 after 6:00 pm
90.00% ( 27/ 30) of other cases have Time Of Day4 after 6:00 pm

### Rule 2: Fri 06-30-2000 (daynum 36706, dayindex 63)
SCORE = -0.00000000 PVALUE = 0.00000000
19.40% ( 26/134) of today’s cases have Place2 = NE and Lat4 = d
5.71% ( 16/280) of other cases have Place2 = NE and Lat4 = d

### Rule 3: Wed 09-06-2000 (daynum 36774, dayindex 131)
SCORE = -0.00000000 PVALUE = 0.00000000
17.16% ( 23/134) of today’s cases have Prodrome = Respiratory
and age2 less than 40

4.53% ( 12/265) of other cases have Prodrome = Respiratory
and age2 less than 40

### Rule 4: Fri 12-01-2000 (daynum 36860, dayindex 217)
SCORE = -0.00000000 PVALUE = 0.00000000
22.88% ( 27/118) of today’s cases have Time Of Day4
after 6:00 pm and Lat2 = s

8.10% ( 20/247) of other cases have Time Of Day4
after 6:00 pm and Lat2 = s

### Rule 5: Sat 12-23-2000 (daynum 36882, dayindex 239)
SCORE = -0.00000000 PVALUE = 0.00000000
18.25% ( 25/137) of today’s cases have ICD9 = shortness of breath
and Time Of Day2 before 3:00 pm

5.12% ( 15/293) of other cases have ICD9 = shortness of breath
and Time Of Day2 before 3:00 pm

### Rule 6: Fri 09-14-2001 (daynum 37147, dayindex 504)
SCORE = -0.00000000 PVALUE = 0.00000000
66.67% ( 30/ 45) of today’s cases have Time Of Day4 before 10:00 am
18.42% ( 42/228) of other cases have Time Of Day4 before 10:00 am

Rule 1 notices that there are fewer cases after 6:00 pm
quite possibly due a lack of reporting by some hospitals.
Rule 6 correctly identifies a larger volume of data being col-
lected before 10:00 am on Day 504. Since Day 504 was the
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last day of this database, this irregularity was the result of
the database being given to us in the morning.

We are currently beginning the process of using input
from public health officials of the city concerned to help us
validate and measure WSARE’s performance.

Future work
The algorithm described is computationally intensive, par-
ticularly when performing the many randomization tests re-
quired to obtain a good estimate of a rule’s true p-value. Fu-
ture research involves speeding up the randomization tests
by using data structures that can be efficiently updated when
the database is randomized. In addition, we would like to
automatically model the “normal” database rather than us-
ing an arbitrary selection process of using data from five to
eight weeks prior to the current date.

Related Work
Our approach is closely related to the work done by Bay
and Pazzani (Bay & Pazzani 1999) in mining contrast sets.
Contrast sets are conjunctions of attributes and values whose
support differs significantly between groups. In (Bay & Paz-
zani 1999), the authors perform multiple hypothesis tests
while searching for significant contrast sets. A Bonferroni
correction is used to control the probability of a Type I error.
The paper also prunes all contrast sets that cease to yield
a valid chi-square test due to insufficient data points. Our
approach is also somewhat similar to itemset mining (Brin
et al. 1997). Other papers that deal with early disease out-
break detection include (Wagner et al. 2001) and (Golden-
berg 2001).

Conclusion
WSARE has been demonstrated to be successful at identi-
fying anomalous patterns in the data. From our simulation
results, WSARE has significantly lower detection times than
a standard detection algorithm provided the p-value thresh-
old is not at at extremely low level. This condition should
not be a problem since most anomalies are reported at a sig-
nificance level of 95% or 99%, corresponding respectively
to p-value thresholds of 0.05 and 0.01. WSARE also has
a slightly higher false positive rate than the standard algo-
rithm. However, this difference was shown to be about 3
more false positives in the worst case for our particular sim-
ulation.

We believe the three main innovations in this paper are:

1. Turning the problem of “detect the emergence of new pat-
terns in recent data” into the question “is it possible to
learn a propositional rule that can significantly distinguish
whether records are most likely to have come from the re-
cent past or longer past?”

2. Incorporating several levels of significance tests into rule
learning in order to avoid several levels of overfitting
caused by intensive multiple testing

3. Examining the interesting domain of early outbreak de-
tection by means of machine learning tools
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