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Abstract-The utilization of the appropriate level of temporal abstraction is an important aspect 
of time modeling. We discuss some aspects of the relation of temporal abstraction to important 
knowledge engineering parameters such as model correctness, ease of model specification, 
knowledge availability, query completeness. inference tractability, and semantic clarity. We 
propose that versatile and efficient time-modeling formalisms should encompass ways to represent 
and reason at more than one level of abstraction, and we discuss such a hybrid formalism. 

Although many research efforts have concentrated on the automation of specific temporal 
abstractions, much research needs to be done in understanding and developing provably optimal 
abstractions. We provide an initial framework for studying this problem in a manner that is 
independent of the particular problem domain and knowledge representation, and suggest several 
research challenges that appear worth pursuing. 0 1997 Elsevier Science Ltd. 
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1. INTRODUCTION 

A persistent problem in medical artificial intelligence (AI) is the appropriate modeling of 
time. There are many theoretical and practical difficulties associated with making medical 
decision-support systems (MDSSs) “aware” of time, and capable of putting patient data, 
problems and solutions in the appropriate temporal context. In section 2 of this paper we 
discuss certain pertinent issues in temporal representation and reasoning and provide a 
common vocabulary of terms on which we build the subsequent discussion. In section 3 we 
examine the qualitative relationship of the degree of abstraction of a model to crucial 
engineering properties of the model. We come to the conclusion that a combination of 
different levels of temporal abstraction offers advantages in terms of devising tractable 
models that are easy to specify and instantiate with expert knowledge and data. 

The importance of incorporating grades of temporal abstraction in a model leads us to 
consider two important questions. The first one is how this task can be accomplished at a 
technical level. We discuss as an example a new formalism for time modeling in MDSSs 
that we developed, which we call “modifiable temporal belief networks” (MTBNs). The 
second question is how to select the most appropriate levels of temporal abstraction for any 
given temporal model. We introduce operational definitions of temporal abstraction (TA) 
optimality and show that under specific conditions it is possible to study the optimality of 
TAs expressed in one formalism using another formalism. We show that the development 
of provably optimal TAs is fraught with problems due to the complexity of the task, and 
propose ways to constrain the search space of possible TAs, as a means of approaching the 
problem. In the Discussion section we review research efforts in this area, and conclude by 
listing several open research areas in the representation and development of TAs. 

*Author to whom correspondence should be addressed. 
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We emphasize that this paper does not aim at providing algorithms or precise procedures 
for constructing MDSSs. Instead we want to shed some light on fundamental issues 
pertaining to abstraction usage, to explain why abstractions can be useful engineering and 
analytical tools, and to delineate a broad research agenda in time modeling that we find 
interesting and of significant potential benefit. 

2. FUNDAMENTAL CONCEPTS 

2. I. The time problem 

Temporal reasoning is considered an important component of good clinical decision 
making. Despite the attention that time attracts in medical curricula and everyday clinical 
practice, time is not represented and reasoned with in an explicit manner in most MDSSs. 
There are important historical and technical reasons for this situation, which are discussed 
in [ 11. We will define the time problem as: the difficulty in representing and reasoning about 
entities in MDSSs when taking time into account. More specifically the problem involves: 
(a) using time to facilitate problem-solving; and (b) reasoning about time and time-related 
entities as part of the problem-solving process. 

Several different aspects of the problem have been identified as a result of intense 
research during the last two decades: Kahn [2] identifies trading expressivity for 
computational tractability, and the unattainability of a single (unifying) formalism for 
temporal representation and reasoning as the main components of the time problem. Cooper 
[3] describes the proliferation of model variables that comes along with the temporal 
expansion of atemporal models and the subsequent inference intractability. He discusses 
three specific possibilities for coping with the problem, without giving implementation 
details. While these authors are primarily concerned with MDSSs, logicians and AI 
theoreticians have described several difficulties of modeling time that apply to any 
intelligent system, such as: obtaining general logical theories of temporal commonsense 
reasoning, obtaining general temporal ontologies, lack of formal semantics for major 
temporal logics, and (allegedly) formalism-independent problems (i.e. the frame problem, 
the qualification problem, the ramification problem, and the extended prediction problem) 
[4,51. 

2.2. Explicit vs implicit time modeling 

An important dichotomy in modeling time for MDSS is the one between explicit and 
implicit temporal representation and reasoning. The majority of MDSSs adopt the implicit 
modeling method. We define implicit temporal representation and reasoning as the 
incorporation of temporal associations, patterns, trends, and so on, in propositional 
statements that are treated by the MDSS inference mechanism in exactly the same manner 
as atemporal ones. In [l] we analyze the types of temporal reasoning found in Quick 
Medical Reference (QMR), a well known MDSS designed to help as a diagnostic aid in the 
domain of general internal medicine. QMR is a characteristic example of a MDSS 
employing implicit time modeling. Examples of QMR implicit-time propositions include: 
“history of a disease prior to current admission”, “history of a finding prior to current 
admission”, and “history of exposure to a risk factor prior to current admission”. 

We define explicit temporal representation and reasoning as modeling and subsequent 
problem-solving that incorporates three elements: 

1. A model of time, in which time itself consists of primitive entities that cannot be 
conceptually decomposed further and have specific properties (they might be points, 
intervals, “moments”, or more abstract entities). Time is represented as continuous or 
discrete, circular or linear, bounded or not. 

2. An association (mapping) of all constructs (objects, concepts, properties, relations, etc.) 
in the MDSS with the model of time, so that everything occurs in time (i.e. in some 
temporal context), and we can represent and reason with the temporal aspects of our 
objects and their relations to infer interesting conclusions. 
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3. A set of inference procedures that operate on the first two elements, so that we can infer 
conclusions about problem instances. 

As an example of a (very simple) explicit temporal representation and reasoning model, 
consider the proportional hazards model of Cox [6]. In terms of the three components we 
described above, the model is composed of: (i) a finite, unidirectional model of time; (ii) a 
one-to-one association of hazard rates (i.e. typically chances of dying within a time period) 
with the time points H,; and (iii) an inference rule (i.e. mathematical function) that returns 
the hazard rate which applies in each time period, given a constant HO, the values of IZ 
independent parameters (i.e. covariates) Cov, to Cov,,, and their corresponding weights (i.e. 
coefficients) b, to 6,,: 

H,=H,Xe b, x GIL,, +...+h,, x Gw,, 

2.3. Temporally detailed vs abstracted “views” 

Reasoning about a dynamic process (e.g. a time-evolving disease, a therapeutic protocol 
and corresponding patient-state measurements, or a homeostatic mechanism involving 
feedback loops) can be seen from two fundamental extreme viewpoints. The first one is the 
fully temporally detailed view in which we record and/or reason about domain features 
(variables) at multiple times, while the second one is the fully abstracted view in which we 
record and/or reason about domain variables without explicitly taking into consideration 
their temporal evolution. 

As an example, consider Fig. 1, where a disease (peptic ulcer) is causing a particular 
finding, GI bleeding (GZB). We use here the graphical language of belief networks to 
express probabilistic dependencies and independencies among propositional variables [7]. 
More specifically, nodes represent the variables, and arcs represent dependencies between 
each variable X and its “parent” variables (i.e. the nodes that have an arc going to X). Causal 
belief networks are special cases of belief networks in which arcs denote causal influences. 
The figure depicts two versions of the model, corresponding to the two views. In the 
detailed view (Fig. la) we represent and reason about the values of ulcer and GI bleeding 
at all times in our “time horizon” (i.e. the time-span of interest). In this example, we 
consider a time horizon of 3 yr, examined at a granularity of 1 yr. We also represent and 
reason about how the disease and the finding at any time can influence other instances of 
the disease and finding. In the abstracted view (Fig. lb), we reason about some of the values 
of prior ulcer only (e.g. whether ulcer was present at a time prior to the first observation of 
GIB). We note that the fully abstracted view also offers an additional perspective, one of 
reasoning about meta-values obtained after processing the original time-specific values of 
the variables of interest. In our example we reason about entities that are secondary to (i.e. 

Fig. 1. Example of a temporally detailed view (left Fig. la) vs an abstracted view (right Fig. 1 b) 
of the same set of variables. Ulcer (prior to time 1) replaces the time-stamped ulcer, variable, and 
a temporal abstraction duration_GIB (i.e. duration of GI bleeding) is introduced based on values 

of GM, (i.e. time-stamped GI bleeding). 
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have to be extracted from) the process, as for example the total amount of time that GI 
bleeding has existed (durution_GZB). 

2.4. Operational dejinitions 

2.4.1. Model, formalism, query problem, answer and model worth. Consider a model M 
to be a well-defined representation of a problem domain P, expressed in some formal 
language L. The language L is referred in AI literature as a “knowledge representation” or 
“formalism” (we prefer the later term, for this paper, since it is more neutral with respect 
to the semantic interpretation of the model’s parameters and other internal constructs). Let 
V be a finite set of random variables that correspond to the features of the problem domain 
that we care about (i.e. the essential features of the domain which we include in M). We 
define a question q and evidence e, to be value assignments to subsets of r! such that e 
corresponds to the conditioning (available or hypothesized) information we have about the 
domain, while q to the question for which we wish to obtain an answer given e. We call any 
pair of the form: (e, q} a query about P. Let Q, be the set of queries in the domain P that 
are of interest, and assume that any other query expressible in terms of V is irrelevant. 

Let A be a set containing all possible answers to queries within l? We define a problem 
D to be the set [P, I! Q,, A). That is, D corresponds to finding appropriate answers 
(belonging to A) for all possible queries of interest about a domain. In the example model 
M of Fig. la, a question about the hypothetical domain “ulcer causes GI bleeding” could be: 
“what is the likelihood of GI bleeding at time 3 being present?‘. A potential evidence could 
be “at time 1, ulcer was present”. A query then could be “if ulcer was present at time 1, what 
is the likelihood of GI bleeding being present at time 3‘7”. The potential answers to queries 
like this one (i.e. set A) could take probability values in [O,l], or in the set (low, medium, 
high), and so on. The set V is {ulcer,, ulcer,, ulcer,, GIB,, GIB,, GZB,), while the set Q, 
is { (GZB,=ON I ulcer, =ON) 1, if we assume no other query is of interest for this 
example. 

We denote the worth of an answer Ai to a query Qj, by W(i, j). It expresses the value the 
model user assigns to a specific answer Ai that might be returned by a model as a response 
to query Qj (in arbitrary units). We require that the worth for any particular query is finite. 
For instance, assuming in the ulcer domain that the set A is (A,, A,, A,} = (low, medium, 
high], then for the first query the worth of the answer “low” will be expressed as W( l,l), 
which could-for example-have the value “0.5”. The complete set of worth assignments 
will comprise the worth function W(.) for the problem. In the ulcer example the full worth 
function could be: [(W(1,1),.5), (W(2,1),.7), (W(3,1), l)}. 

There are several observations we need to make regarding our formalisation. We adopt 
two assumptions: (a) all evidence is given in the system, and the final answer is obtained 
in one step; and (b) there is a specific context of use of the system, to which the worth 
assignments apply, and this context is sufficient to evaluate the system (i.e. every concern 
outside this context will not change our worth assignments). From a practical perspective, 
these two assumptions are cumbersome, but for the purposes of a theoretical discussion 
such as this one, and since the context of use is arbitrarily large, we are justified in using 
them. A consequence of assumption (b) above, is that we accept that the costs of 
acquisition, maintenance, and computation are all included in the worth model. 

Another observation is that worth is not assigned to specific variable values, but to 
answers to queries. More importantly our model of decision problem does not indicate how 
worths are going to be used by a decision maker to select the best answer or model. A 
second component is required for this purpose, that of a decision criterion that selects 
among alternative query answers or among alternative models. Our definition of TA 
optimality (section 4.1) is such a criterion. From a decision-theoretic perspective, our 
worths could conceivably model expected utilities, since they could encapsulate multiple 
utilities for uncertain outcomes or actions. For example, the worth to a diagnostic MDSS’s 
answer to a particular query could be the expected utility for the actions that would be taken 
by the system user given that answer in the system’s domain. This expectation could be 
further weighted by the expectation that the system will be given this query by the user. Of 
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course a decision-theoretic principle (i.e. maximum expected utility optimization) should 
be in place in the form of a rule choosing the best model, for our decision model to simulate 
decision-theoretic reasoning. These expected utility assignments can be viewed either as 
relative to a baseline expected utility that corresponds to asking no query and receiving no 
answer, or (with the introduction of minor enhancements to our theoretical formulation 
having to do with null queries and null answers) as an absolute utility. 

Formalizing problems this way can facilitate our reasoning about a wide variety of 
medical scenarios, such as diagnosis, prognosis, prevention, therapeutic planning, and 
policy formulation. The answers to queries can be arbitrary, such as probability 
distributions over possible diagnoses, rank-ordered lists of diseases, desired interventions, 
and so on. The framework is general enough to capture diverse types of medical reasoning 
goals such as determining what is wrong with the patient, construction of explanations, 
suggesting appropriate courses of therapeutic actions, among others. Thus, this approach is 
flexible enough to capture the decision-analytic framework, is not by design constrained to 
a decision-theoretic view of the world (i.e. utilities and decision criteria satisfying the 
axioms of decision theory), and at the same time is simple enough to facilitate the 
theoretical analysis that follows. 

2.4.2 Time-stamped vs non-stamped variables. A variable that is associated with specific 
time entities (e.g. points, intervals) and whose instances are tagged by the corresponding 
time entities will be defined as a time-stamped variable. Variables ulcer,, and GZB, of Fig. 
la are examples of time-stamped variables. A non-time-stamped variable is defined to be a 
variable for which we have no time tag (“stamp”). In other words it is a variable for which 
we do not know or care to know its exact temporal location. In the example of Fig. lb, 
variables ulcer and duration_GZB are non-stamped variables. Non-stamped variables serve 
the following important goals: 

1. Model parsimony: we do not have to replicate variables unnecessarily. 
2. Tractability: usually, fewer variables lead to more efficient computational models. 
3. Unavailability of explicit temporal knowledge: we might not know exactly how ulcer 

causes GI bleeding at every time point, but we know something about how past ulcer 
influences the chances of having GI bleeding at times 1 to 3. 

4. Buiiding of usefuZ summarizations andpatterns: in our example, the total duration of GI 
bleeding might be a determining factor of treatment (e.g. prolonged duration that is non- 
responsive to medication would be a major indication for surgical treatment of the 
ulcer). 

2.4.3. Temporal abstraction. A temporal abstraction of a variable set V is any function 
of V that maps to variable set V’ such that: (a) V’ contains equal or less information than 
V, and (b) V has a temporal semantics relative to some specific temporal model for the 
domain (i.e. there is a temporal interpretation of the values of V). 

A temporal abstraction of a model M is any function that maps M to a model M’, such 
that some of the variables V in M have been replaced in M’ by temporal abstractions V’ of 
v 

In this paper we will not take a position as to which notion of information loss is applied, 
since our analysis is insensitive to either a description-length or probabilistic interpretation 
of information (i.e. given some certainty C about a value vector Vi of V, there is no 
corresponding value vector vi’ of V’ such that it is possible to infer Vi from vi’ with 
certainty higher than C). Also, while mathematically any abstraction function is non- 
distinguishable from a temporal one, the temporal semantics of a temporal abstraction may 
suggest-based on substantive criteria- a temporally meaningful structure of information 
loss (i.e. a temporal abstraction pattern). For instance, whether the individual values of a 
variable X over time are normal or not might be insignificant for a predictive task, but 
whether the values rise or drop over time might be important. So only the trend-related 
information is preserved in this abstraction. Although the particular structures of 
information loss will not be the focus of the discussion in the current paper, we will present 
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a list of possibilities that it opens up with respect to efficient temporal abstraction from data 
and models, in the discussion section. 

We now provide some examples of temporal abstraction function types: V’ might have 
a coarser temporal granularity than V (which we call type “a” abstraction), or smaller 
temporal range (i.e. horizon) than V (type “b”), or smaller dimensionality (i.e. number of 
values) than V (type “c”), or V’ may substitute values of V with patterns such as trends, 
repetitive structures, etc. (type “d”). Combinations of these types are possible too. Figures 
2a, 2b, and 2c illustrate examples of TA types a, b, and c, respectively. Figure lb illustrates 
a TA of type d. For several additional examples of temporal abstraction types employed in 

(4 

UNIT=6 MONTHS 

UNIT4 YEAR 

(b) 

UNIT= 1 YEAR 

UNIT=1 YEAR 

GIB = 
ABSENT, 
SLIGHT, 
SEVERE 

Fig. 2. a. Temporal abstraction type “a”. We utilize a coarser granularity (i.e. 1 yr vs 6 months). 
This reduces the number of indexed variables for the same time horizon. b. Temporal abstraction 
type “b”. We focus on a smaller time horizon, thus dropping several indexed variable instances that 
fall outside the new horizon. c. Temporal abstraction type “c”. We model variable GIB, at all points 

in time as taking two instead of three values. 
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real-life MDSSs, we refer the reader to [ 1,8]. 
Having defined the notions of explicit and abstracted representation, we can discuss their 

relationships. Temporal abstraction (a concept related to the information content of a set of 
variables recorded over time) does not always imply the lack of temporal explicitness (a 
concept that has to do with the transparency of the temporal semantics of our model). An 
explicit temporal model can be abstracted (as in all examples of Fig. 2). The lack of 
temporal explicitness does not always imply abstraction (we may have no information loss 
but simply a non-transparent/well-defined model of time). By definition, we will use the 
terms time-stamped variable and explicit variable interchangeably. Likewise, temporal 
implicit and non-time-stamped variables are interchangeable. 

Empirically, in current MDSSs, implicit variables/models are often highly abstracted. 
This creates much confusion between the two concepts. We will analyze their relationships 
more fully in section 3.6. 

3. IMPORTANCE OF REPRESENTING TAS 

In this section we address the claim that “implicit time modeling leads to MDSS that 
cannot always provide correct solutions”. Our motivation comes from both published 
reports [9], and initial reactions towards our empirical demonstration that the temporal 
complexity of real-life cases (and by implication the complexity of the temporal reasoning 
required) did not induce significant performance penalties in QMR (a pure implicit-time 
MDSS) relative to cases of smaller temporal complexity [l]. We will provide theoretical 
and empirical arguments that support the claim that implicitness does not necessarily impZy 
non-correctness. Although abstraction implies by definition information loss and thus 
correctness degradation (assuming the full information is necessary for correctness), we 
will show that TAs can help in developing MDSS by improving knowledge acquisition and 
tractability, while maintaining correctness (in circumscribed query contexts). For this 
purpose we use an example from the domain of endocrinology to present specific trade-offs 
that result from the use of abstracted variables. The example is simple and serves only for 
demonstration purposes. The principles revealed, however, have general applicability, 
regardless of model size and complexity. 

The model captures some basic regulatory features of thyroid function. The thyroid gland 
produces the main thyroid hormone T4 when stimulated by the pituitary hormone TSH. 
TSH production is suppressed by high levels of T4, and stimulated by the hormone TRH. 
A functional thyroid adenoma (FTA) is a benign tumor that produces T4 independently of 
TSH. This in effect disrupts the feedback loop between TSH and T4, resulting in high 
concentrations of T4 and low TSH. A particular cause for thyroid adenoma is exposure to 
X-radiation in the past. The abnormality in the T4 regulation can be detected by a TRH 
stimulation test that involves measuring TSH levels over a period of time after 
administering TRH to the patient. In a normal person the observed pattern is bell-shaped, 
while in the presence of FI’A, it is flat and closer to 0 [lo]. Ideally we would like to 
formulate queries of the type “Given that the values of TSH at times 1 to n is known, what 
is the probability of a FTA in the patient?’ 

All the example models in this section are represented in a time-modeling formalism we 
call modifiable temporal belief networks (MTBNs), which is a temporal and structural 
extension of ordinary belief networks. The following constitutes a brief description of 
MTBNs: MTBNs have three types of variables: ordinary observable variables which are 
represented by nodes (e.g. node A in Fig. 3), arc variables corresponding to causal 
associations among variables of any type as represented by arcs (e.g. arc from A to B in Fig. 
3), and time-lag variables corresponding to the time delay between cause and effect as 
represented by squares on arcs (e.g. lag node L in Fig. 3). The dependencies denoted by arcs 
are all temporal since they have a temporal location and time lags relative to the MTBN 
model of time. Some arcs have instantaneous effects, while abstract variables have implied 
locations and time lags (i.e. they are directly or indirectly constrained by their association 
to time-stamped variables). MTBNs have two forms: a “condensed” form used to define a 
model (Fig. 4, left), and a “deployed” form, which is the condensed form with variables 
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Fig. 3. The three possible types of variables in an MTBN. Ordinary variables (e.g. A, B. These can 
be indexed or abstracted), arc variables (e.g. A->B. They take one of two values: “activated” or 

“deactivated”), and time-lag variables (e.g. L. They take non-negative integer values). 

replicated over time as needed for inference (Fig. 4, right). The dynamic causal structure 
and condensed representation permit parsimonious descriptions of models. Compare for 
instance the condensed MTBN model of Fig. 5 (left) with its BN equivalent (right). 

MTBNs allow the coexistence of variables of different temporal detail in the same model. 
Figure 6 gives an example of such a mixed set of variables: variables A, and Bi are modeled 
at all three time points of interest, variables C and D are recorded only once, variables B,, 
and Bend, indicate abstracted properties of B, and B,, is a variable built from B,, and II,,,, 
(and thus is even more abstracted). In the deployed figures of MTBNs, we follow the 
convention that in time-stamped variables, time increases from left to right, so that leftmost 
instances of time-stamped variables precede in time the rightmost ones. More details about 
MTBNs, and other temporal applications and extensions of belief networks, can be found 
in [ 1 l-161. We now return to modeling the TRH stimulation domain example. A first 
approach towards modeling this problem is shown in Fig. 7. Here we model all variables 
as temporally explicit (i.e. indexed). Figure 7 depicts the condensed form of the MTBN 
model, so it is understood that all variables are replicated and stamped in the deployed 
form. 

Another approach, shown in Fig. 8, involves abstracting X-radiation (variable X), to take 
values present or absent in the past, and FTA (variable D), to take values present/absent 
now, and replacing variables TRH, TSH, and T4 by an abstraction variable TRH 

(Condensed form) (Deployed form) 

Fig. 4. Condensed (left) and deployed (right) forms of an MTJ3N. The condensed form is user- 
specified and facilitates definition, sharing, and presentation. The deployed form is primarily used 
for inference and is automatically created at inference time. Note that time lags are represented as 
constants or variables in squares attached to an arc (e.g. B, causes Ai with a time lag of 1 time unit). 
The time lags can take values of 0 in which case the corresponding arc denotes instantaneous 
influence (e.g. Ai causing Bi). Lags can change as the causal process unfolds over time (see text for 

details). 
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Fig. 5. An example of MTBN representational clarity. The MTBN left is equivalent to the BN right. 
The MTBN is easier to understand because it uses single variables for repeated entities (arcs, 
ordinary variables), and also because it can express explicitly and concisely that certain temporal 
relations are dependent on modeled factors (e.g. the time lag in the causal influence between A and 
B is determined by C). Such relationships are embedded in a forest of arcs in a standard temporal 

BN. 

STIMULATION RESPONSE PATTERN (taking as values: normal, or abnormal). No copies 
of these variables are needed since each abstracted variable is designed to encode a limited 
amount of the information of its time-stamped counterparts. Figure 8 illustrates the method 
used in most current MDSSs (implicit/abstrcated time modeling). We next compare these 
two models in order to illustrate qualitative relationships of TAs with several engineering 
and epistemological parameters. We keep in mind that in our example (as in most real-life 
MDSSs) the concepts of implicit/abstracted can be used practically interchangeably (for 
more explanations see section 3.6), as can the concepts of explicit/detailed. 

3.1. TAs and correctness 

Assume that an oracle makes a worth assignment (i.e. characterizes) the possible answers 
to every relevant query as “correct” or “incorrect” (i.e. “true” or “false”). “Correctness” is 
a measure of the ability of an algorithm that implements the model to output the correct 
answer for all queries of interest. In our discussion we will define correctness as the 
percentage of correct answers over all relevant queries. Correctness is a special class of 
worth function that facilitates discussing the question of whether implicit modeling entails 

Fig. 6. Different levels of temporal detail in the same MTBN model. Variables Ai and B, are 
modeled at each of three time points. Variables C and D have unspecified temporal locations and 
are only constrained to precede their effects. Variables B,,, &,, B,,, are abstractions built on the 
basis of the values of BP They are similarly constrained to occur after their causes (i.e. parent 

variables). 
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0 1 

Fig. 7. Fully explicit model for TRH example (see text). 

decrease in the accuracy of the MDSS. Correctness overlooks the costs associated to 
building and maintaining an MDSS by focusing only on the validity of its output. First we 
note that we can trivially derive (e.g. by using belief networks instead of MTBNs) an 
implicit model that would contain exactly the same information (and thus give the same 
answers) as the explicit model of Fig. 7. Therefore implicitness does not necessarily 
decrease correctness. A more important observation however is that both the model of Fig. 
7 and the one of Fig. 8 are equally capable of providing correct answers to queries 
expressible in the corresponding models. To verify this claim consider that the abstracted 
model can be derived from the explicit model by marginalization (after new variables were 
introduced by means of abstraction). This example illustrates that temporal abstraction need 
not directly affect the correctness of the model’s answers. Is there an indirect relationship 
between abstraction and correctness? The answer is yes and the following section explains 
why. 

3.2. TAs and query completeness 

While we were able to obtain correct answers using temporally detailed and abstract 
models, the same is not true when it comes to the number of queries that can be answered 
to by the two models (“query completeness” of the models). In our discussion we will 
define query completeness as the percentage of queries that can be answered by the model 
relative to all relevant queries. The detailed model can answer an astronomical number of 
queries (most of which are of no clinical interest), whereas the abstracted model can answer 
only a few queries (possibly excluding many queries of clinical importance). In our 
example, the explicit model can answer the (useful) query: “given that the values of TSH 

0 X 

Fig. 8. Fully implicit model for TRH example (see text). 
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on 6 June 1994 at 3:03, 3:08, 3: 13, 3: 18, 3:23 were low, medium, high, medium, low, what 
is the probability of a FTA in the patient on 6 June 1994 at 3:00?” By the same token it can 
answer the (useless) query: “given that the value of TSH on 3 March 1981 at 520, was 
medium, what is the probability of a FTA in the patient on 31 December 2001 at 12:00?“. 
The abstracted model on the other hand can answer (useful) queries like: “Given that we 
have an abnormal TRH stimulation test pattern now, what is the probability that the patient 
has FIA now?‘, but cannot answer (potentially useful) queries like: “what is the probability 
that the patient was exposed to X-radiation prior to 10 years ago, given that we have an 
abnormal TRH stimulation test pattern now?‘. 

Temporal abstraction reduces the query completeness (of the abstracted model compared 
to the original one) unless we decide to heuristically map queries that are not expressible 
in the abstracted variable set to queries that are. In this case we introduce the possibility for 
erroneous answers (since by mapping a non-expressible query to an expressible one we 
make the potentially flawed assumption that the evidence or question of the former is 
equivalent to the evidence or question of the latter) and thus affect correctness indirectly. 
But if we restrict the use of the model to the set of queries that are expressible in the 
abstracted model, no loss in correctness need occur. We note that a guaranteed smooth 
transition from the fully explicit/detailed model to the fully implicit/abstracted one is not a 
property shared by all knowledge representation and reasoning formalisms. An example of 
this is various ad hoc uncertainty calculi employed in MDSSs. 

Figure 9 summarizes the relationship between TA and correctness when query 
completeness is maximized. We note that explicit queries need to be mapped to abstract 
queries in order for us to derive a measure of correctness of the abstract system. Although 
there might be an initial region (a) for which correctness is maintained at optimal levels, as 
TA increases, correctness in general will decrease. The exact form of the curve will be 
different among alternative problem domains, and regions a and c will be present in some 
domains only. 

3.3. TAs and model usage ease 

Both models of Figs 7 and 8 require that a mechanism external to the model will examine 
raw time-stamped data and will assign appropriate values to the variables in the model. The 
explicit model by virtue of using time-stamped variables, can facilitate automatic input of 
the necessary information and thus be used in non-supervised fashion (e.g. embedded in a 
reminding application), relative to the (heavily abstracted and thus) implicit model. This is 
because the implicit model requires an additional elaborate abstraction layer between the 
data and its inputs. This abstraction requirement is so severe that in most cases it implies 

1 COMPLETENESS = 100% 1 

a 

CORRECT 
ANSWERS 

No 
evidence 

No abstraction No variables 

ABSTRACTION LEVEL 

Fig. 9. Generalized relationship between abstraction and correctness when query completeness is 
required to be maximal. 

cm! z7:5-0 
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that implicit/abstracted models will need a human abstractor to create the input to the 
MDSS. 

3.4. TAs and knowledge/data availability 

The availability of domain knowledge and data can be one of the most important 
determinants of the success or failure of a MDSS. Whether temporally explicit or implicit 
knowledge will be predominantly available for a specific problem domain is strictly 
dependent on the domain. For example, detailed epidemiological knowledge about 
coronary heart disease may allow the development of Cox proportional hazards models for 
predicting mortality at any given time (explicit model), but lack of corresponding 
knowledge for HIV-infected populations in non-industrial regions of the world may 
necessitate the adoption of an implicit mode1 linking time of symptomatic disease after the 
infection to patient features. 

3.5. TAs and tractability 

Generally, abstracted models involve far fewer variables than explicit ones, and thus are 
expected to be more tractable computationally. In our example, the explicit model with a 
uniform temporal granularity of 1 min, and a time-span of 15 yr contains an astronomical 
number of variables and is completely intractable. In contrast, the abstracted model contains 
three variables and is clearly tractable. It might be the case that we can exploit domain 
independencies and construct temporally explicit, but still tractable models. The feasibility 
of such an approach will always be dependent on the domain. For example, we cannot 
simplify a model for which all variable instances are dependent on the variable instances of 
the past, using a hierarchical model of temporal dependence (i.e. with variables forming a 
tree with each level corresponding to different granularity levels). This is the case, for 
example, in the hypothetical model of Fig. la. In domains where such simplifications apply, 
the structure of temporal association will facilitate tractability. 

3.6. TAs and temporal semantic clarity 

The more we abstract a model, especially at the individual variable level, the more 
temporal clarity we lose. Eventually, the temporal semantics are encapsulated in the 
variables values and thus lose their special representational status. This is a major reason 
why “abstract” and “implicit” are so highly correlated (and confused). In our endocrinology 
example, variable Di of the explicit model indicates the values of D at time point i (note that 
only the condensed forms of MTBN models are shown, but it is implied that all non- 
abstract variables, such as D in Fig. 6, will be indexed in the deployed form). When we 
abstract to the implicit model, the value of D means “value of D now”. There is no 
indication as to the temporal meaning of this proposition other than this descriptive label. 
As far as the formalism is concerned, the value of D could as well be the value at time t (for 
an arbitrary t). This arrangement (no special semantic status to time) has been the target for 
criticism of logicians towards non-temporal logics [4,5]. It is important to note that the 
argument applies to all formalisms, however. We also note that although implicit models 
necessarily do not provide temporal semantics, there are cases where temporally explicit 
models are inconsistent, as can be determined based on their temporal semantics. Figure 10 
illustrates this using an example of a causal model that is invalid (assuming standard 
notions of causation as applied to medicine). In particular, the causal arc to variable A2 
from A3 imply that A is causing itself in the past. If we reverse the direction of time, then 
Al is causing itself (A2) in the past. So there is no time directionality that preserves the 
notion of asymmetry in causation. 

3.7. Hybrid-implicitness/abstraction formalisms for time modeling 

The above comparisons indicate specific tradeoffs between explicit and abstracted time 
modeling. Ideally we would like to have the benefits of both while avoiding their individual 
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Fig. IO. A simple temporal model that is obviously causally inconsistent (A, causes itself back in 
time). Despite that, any BN implementation will allow such a definition (and inference), whereas 
in the MTBN model this error will be detected. The MTBN formalism enforces temporal causal 
consistency because it supports explicit temporal semantics. Much more subtle errors of similar 

nature can arise when we have mixtures of time-stamped and abstracted variables. 

shortcomings. Hybrid-abstraction formalisms are formalisms that allow us to have part of 
the model in time-explicitness-abstracted and part of it in time-implicit/more-abstracted 
form while maintaining consistency and semantic clarity. As an example, consider the 
model in Fig. 11. Here the model remains the same, except for the replacement of the 
indexed variables Xi and Di with their abstracted counterparts X and D, and the recording 
of the rest of the variables only for a few time points corresponding to the latest TRH- 
stimulation test. The model immediately becomes tractable and still it does not need an 
external pattern recognizer to assess the abnormality of the pattern of values of TSH after 
TRH stimulation. 

4. IMPORTANCE OF DEVELOPING OPTIMAL ABSTRACTIONS 

In the previous sections we provided arguments in favor of the need to utilize both 
explicit and abstracted views of the modeled processes in our models to achieve satisfactory 
efficiency and query completeness and to facilitate knowledge/data acquisition. In general, 
there is an infinite number of temporal abstractions which we can consider. The following 
example demonstrates that indeed this is the case: assume that the presence of a disease D 
at a particular time point (Oi) is determined by the values of a finding F at the same time 
point (FJ as well as at a previous time point (F,-,). D takes values in the set {present, 
absent), whereas Fi, Fi- , in [O,lOO]. Also assume the probability of Di being present is 
given by: p(D,) = c + b, x Fi _, + b2 x Fi , where c, b,, b, are appropriate constants. Assume 
the queries of interest (i.e. Q,) are “what is the probability of Di being present given that 
F, =x and Fi - , = y?” for various values x, y. Finally let the worth function for this problem 
be 1 if the probability of Di is correct, and 0 otherwise. 

Consider the following abstraction TA, over Fi- ,: X4, = Fi-1 if Fi-l>Z, or 1 otherwise 

Fig. I I. A hybrid-abstraction model for the TRH example (see text). 
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Table I. Probability of disease Q being present, given 
joint values of findings Fi. Fi-, in hypothetical medical 

domain 

Joint Fi-I F, p(D,=present I F,, Fi- ,) 
instantiation # 

: H H 
M 

3 :: L 
4 M H 
5 M M 
6 M L 
7 L H 
8 L M 
9 L L 

0.8 
0.4 
0.8 
0.8 

E 
0:5 
0.01 
0.5 

(with z a real variable taking values in [O,lOO]). If z is a parameter set by the developer of 
the model, TA, is a deterministic ab.struction. If z is a random variable with a particular 
probability distribution, TA, is a nondeterministic abstraction. Clearly in both cases since 
z can take any one of an infinite number of values, there is an infinite number of instances 
of TA, . Also TA , is indeed a TA, since for all Fi - I that are not equal to 1, and are not greater 
than z, they are mapped to 1, thus (in general) losing information about Fi_,. We will 
introduce TA optimality using the same example modified to allow for easier computations. 
Assume that in the modified example, pi- ,, Fi are ternary taking values in: {L, M, H) (i.e. 
low, medium, high). Also assume that the probability distribution of Di given joint values 
of Fi, Fi- , is given by Table 1. Suppose further that in this example the queries of interest 
(query context) are Q,= { (p(Di I Fi - I= H, Fi=H), (p(L), I Fi-, =H, Fi=M) }. Abstracting the 
model so that Fi- , is completely eliminated still yields the same worth for the queries of 
interest (since in both cases the value of Fi-1 was the same, thus it did not help in 
discriminating further the conditional probability of Di, than does just knowing Fi). But if 
we abstract Fi by merging the values H and M, then assuming equal priors for instantiations 
#1,2 shown in Table 1, we do not get answers of worth 1 to either one of the two queries 
of interest, since the answer to both queries is 0.6 given the new evidence that does 
distinguish between the values H and M for FP The correct answers have probabilities 0.8 
and 0.4, however. Since this abstraction derives incorrect probabilities (relative to the gold 
standard of Table l), our assigned worth function will lead to the abstraction being sub- 
optimal. 

4.1. TA optimality 

Now we introduce by example our working definition of TA optimality. Consider the 
example of Table 1 with Q, being the set of all possible queries given by that table. A model 
M is called contextually temporally optimal (CTA-optimal) relative to Q, if and only if the 
following holds: there exists no model M’ that contains the same or less abstracted variables 
than M, such that for some queries M’ gives an answer with a higher worth than any of the 
corresponding answers given by M. If, moreover, there is no model M” that is more 
abstracted than M, such that M” has the same worth for all answers as M, then M will be 
called baseline CTA-optimal (BCTA-optimal) relative to Q,. In our example, a model M, 
that replaces values H and M of Fi _ , with a new value HM can be constructed so that it will 
give the same answers as the original model, and thus would be CTA-optimal. Similarly M, ‘ 
that replaces values H and M of Fi- , with a new value HM, and values H and L of Fi with 
HL, can be constructed so that it will give the same answers as the original model. There 
is no further abstraction of M,’ however that preserves the correct answers as given by 
Table 1, and thus M,’ is baseline CTA-optimal. The Appendix contains a more formal 
definition of CTA-optimal@. 

Since a TA refers to substituting variables with more abstracted versions (including 
eliminating the variable), TA-optimality as we define it here corresponds precisely to the 
problem of proper variable selection for inclusion in the domain model. What this working 
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definition says is that for any set of variables used to model a problem domain, there is a 
point at which having further temporal detail about the variables is not going to lead to 
better models (with respect to a modeling formalism and measure of query worth). At this 
point, we have a TA optimal model. The qualification of “contextual” optimality simply 
indicates that the optimality applies for a subset of domain queries of interest (the idea 
being that if some queries are of no interest, a model that does not encompass the useless 
queries is still good). The present definition of TA-optimality reflects dominance of the 
worth of a particular abstraction. This definition is biased towards worth functions that 
reflect the information content of a set of variables with respect to a discrimination task (e.g. 
diagnosis, prediction), and do not take into account the costs/benefits of developing and 
using particular models (otherwise a more abstract and less accurate model might give 
better answers than a less abstract one). It is designed so for simplicity, which facilitates a 
formal analysis of its properties and implications. Another very important property of TA- 
optimality defined this way, is that it is decomposable in that it describes a boundary beyond 
which no further improvement is possible, and thus, can potentially facilitate the 
development of greedy search algorithms for developing optimal TAs. Developing 
definitions of TA-optimality that take into account MDSS development and costs is an open 
research problem that is not dealt with in the present paper, 

4.2. A study of integormalism TA optima&y 

Having a well-specified notion of TA optimality, we can now ask whether the specific 
TAs employed in a specific model are optimal or not. Our motivation comes from the 
observation that human experts often seem to develop abstractions in an ad hoc manner, and 
thus, these abstractions might be sub-optimal as explained in the previous subsection. 
Usually such abstractions are chosen on grounds of simplicity or convenience, without 
proof of optimality. They then find their way into research designs, published studies/ 
textbooks and MDSS knowledge bases. For instance, several temporal abstraction/ 
summarization MDSSs have been developed during the last two decades [8,17,18]. They 
advanced substantially the state of the art in detecting, constructing, and presenting TAs, but 
there was relatively less attention paid to the optimality of the produced TAs. It was 
assumed that the TAs were useful and that the domain expert could indicate which 
abstractions are good. 

The importance of the question of whether the employed TAs are optimal, became 
apparent in our study of the QMR system. If they are not, maybe they could be replaced by 
better ones. If they are, then perhaps they could be used as building blocks for other MDSS 
that employ implicit time modeling as well. So, the emerging question was whether it is 
possible to determine the optimality of QMR’s TAs and how. A related (and more 
ambitious) question was whether it is possible to determine TA optimality in a formalism- 
independent manner. 

One first approach might be to build a model in a particular formalism in extreme 
temporal detail and develop an optimal abstract model from it (assuming that we could 
circumvent the complexity of the construction task-see the next section). Another 
approach would be to directly prove (i.e. without considering all possible abstractions) that 
a particular abstraction was optimal or not. We will refer to the latter task as “identification” 
or “characterization” and to the former one as “development”. 

Ideally we would like to approach characterization at the most general level (i.e. in a 
domain and formalism-independent manner, so that our conclusions are not a byproduct of 
the representation language or domain particulars). To do so, we observe that the last two 
decades of research in AI have led to representations and corresponding methods that have 
the guaranteed ability to capture precisely certain function classes. For instance, belief 
networks can capture any joint probability distribution over an arbitrary set of discrete 
variables. The same applies to decision trees, certain classes of Neural Networks, etc. This 
realization is extremely useful because it allows us to focus on capturing some information 
content that is pertinent to a mapping (i.e. function) rather than on the mechanics of how 
the content is encoded. Our framework for formalizing a decision problem ties in well with 
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such a function-capturing view of problem-solving. So we give the label in-out-correct 
(IOC) to this class of algorithms and formalisms and define it as follows: an IOC formalism 
is a computational framework (a representation and a set of operations) that guarantees the 
existence of IOC algorithms, that is, algorithms that can capture exactly a given function 
class (thus the name: they always give the correct output for a specific input). A more 
formal definition of IO-correctness can be found in the Appendix. In the following, in order 
to facilitate analysis, we will not consider the relative costs of developing a model in one 
formalism versus another. We note that IOC formalisms by implying the existence of 
algorithms implicitly invoke all known constraints on computability of functions. Thus we 
could be talking about Turing Machines (or equivalents) instead. However, while it is true 
that all computability results apply to IOC formalisms, at an MDSS engineering level there 
are several results (e.g. the ones about Neural Networks and belief networks mentioned 
earlier) that are meaningful at the level of knowledge representation and reasoning rather 
than at the level of universal computation. As such, IO-correctness separates and 
characterizes knowledge representation and reasoning formalisms that offer certain 
important engineering properties. We can now explain in general terms our previous claim 
that abstraction does not directly affect correctness. 

Given an IOC formalism, we could construct CTA-optimal systems. This is so because 
for each abstracted set of variables we have a corresponding set of queries expressible in 
terms of those variables, and we can map them to the correct answers (interpreted here as 
the answers with maximum worth). Since the mapping involves some of the newly- 
abstracted variables (as well as the non-abstracted ones), this set of abstracted variables 
immediately suggests a new query context, and constrains the model TA-optimality within 
this query context. Clearly, if this context excludes queries previously considered useful, the 
abstracted model is no longer optimal with respect to the original context (or as stated in 
section 3.2 we lose query completeness, but not in correctness). 

We demonstrate this concept concretely using the example from Table 1. Assume the 
query context is: Q, = { (p(Di I Fi- I=M, Fi=H), (p(Di I Fi_l=M, Fi=M), (p(Di I Fi- I=M, 
F,=L), @(Di I Fi-]=L, F,=H), (p(D, I Fi-l=LI F,=M)). If we replace Fi_I values L andM 
with a single value L&f, then we can no longer answer to all queries in Q, correctly. But we 
can answer all queries in Q,‘={(p(Di I Fi-,=LA4, F,=H), (p(D, I Fi-I=LM, Fi=M)] 
correctly. Thus, this abstracted model can sometimes get correct answers to the original 
query context, and always gets correct answers to a new circumscribed context. Theorem 
1, in the Appendix, presents this result in formal terms, while Theorem 2 establishes that 
belief networks and MTBNs are IOC formalisms. 

Now we use the concept of IO-correctness to show by example how we can study a 
formalism using another formalism, with respect to TA-optimality. In particular, we will 
first show that we can conclude that a model is not TA-optimal by examining a model 
involving the same variables, but which is expressed in some other formalism. The idea is 
to be able to study any model expressed in any particular formalism by utilizing a single 
formalism (thus enabling formalism-independent study of TA-optimality). 

The example to follow is a demonstration that we can detect the non-optimality of TAs 
expressed in the formalism employed by QMR by showing that these same abstractions are 
not optimal in an MTBN model. Theorem 3 (part a) in the Appendix proves the validity of 
the method in general. Assume we implement the problem domain of Table 1 in MTBN 
form and in the representation of QMR. Assume also that Q,= [ (p(Di I Fi- , =M, Fi=H), 
MD; 1 K-1 =M, Fi=M), (p(Di I Fi_l=M, Fi=L), (p(Di I Fi-l=L, Fi=H), (p(Di I Fi-,=L, 
Fi=M)}. Suppose that in QMR terms we get one of the following three outputs: 
D pxsent > Dabsent or Dabsent >Dpresencr or DpEsent = Dnbnt (i.e. an ordered list of diagnostic 
alternatives). Clearly any such ordered lists can be simulated by an MTBN as a probabilistic 
assignment to values of D. Suppose also that the worths associated with the problem are 
specific to this list (rather than the exact probabilities associated with each diagnostic 
alternative). In particular, if P(Di=present)>p(Di=absent) according to the table gold 
standard, then the output Dabsent > Dpresent has a worth of 1; any other output will be assigned 
a utility of 0. A similar worth assignment is given for the cases where p(Di=pre- 
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sent)<p(D,=absent), and p(D=present) = p(D,=absent). If we determine that a particular 
abstraction is not optimal in the MTBN model, then it will not be CTA-optimal in the QMR 
model either. For example, if we replace Fi values Z-Z and M with one value HM, then we 
get an answer of Dpresent>Dabaen, for the first two queries and the reverse for the remaining 
ones. Thus two out of four queries get an answer with worth 0 in the abstracted model (vs 
1 in the non-abstracted one). QMR will not be able to output a correct answer given the 
abstracted version of Fi, because if it did then MTBNs would not be IOC (put in other terms 
we could use the output to construct an TA-optimal MTBN model involving F,). This 
methodology for studying TA-optimality can be extended to establish (not only reject) it, in 
case that both formalisms are IOC. Theorem 3 (part b) in the Appendix proves it for the 
general case. 

In terms of the example of Table 1, if we consider a Q, = ( (p(D, I Pi-, =M, F,=H). @(Di 
I Fi_,=M, Fi=M>, @(Di I Fi_l=M, Fi=L), @(Di I Fi_l=L, Fi=H), @(Di I Fi_l=L, ~i=M)), 
and an abstraction replacing Fi _, values H and M with a single value HM, and examine an 
MTBN model MF, utilizing it, we can establish that the same variables would lead to an 
TA-optimal model MF, expressed as a BN. This is because the input and answers of the 
MTBN model can be used to construct a BN model that is TA-optimal (since BN are IOC- 
see Theorem 2 in the Appendix). 

It seems unlikely to us that in general (i.e. when we do not have some optimal TAs 
expressed in some formalism as in the previous examples) it is possible to determine ?‘A 
optimality without actually developing optimal TAs. One alternative is to perform empirical 
evaluations such as the one reported in [ 11. Another possibility is to find restricted classes 
of worth functions W(.) for which criteria for determining optimality without reference to 
an existing TA-optimal model exist. Finally, we could develop optimal TAs by searching in 
the space of all possible TAs. The next section discusses some issues regarding the 
feasibility of such an approach. 

4.3. Constraining the space of possible abstractions 

The search in the space of TAs would look very much like the search in “concept space” 
employed in machine learning [ 191. The search could be incremental, going from higher to 
lower abstraction levels, according to available computational resources. A fundamental 
problem, however, is the infiniteness of the possible abstraction functions. 

If we restrict our attention to finite discrete variables and deterministic abstraction 
functions, we will have a finite space to search. Moreover, it can be shown (see Theorem 
8 in the Appendix) that these three conditions (finite values, discrete, deterministic) are 
necessary for a finite space of TAs. Fortunately, using deterministic functions is a workable 
constraint as evidenced by the types of abstractions used by humans and existing MDSSs 
HI. 

The following example illustrates the idea of TA equivalence based on which the 
finiteness result is obtained. Consider the model of Table 1, and assume we wish to abstract 
over variable Fi _ i. Recall that Fi-, takes three values (H, M, L). There are infinite 
abstraction functions with a codomain consisting of up to two elements. For example 
consider the (infinite) functions with codomain { 1,2}, (2,3}, { 3,4), etc. From those, there 
are only three non-equivalent disjunctive abstraction function classes (i.e. in which we 
abstract by grouping together values): for Fi-, the first class assigns HM as the first value, 
and L as the second one, the second function class assigns HL as the first value and M as 
the second one, and the third abstraction function class assigns L.M as the first value and H 
as the second one. This is because a function that would map H and M to 1 and L to 2 
contains the same information as one that maps H and M to 0 and L to 1, and so on. In other 
words it does not matter what are the specific values (read labels) of each of the two 
abstracted values, since they correspond to the same information (i.e. to HM, HL, or LM, 
according to which equivalence TA class was used) regarding F,-,. Table 2 gives the 
number of ways of abstracting a variable as the number of values of that variable increases, 
for the first few numbers of values of the variable. Although (as the table illustrates) the 
space of possible abstractions grows steeply as a function of the number of values, it is 
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Table 2. Number of all possible 
non-equivalent TAs as a function 
of the number of variable values. 
This is the same as the number of 
disjunctive and eliminating TAs 

(see text) 

variable values abstractions 

2 5 
3 15 
4 52 

z 203 817 
I 4140 
8 21147 
9 115975 

(obviously) not infinite (Theorems 4,5, 6, 7, and 8 in the Appendix). 
We note that in Table 2 (but not in the example for simplicity), we not only consider 

disjunctive TAs (i.e. ones in which we join values together to form the values of the TA), 
but also value-eliminating TAs (i.e. ones in which we drop some of the values of the 
variables to be abstracted). Disjunctive abstractions in combination with eliminating 
abstractions describe completely the set of non-equivalent abstractions for finite, discrete, 
deterministic TAs (Theorem 7 in the Appendix). 

4.4. Some semantic and computational considerations 

In section 4.2, we defined IOC formalisms and models considering only their input- 
output behavior and not the way domain knowledge is represented internally in the model. 
We now focus on the semantic interpretation of a model’s components in order to clarify 
further our rationale and show that our results are independent of such considerations. First 
we distinguish between two types of IOC formalisms/models: the first type is described by 
the definition we presented in section 4.2, and will be referred as weak ZOC algorithm/ 
formalism. The second type (strong IOC) is defined having the additional requirement that 
input-output function is not only implemented correctly, but this is done by decomposing 
it into meaningful and correct components. “Meaningful” components are constructs 
isomorphic to essential domain characteristics. For example, in medicine they might be 
causal mechanisms, physiologic processes, anatomical regions, and so on. “Correct” refers 
to the requirement that not only should these structural components have a meaningful 
domain interpretation, but this interpretation should also be valid in its functional 
parameterization (i.e. the model components interrelate in a way similar to the domain 
components). For example, a causal mechanism indicating that peptic ulcer causes Gl 
bleeding is meaningful (corresponds well with accepted medical knowledge), but in order 
to be correct it should also be supplemented by the correct strength of association 
(expressed as conditional probability, heuristic weight, or other formalism-dependent 
means). 

Strong IOC always implies weak IOC. Therefore since we proved the results of section 
4.2 using the weak version, their validity is not altered by the semantic considerations 
brought forward by strong IOC. Also, trivially, weak IOC does not necessarily imply strong 
IOC. Usually it is desirable to develop MDSSs using strong-IOC formalisms. The reasons 
for such a preference is ease of knowledge engineering, explanation, knowledge validation, 
and updating. Developing strong IOC models is feasible when there exists a rich body of 
theoretical knowledge about the domain of interest. In cases where such a theory is lacking, 
weak IOC formalisms may be acceptable. Another obstacle in attaining strong-IOC systems 
is when domain knowledge exists but is not representable in available formalisms (e.g. 
higher-order logical statements). 

As an example of a weak IOC formalism, consider multi-layered feed-forward neural 
networks trained with back-propagation. They can learn any function, provided enough 
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training instances have been encountered and enough hidden nodes are used [20], but the 
internal representation does not correspond to domain knowledge (at least not in any well- 
defined, and straightforward manner). Belief networks on the other hand, can be used as 
either weak or strong IOC formalisms. The former was shown by Theorem 3. As an 
example of the latter, consider causal belief networks in pseudo-nondeterministic domains 
for which we now the causal mechanisms. We note that whereas Neural Networks are 
strictly weak IOC formalisms, belief networks can be used as either weak or strong, 
depending on our knowledge of the domain or other MDSS-building considerations. 

In general, the distinctions we made are homologous to the ones between “shallow” and 
“deep” or “associative” and “causal” models in the AI literature [21]. IOC formalisms are 
special subclasses of the corresponding classes, however, since weak IOC formalisms can 
be viewed as associative models that are guaranteed to enable the development of correct 
problem-solving systems while strong IOC ones guarantee the same and maintain a 
semantically meaningful (domain-specific) structure. 

5. CONCLUSIONS 

In this paper we provided arguments in favor of the following two assertions with respect 
to time-modeling for MDSSs. (a) Time formalisms that can represent not only explicit 
temporal variables but also temporal abstractions in the same model are likely to be an 
important tool in developing efficient and expressive MDSS, thus giving us a better handle 
on the “time problem” in MDSS development. We discussed MTBNs, as an example of 
such a hybrid-abstraction formalism. There is no reason why we should not expect other 
types of formalisms to adapt to the need to express simultaneously explicit and abstract 
parts of a model. In particular, temporal probabilistic logics seem to be good candidates for 
such extensions, since we can conceivably express abstract variables as indexed ones with 
unknown time locations, as well as having multiple granularity-level associations to our 
objects. The appropriate formulations, axiomatizations, and implementations of such 
logical systems, however, remain to be developed. (b) Temporal abstractions are not all 
equal, with respect to determining useful problem answers. We need to study TA-optimality 
and develop methods for developing optimal abstractions. We showed that it is feasible to 
study TA-optimality in a domain and formalism-independent manner, provided we have a 
TA-optimal model as reference. Unfortunately, the characterization of TAs as optimal or not 
without such references is difficult to obtain. Although some quite flexible constraints on 
the TAs considered yield a finite search space, the space is so large that we need to focus 
on special TA subclasses and methods for efficient development of TAs. 

The extensive research done in developing abstraction and summarization problems in 
medical informatics was done under the assumption that we knew the abstractions. It was 
assumed that the main problem was how to construct them from patient-specific data with 
computer-based methods [8,17,18]. Clearly this is only one (admittedly very important) part 
of the abstraction problem, as shown in the current paper. 

Researchers in AI have provided some initial answers to the problem of exploring 
methods for simplifying (i.e. abstracting) computational models [22-241. These methods 
are not time-aware, however, and thus, they do not exploit the structure of time and 
temporal reasoning. In the same sense, most of the theoretical analysis regarding the 
optimality of TAs in section 4 of the present paper applies to all abstractions. We believe 
that as a practical matter, time modeling forces the use of abstraction both in humans and 
AI systems, otherwise the reasoning models become too big and therefore computationally 
intractable. This is why abstraction plays such a major role in temporal representation and 
reasoning. In order to solve the time modeling problem in general, we clearly need to 
exploit more the structure of time and implement this structure utilizing the tool of TAs. 

We believe that several exciting research prospects exist in the field of time modeling 
with respect to the study of TAs. Research challenges that appear worth pursuing include: 

1. Developing algorithms and relevant heuristics for searching in the space of abstrac- 
tions. 
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2. Exploring the role of learning using abstractions of the available data, to cope with 
sample size problems. 

3. Modifying existing machine learning methods to learn by searching the space of 
abstractions (to increase the tractability of learning as well as of inference). 

4. Expanding explicit temporal representation and reasoning formalisms so that they can 
represent and reason efficiently with models involving multiple levels of temporal 
abstraction as in [ 11,251. 

5. Experimentally investigating the benefits of (iv) for knowledge acquisition and 
computational tractability. 

6. Learning the dynamic structure of processes using abstracted data. 
7. Using abstractions to study certain conventions of knowledge representation (such as 

stable feedback loops [26], selection biases occurring in time [27], etc.) 
8. Using existing TA ontologies to develop optimal TAs [ 1,8]. 
9. Producing empirical evaluations of implicit-time MDSS in many domains. 
10. Enhancing the theoretical understanding of TAs using explicit modeling of costs and 

benefits involved in the MDSSs development process, and having stochastic definitions 
of optimality (i.e. admitting errors e with probability p). 

11. Identifying TA classes for which stronger theoretical results and more efficient search 
procedures can be attained. 

Summarizing our conclusions we can say that temporal abstractions (especially as used in 
hybrid-abstraction representations) are a potentially valuable tool in developing MDSSs, 
since they help us achieve a balance of query completeness and tractability, they can help 
exploit knowledge that is available in various grades of abstraction, and they can lead to 
models that are easier to verify and specify. 

6. SUMMARY 

The utilization of the appropriate level of temporal abstraction is an important aspect of 
time modeling. We discuss some aspects of the relation of temporal abstraction to temporal 
implicitness and important knowledge engineering parameters such as model correctness, 
ease of model specification, knowledge availability, query completeness, inference 
tractability, and semantic clarity. In particular, temporal abstraction is not always 
synonymous with implicitness. Abstraction does not influence correctness directly. It may 
improve the ease of model specification, as well as facilitate knowledge acquisition, 
Abstraction reduces query completeness and semantic clarity, while enhancing computa- 
tional tractability. Based on these considerations, we propose that versatile and efficient 
time-modeling formalisms should encompass ways to represent and reason with both 
explicit and abstract temporal knowledge. We discuss MTBNs, as an example of such a 
hybrid formalism. 

An important issue in systems utilizing temporal abstractions is how to choose them out 
of an infinite number of possible candidates. Although many research efforts have 
concentrated on the automation of specific temporal abstractions, much research needs to 
be done in understanding and developing provably optimal abstractions. We provide an 
initial framework for studying this problem in a manner that is independent of the particular 
problem domain and knowledge representation. Our analysis demonstrates some of the 
inherent difficulties of this endeavor. We also present several research directions we believe 
are worth exploring. 
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APPENDIX 

The Appendix presents more formally some of the concepts and results discussed in the 
paper that were given as examples and intuitive arguments. 

(Contextual) TA optimality. Consider a problem D as defined in the text. Let W(.) be 
a worth function that gives the worth of each possible answer to every query Qi (Qi E Q,). 
We will say that a model M is a contextually optimal TA (CTA-optimal) model for D wrt 
Q,, iff for each Qi E Qrer M entails answers Ai, and there is no model M’ such that M is an 
abstraction of M’ and M’ entails Ai’ and W(Ai’, Qj) > W(Ai, Qj) for some i, j. Equivalently 
we will say that the TAs of the variables belonging to M are CTA-optimal for D wrt Q,. A 
model will be baseline CTA-optimal (BCTA-optimal) iff it is CTA-optimal, and there is no 
model M” s.t. M” is an abstraction of M and for all i, j: W(Ai’, Qj) = W(Ay, Qj). 

IO-correct algorithm or program with respect to M(.). Consider a function M(.) that 
maps from a set of inputs I to a set of outputs 0. An IO-correct (IOC) algorithm, or 
program, wrt to Mt.) is a program that implements M(.) exactly. 

IO-correct formalism with respect to M(.). A formalism F that admits (i.e. is readily 
associated with, or guarantees the existence of the representation of an IOC algorithm wrt 
M(.)) is an IO-correct (IOC) formalism wrt M(.). 

Theorem 1. The existence of IOC formalisms implies that we can construct TA-optimal 
systems. 
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Proof (sketch): Consider a mapping M between all queries of interest (Q, for a problem 
D) to answers such that the worth of each answer is optimal. Clearly M satisfies Contextual 
TA-optimality. Thus any formalism F which is IOC wrt to the function M will be TA- 
optimal for the problem and set of queries. 

Theorem 2. Belief networks and MTBNs are IOC wrt to any joint probability 
distribution of discrete variables. 

Proof (sketch): For every joint probability distribution (ipd) of discrete variables there 
is some BN that captures it [7]. The same applies for MTBNs [ll]. From these and the 
definitions of IO-correctness, it follows that belief networks and MTBNs are IOC wrt any 
jpd of discrete variables. 

Theorem 3. (a) If a formalism F, for problem D is IOC and the output of models 
expressed in F, can be reduced (i.e. converted) to the output of models expressed in 
formalism F2, and the worth function for D is F,-specific, then by using F, we can reject 
the TA-optimality of abstracting models expressed in F2 that are not TA-optimal. (b) If two 
formalisms F,, F2 for problem D are IOC and the output of models expressed in F, can be 
reduced to the output of models expressed in F2, and the worth function for D is F,-specific, 
then by using F, we can establish or reject the TA-optimality of abstracting models 
expressed in F, that are TA-optimal or not, respectively. 

Proof (sketch): (a) If we abstract over a TA-optimal model (expressed in formalism F,) 
Mr,, then we can infer the possible non-optimality of a similar abstraction over a model M, 
(involving the same variables expressed in formalism F2), by establishing non-optimality of 
the abstracted version of Mr,, MFlabS. This is the case since if MFlabs is not optimal, then 
necessarily MFzabs is not optimal too (if it were, because F, is IOC we would be able to use 
optimal model it4Fzabs to construct an optimal model in F,, which is a contradiction). (b) The 
proof carries essentially unchanged from the proof of part (a). The following additional step 
is required for the case when F, is IOC for D: if MFlnbs is TA-optimal, then F2 can do no 
worse than F,, since we can use i14rlabs to develop a TA-optimal model MFZabs. Therefore we 
cannot only establish non-optimality of F2 using F,, but TA-optimality as well. 

Example of Application of Theorem 3. Define the general problem D, for the medical 
diagnosis domain to be a mapping from joint disease-finding instantiations to the joint 
probability of (Dis,F), and the worth of an answer to be 1 if the joint probability is correct 
and 0 otherwise. If we restrict our attention to the functionality of QMR that produces rank 
ordered lists of diagnoses given patient findings, we can reject the TA-optimality of QMR 
(if it is indeed non-optimal) by using MTBNs as follows: given this definition of the 
problem and Theorem 3, we need: 

1. MTBN is IOC wrt to D (satisfied because of Theorem 2). 
2. A jpd of (Dis, F) can be converted to a rank-order of Dis given F. This is satisfied by 

a trivial constructive proof: use any correct sorting algorithm to construct a sorted list of 
the diseases Disi in the domain each followed by its probability given the evidence of Qi* 
Enumerate the list such that equiprobable diseases get the same index. 

3. The worth function is rank-order (Dis I F) specific. This is satisfied by assumption: any 
rank-order pair of diseases lists that differs only in the order of tied pairs has the same 
worth. 

Theorem 4. The number of ways g(n) of disjunctively abstracting a finite discrete variable 
X that can take any one of n possible values is Sfln, m)), where the sum is taken over all 
m from 1 to n, andfin, m) denotes a Stirling number of the second kind. Furthermore, there 
is a closed form formula for computing g(n). 

Proof. By definition, the number of ways to partition n things into m nonempty subsets 
is given by a Stirling number of the second kind, which we write here as An, m). The 
functionAn, m) can be computed as follows [[28], Equation 6.191: 

Anm)= ~ (~)k’Y- lYk) 
, 

k=l m! 
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The number of ways of abstracting X is equal to the sum of the number of ways to 
partition n things into 1, 2,..., and n nonempty subsets. Thus g(n) is equal to: 

g(n)= “i, An,m>. 

Since the formula forf(n,m) is in closed form, it is straightforward to see that g(n) is in 
closed form. 

Theorem 5. The number of ways of abstracting a finite discrete variable X taking n 
values, using both disjunctive and value-eliminating abstractions is given by: 

n-l 

g’(n)= kzo &n-k) ; =g(n - 1). 
0 

Proof (sketch). We create TAs by eliminating k out of n values and then abstracting 
disjunctively the remaining values. k ranges from 0 to n - 1. There are (n choose k) ways 
of eliminating k values from n total values. From Theorem 4, there are g(n - k) ways to 
abstract disjunctively the remaining values (for each k). The total number of disjunctive and 
eliminating TAs of n values is equal to the total number of disjunctive TAs of n+ 1 values, 
since we can derive the former by introducing a pseudo-value “eliminate” and take all 
possible disjunctive abstractions involving this pseudo-value (taken to mean elimination of 
the corresponding value or combination of values). 

Theorem 6. Consider a model M that contains discrete variables X,, X,,..., X, that can 
take on n,, n2 ,..., n, possible values, respectively. The number of possible disjunctive 
abstractions for M is: 

g( Jj, WI. 

And the number of possible disjunctive/value-eliminating abstractions is: 

g’( Jj W). 

Proof. Consider M to consist of a single variable X whose values are members of the 
Cartesian product of the values of X,, X,,..., X,. It follows that the number of possible 
abstractions of X is as given in the statement of the theorem. 

Theorem 7. The class of disjunctive and eliminating abstractions over a set of finite 
discrete variables V contains exactly all non-equivalent abstractions over I! 

Proof (sketch). Consider a single variable X that contains all information of I! X has as 
many values as the Cartesian product over the values of each variable in V Call this number 
N. For each number M from 0 to N, consider that although there are infinite deterministic 
functions that map from an arbitrary subset S of values of X to M values (i.e. they have a 
codomain with cardinality M), every function that assigns the members of S to M values in 
the same way (regardless of the meaning or label of the new values) will be mathematically 
indistinguishable (although semantically not so). The possible ways to make the 
assignments correspond precisely to taking disjunctions of original values, including 
allowing value elimination (that is, disjunctions that are not complete relative to S). 

Theorem 8. Assuming a set of finite discrete variables V and deterministic abstractions, 
the number of non-equivalent TA functions over V is finite. Moreover these conditions 
(finite, discrete, deterministic) are necessary for finiteness of the TAs. 

Proof (Sketch). (1) Sufficiency directly follows from Theorems 6 and 7. (2) Necessity 
is derived by showing that whenever we have a continuous (or infinite discrete) variable, 
we can devise a family of non-equivalent TAs that contains infinite members. Such a family 
can be trivially constructed by having each TA preserving all values but two, which are 
collapsed into a pairwise disjunction. There are is infinite number of such disjuncts and they 
are not information-equivalent. Similarly we can construct a family of non-equivalent TAs, 
that contains infinite members whenever we have non-determinism, by abstracting the N 
values into M abstracted categories based on a probability p of assignment to one of the 
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values in M. p can take any of a number of infinite values, and all these are non-equivalent, 
since they suggest a different probability of the original value(s) given the abstracted 
variable value assignment. 
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