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Improvement in the performance ofreminder systems
may be facilitated by the use ofnew representations.
A decision-theoretic representation, for example, may
enable a reminder system to represent and reason
about the probabilities that a reminder will be a true
or a false alarm and the relative utilities of these
events. We extended a previously described decision-
theoretic model to include such events. The model
now represents explicitly the uncertainty, costs, and
benefits ofsending a reminder. We also extended the
model to remove an assumption of reminder
independence. As a step towards testing a hypothesis
that this approach will support better performance
than a rule-based approach, we analyzed a set of
CARE rules and showed that our representation can
represent these rules.

INTRODUCTION

After two decades of research, the basic results about
the reminding paradigm-acceptability to clinicians,
strong influence on clinician behavior, and ability to
improve selected outcomes-are well established [1-
9]. A key open problem at this juncture is how to
improve the performance ofreminder systems; that is,
how to decrease the numbers of false alarms (which
we define as reminders that recommend actions that
are not appropriate for patients) while maintaining or
increasing the numbers of true alarms.

The decision-theoretic formalism has potential for
improving the performance of reminder systems.
When used as the basis for medical expert systems,
this formalism has produced improvements in
performance relative to rule-based implementations
[10]. Additionally, the decision-theoretic formalism
can potentially model complex phenomena that affect
reminder-system performance such as how clinicians
respond when too many reminders are sent to them at
once.

In our previous work, we formulated reminding as
a decision problem [11], tested our approach in a
laboratory setting [12], showed how to handle data
error that is ubiquitous in field settings [13], and
discussed how a decision-theoretic reminding
knowledge base could address several problems
related to sharing [13].

In this paper, we extend our previous model. We
first develop a definition of reminder-system

performance based on rates of true and false alarms
and the utilities of these events. We then modify our
original model-motivated by the objective of
improving performance-to represent different types
of true and false alarms and their utilities. The new
model also relaxes an assumption of reminder-
independence that was present in the previous model.
Finally, we analyze a sample of CARE rules to
demonstrate the representational adequacy of our
model. The CARE language [14] has been used to
generate reminders for over 20 years as part of the
Regenstrief Medical Record System [15]. More
recently, a version of the language called G-CARE is
used to generated reminders in real time for a
physician decision-support system [16]. CARE and
G-CARE have been used for a large number of the
high quality studies of reminder systems [17]; we
assume that, at a minimum, a reminder-system
language should have the expressiveness of these
languages.

PERFORMANCE OF REMINDER SYSTEMS

Performance is an important issue for developers of
reminder systems. Developers worry that too many
false alarms will lead to clinician noncompliance or
that too many true alarms might lead to unquestioning
compliance with reminders [Reed Gardner, personal
communication]. They have concerns that too many
alarms of either type will overwhelm clinicians;
therefore, sometimes they inactivate rules solely to
decrease the volume of reminding. They employ
rules-of-thumb such as do not write a reminder rule
that sends more than 66% false alarms to convey
their experience with the tradeoffs between true and
false alarms to other rule authors.

Despite the importance of performance, current
approaches to its measurement are not well-
developed and have limitations that we will discuss.
Moreover, there are no standard definitions of
performance or methods for its measurement that we
can apply to determine whether or not the
performance of a reminder system is improved after a
modification.
A typical approach to performance measurement is

as follows: After a modification (e.g., an edit of a
rule), we run the modified rule against a sample of
historical patient cases and judge whether the
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reminders being generated by the rule are improved
(typically, the rule has been modified to exclude or
include a target subset of patients). One limitation of
this approach results from a fundamental tradeoff that
exists between the rates of true and false alarms-that
is, because the reminder system cannot precisely
identify the target subset of patients, one rate can be
improved only at the expense of the other. The
current approach to performance evaluation assumes

that developers are good judges of the effect of a
change on the true- and false-alarm rates and on their
relative utilities. A second limitation of current
approaches is that the true value of a reminder system
also depends on whether the reminders are heeded.
For example, if reminder system A sends only true
alarms, but none are heeded by clinicians and
reminder system B sends the same true alarms but all
are heeded, then a performance metric should rate B
higher than A. The rates of unheeded reminders,
incidentally, are not insignificant in working systems.
From an analysis of published studies, we estimate
that 30% of true alarms go unheeded [5, 7, 18]. A
metric must also distinguish between false alarms that
are heeded, and those that are not. False alarms that
are heeded may be serious, as, for example, when a
reminder is heeded to give penicillin to a patient who
is allergic to penicillin, whereas false alarms that go
unheeded usually just waste a clinician's time.
Researchers have measured rates of unheeded false
alarms of 19%, 22%, and 29% [5, 8, 18]. (We are not
aware of published data about the rates at which false
alarms are heeded.)
We have discussed these determinants of reminder-

system performance because the decision-theoretic
model discussed in the next section represents
explicitly these types of alarms and their utilities. As
an aside, we suggest that an ideal measure of
reminder-system performance is a utility-weighted
sum of these events.

A NEW DECISION-THEORETIC MODEL

In our previous model [12, 19], the utility of a
reminder could take one of three values, depending
on whether the reminder caused the clinician to do the
wrong thing, nothing, or the right thing for a patient.
In the new model, the utility of a reminder can take
four possible values-corresponding to the events
that the reminder is appropriate and heeded;
appropriate and not heeded; inappropriate and
heeded; or inappropriate and not heeded. This
formulation has several advantages over the previous
formulation. First, since performance is a function of
those events, a normative system that reasons about
them is guaranteed to exhibit optimal performance

under well-defined assumptions. Second, methods for
detecting and measuring these events have been
developed by reminder-system researchers. Third, the
utility of these events may be easier to estimate than
the events used in our previous model.

Figure 1 is a decision tree that represents the
computation performed by the new model for one
reminder. In Figure 1, the decision alternatives are to
send reminder rl or to not send it. The outcome of
sending rl is that it is either appropriate and heeded,
appropriate and not heeded, inappropriate and
heeded, or inappropriate and not heeded. The
reminder system's uncertainty about which it will be
is represented by a probability distribution that is
conditioned on the evidence available to the system,
E. We model the utilities for these four outcomes as
the differences between the utility of the action
resulting from the reminder (e.g., the utility of doing
the right thing or the wrong thing for a patient) and
the cost of interrupting the clinician, denoted as
C(t),the utility of the time.

Fig. 1. Decision-theoretic model ofreminding

Figure 2 shows a probabilistic model (a belief
network) that can be used to compute the probability
distribution P( ah E). In this example, we use a
hypothetical reminder that warfarin is appropriate
therapy for chronic atrial fibrillation. This network
models the uncertain relationships among what the
data in an electronic medical record say about a

patient (warfarin, atrialfib), what the patient's true
state is (WARFARIN, ATRIAL FIB), whether the logic
of a practice guideline about anticoagulation is
satisfied (logic satisfied), and whether a reminder will
be appropriate and heeded by the clinician to whom it
might be sent (ah). The local probability distributions
for each node are shown adjacent to the node. Some
features of this model are the explicit modeling of
data accuracy, the encoding of the logic of a practice
guideline within the probabilistic framework (i.e., as a
subnetwork with a probability distribution that.
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Fig. 2. A belief network that can compute the probability ofthe four outcomes of a reminder about warfarin therapy.

simulates the truth-value semantics of the logic
underlying the practice guideline), the explicit
modeling of practice guideline accuracy, and the
explicit modeling of different types of true and false
alarms

Our previous model assumed that the utility of a
reminder is independent of other reminders sent.
Based on an informal analysis of CARE rules, we
modified the previous model in a second way. CARE
rules often nest multiple reminders within a single
logical structure to prevent the recommendation of
two conflicting actions. We can model such
dependencies by the addition of one subtree
(analogous to the subtree for reminder 1 in Figure 1)
for each nested reminder. When evaluated, the
decision tree computes the expected utility of each of
the decision alternatives (send no reminder, send rl,

send r.) and acts on the alternative with the
highest expected utility. The new model makes an
assumption of modular independence: those
reminders whose interactions are not explicitly
represented are independent. We discuss a procedure
for translating an arbitrary CARE rule to this
formalism in the results section.

Decision theory offers many additional modeling
possibilities which we outline in the discussion. The
emphasis of the current model is on achieving
performance improvement by explicit modeling of
data error and by allowing a reminder system to
decide whether to send a reminder based on a
calculation of expected utility.

METHODS

The goal of this study was to determine whether the
new model could represent all CARE rules.
To obtain a sample of CARE rules, we identified

key problem areas in geriatrics by a consensus
process involving five geriatricians who were not

familiar with the CARE language. The topics
identified included stroke prevention (e.g., reminders
about blood pressure control and treatment of atrial
fibrillation), depression, and drug related monitoring.
One of the authors (JMO) identified rules in the
Regenstrief Medical Record System that
corresponded to these topics. We then analyzed the
set ofCARE rules to determine whethfer they could be
represented in the decision-theoretic formalism.

RESULTS

JMO identified 21 CARE rules pertaining to 24
problem areas suggested by the clinicians. These
rules comprised 184 distinct reminders (average 8.8
per rule, range I to 69). Analysis of this sample
revealed the following basic rule structure:
Exclude A
Case statement

Case B, then send reminder RI and exit
Case C, then send reminder R2 and exit
Case D, then send reminder R3 and exit
Case E, then call rule Z and exit

where upper-case letters A through E represent
logical expressions (e.g., angina AND NOT
hypertension) that may include atoms whose truth
value is determined by other rules (backward
chaining). The exclude statement, if satisfied, blocks
the rule from evaluating. The case statement sends
the first reminder whose precondition is satisfied.
Thus, the behavior of a rule with this structure is to
send at most one reminder (or take other action such
as triggering the evaluation of another rule (a fonn of
forward chaining).
A procedure to translate a CARE rule with this

structure to our decision-theoretic model is as
follows:
1. Create a single decision node.
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2. Add a distinguished decision alternative send no
reminder with utility = 0.

3. For each case in the case statement,
* Add a decision alternative and a chance

node as in Figure 1.
* Condition the probability distribution for the

chance node on the set of atoms in the case
statements up to and including the current case
(e.g., for R3, the elements of the expression
NOT B AiN NOT C AND D (i.e., create a belief
network as in Figure 2 in which the logic of the
case statement is duplicated).

* For atoms that invoke backward chaining,
define a variable that represents the result of
the evaluation of that rule.

* Add a utility function.
4. Check that the utility functions are consistent with

the preferences implicit in the ordering.
The final step deserves additional explanation. In one
CARE rule about the drug therapy of uncontrolled
hypertension, all reminders to increase the dosage of
ACE inhibitors appear in the case statement before
any reminders to increase the dose of calcium-
channel blockers, which in turn appear before the
reminders for beta-blockers. This ordering within the
case statement reflected a preference of the
knowledge engineer for the use of these drugs (based
on the clinical literature). In our decision-tree model,
such preferences would be represented explicitly by a
utility function that was consistent with them. An
advantage of the decision-theoretic representation is
that if our preferences for treatments changes, we do
not have to manipulate the orderings in the case
statement (we can express the new preferences
directly).

Note that the model thus far described would
exhibit behavior identical to that of the CARE rule. A
potential advantage of the probabilistic version of the
CARE rules is that, if we add data error and practice
guideline error, the behavior of the reminder system
may change (appropriately).
We did not encounter in our sample a second

CARE structure in which all reminders from a set of n
whose preconditions are satisfied are sent. We would
map this structure into n decision trees.

DISCUSSION

A long-term objective of our research is to investigate
the potential of the decision-theoretic formalism-
which has been used extensively to develop medical
expert systems [10, 21] but not to develop reminder
systems-to improve the performance of reminder
systems. In the absence of an existing common

definition of performance, we developed one in this
paper. We then developed a decision-theoretic model
that will exhibit optimal performance (for a given set
of reminders) as a consequence of computing with
this formalism. We demonstrated that this formalism
is at least as expressive as one ofthe rule languages in
regular, ongoing use today. Since the Arden syntax
[20] provides similar constructs (its design was
influenced by CARE), there is every reason to believe
that this conclusion also applies to Arden (note that
procedures that compute temporal, or other predicates
in CARE or in Arden can be used to determine the
truth value of variables in this approach). In the
future, we plan to investigate whether the ability of
this language to represent uncertain medical
knowledge will allow the encoding of practice
guidelines that cannot be represented easily with
current formalisms Although expressiveness of
reminder-system languages is of current interest [22-
25], decision-theoretic representations have received
little attention.
We have not yet implemented the set of CARE

rules that we analyzed; hence, future work will
include the acquisition of the probabilities and
utilities for this set of reminders. We expect that the
probabilities required can be elicited from experts or
estimated from data. In previous studies [12, 19], we
were able to determine the utilities of reminders,
hence we are optimistic that utilities can be specified.
We note that performance equal to a rule-based
reminder system can be achieved using default
probabilities for data error that assume no data error,
perfect practice guideline accuracy, and a utility
function that is consistent with the ordering of
reminders in the case statements.

Our future plans are to implement this set of
reminders in a decision-theoretic reminder system,
using belief-network technology, and to compare its
performance to that of a comparable rule-based
system. Such an experiment will test the effect of
modeling data error and letting the system adjust the
rate of true and false alanns. Langlotz [26] has
pointed out that decision theory provides a rational
basis for making such judgments; that is, decision
theory allows us to break down the complex choice
into simpler assessments such as how likely is it that
the reminder will be appropriate for a patient with
certain characteristics, what is the accuracy of the
underlying data, and to what extent is the reminder
likely to be ignored by patients or doctors. We
conjecture that such questions are more natural for
clinicians, and therefore can be answered with more
accuracy by them.

Our future plans also include the investigation of
the effect on performance of other techniques based
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on this formalism such as the explicit display of
probabilities and expected utilities to users, the use of
time-dependent utility functions to model urgent
alerts, the ability to prioritize reminders for clinicians
based on utility considerations, and ability to model
patient preferences.
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