
Probabilistic Inference in
Multiply Connected Belief

Networks Using Loop Cutsets
H. Jacques Suermondt and Gregory F. Cooper

Stanford University, Stanford, California

ABSTRACT

The method of conditioning permits probabilistic inference in multiply connected
belief networks using an algorithm by Pearl. This method uses a select set of nodes,
the loop cutset, to render the multiply connected network singly connected. We dis-
cuss the function of the nodes of the loop cutset and a condition that must be met
by the nodes of the loop cutset. We show that the problem of finding a loop cutset
that optimizes probabilistic inference using the method of conditioning is NP-hard.
We present a heuristic algorithm for finding a small loop cutset in polynomial time,
and we analyze the performance of this heuristic algorithm empirically.

KEYWORDS: artificial inteiligenoe, Bayesian methods, expert systems,
probabiUstie reasoning, belief networks, multiply connected, cutsets,
loops

I N T R O D U C T I O N

Bayesian belief networks provide an intuitive method for representing knowl-
edge in a probabilistic framework. A belief network is an acyclic directed graph
containing nodes that represent chance variables of quantities of interest. Each
node assumes a set of values that are mutually exclusive and exhaustive. The
arcs in a belief network represent the probabilistic relationships between nodes.
These relationships can be causal, correlational, or a combination of the two.
Other terms used for the belief-network representation are probabilistic in-
f luence diagrams, causal networks, and Bayesian nets (Cooper [1], Horvitz
et al. [2], Howard and Matheson [3], Lemmer [4], Pearl [5], Rousseau [6],
Spiegelhalter and Knill-Jones [7]).

Once a domain has been represented as a belief network, the probability of
any node can be calculated conditioned on the values of any available evidence
nodes. An evidence node, also called instantiated node, fixed-value node,

Address correspondence to H. J. Suermondt, M.S.O.B. X-215, Stanford University Medical
Center, Stanford, CA 94305-5479.

International Journal of Approximate Reasoning 1990; 4:283-306
~) 1990 Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010 0888-613X/90/$3.50 283

284 H. Jacques Suermondt and Gregory F. Cooper

(a) (b)

Figure 1. Examples of belief networks. (a) A singly connected belief network. (b) A
multiply connected belief network.

or observed node, is a belief-network node for which a single value has been
established with certainty. We propagate the observed value of an evidence
node throughout the belief network such that each proposition in the network
is assigned a new measure of belief consistent with the axioms of probability
theory. There are currently several algorithms for this process of probabilistic
inference (Lemmer [4], Chavez and Cooper [8], Henrion [9], Kim and Pearl
[10], Lauritzen and Spiegelhalter [11], Pearl [5, 12-14], Schachter [15, 16]).

Pearl's algorithm for updating probabilities in singly connected belief net-
works (SCBNs) is well known [5]. The main limitation of this algorithm is
that the performance of belief updates in time that is linear in the size of the
network is limited to singly connected belief networks. A singly connected
belief network, also known as a causal polytree, has at most one path (in the
undirected sense) from any node to any other node (see Fig. la) (Harary [17],
p. 32). A multiply connected belief network, on the other hand, can have more
than one path (in the undirected sense) between nodes (see Fig. lb).

Unfortunately, many belief networks of practical use are multiply connected.
Pearl presents several ways to apply the SCBN algorithm to such networks (Pearl
[5, 12, 13]. One, the method of conditioning, or reasoning by assumptions,
provides a reasonable solution provided that the network is not highly connected
(Pearl [12]). The method of conditioning is based on selecting a set of nodes,
the loop cutset, from the belief network and then considering separately all
possible combinations of values that these nodes can have. In other words, we
treat each possible combination of values of the nodes of the loop cutset as
a separate case. Once the nodes of the loop cutset have been instantiated, the
belief network can be treated as though it were singly connected for the purpose
of inference. Thus, a loop cutset in the method of conditioning differs from the
graph-theoretic concept of a outset: Graph-theoretically, a outset is a set of
nodes or arcs the removal of which disconnects the graph (Shier and Whited
[18]). Our notion of a loop cutset is a set of nodes whose instantiation makes a
multiply connected belief network functionally singly connected.

Because each possible combination of values of the nodes of the loop cutset
has to be considered separately in inference, we are interested in finding the

Probabilistic Inference in Belief Networks 285

(a) Ca) (c)

Figure 2. Blocking conditions. Because the blocking conditions are in effect, (a) a fixed-
value node (shaded) no longer transmits information between parent and child nodes;
also, (b) information passing between child nodes is blocked. (c) In nodes that have not
been observed and that do not have any observed descendants, no information is passed
between parent nodes.

minimal loop cutset, which we define to be the set of nodes satisfying the
requirements of the method of conditioning such that the product of the number
of values of these nodes is minimal. We shall show that the problem of finding a
minimal loop cutset is NP-hard; however, it is possible in many belief networks
to find rapidly a small set of nodes such that this set will be a minimal or near-
minimal loop cutset. We describe a heuristic algorithm that will locate such a
set of nodes, and we discuss the efficacy of this algorithm in finding a minimal
loop cutset.

P E A R L ' S S C B N A L G O R I T H M

Pearl's SCBN algorithm performs probabilistic inference through a series of
local probabilistic propagation operations, in which each node receives infor-
mation messages from its neighboring nodes and combines these messages to
update its measure of probability. Each node determines which of its neighbors
need to receive updated information in order to maintain a correct probability
distribution. Thus, through entirely local operations, the algorithm updates the
probabilities for the nodes in the belief network to incorporate new evidence.
See Pearl [5, 13] for a more detailed discussion.

There are situations in which the structure of the network is such that in-
stantiation of one node will have no effect on the probability distribution of
some other nodes in the network. To prevent unnecessary calculations for nodes
whose belief distributions will not be affected anyway, we can set blocking con-
ditions for transmission of information. These blocking conditions, based on
the criterion of d-separation discussed by Pearl [6, 19] and Pearl and Verma
[20], implement the idea that certain portions of the network are independent
of other portions given that the values for certain nodes are fixed. The blocking
conditions are the following (see also Fig. 2):

• A fixed-value node does not send information from its children to its par-
ents or from its parents to its children.

286 H. Jacques Suermondt and Gregory F. Cooper

• A fixed-value node does not send information from one child to any other
children.

• A node whose value is not fixed and that does not have any fixed-value
descendants does not send information from one parent to any other par-
ents.

The last condition is an illustration of the property of belief networks of in-
dependence except through arcs. If a node has not been instantiated, then
information from one parent will not convey any information about the proba-
bilities of the other parents (if we assume that the only path between the parents
is through their common child). For a fixed-value node, however, each parent
node functions as a possible explanation for that node value. Therefore, infor-
mation about the belief distribution of one parent will affect the distributions
of the others. The following example will clarify this property.

Consider two possible causes for a severe headache: a subdural hematoma
and a brain tumor. Normally, the probability of having a subdural hematoma
will not influence the probability of having a brain tumor: The two probability
distributions are marginally independent. However, if we observe that a person
has a serious headache, the probability of each of these two causes increases.
Now, if a CT scan shows that the patient has a subdural hematoma, this observa-
tion explains the headache; therefore, the probability of a brain tumor decreases
again. Thus, only if the child node (headache) has been observed does one par-
ent node (subdural hematoma) influence the probability distribution of another
(brain tumor).

For singly connected networks, the structure of the belief network determines
when nodes should stop sending information. Even if no blocking conditions
are observed, the worst that can happen is that the new information will be
transmitted to parts of the network where it will not change any probability
distributions. The fact that a pathway between nodes is blocked means only
that beyond that block no beliefs are changed by the new information, so the
extra work of recalculating those beliefs is unnecessary. Because information is
never sent back down an arc from which it arrived, belief propagation comes to
a natural halt for singly connected networks. As we shall show in the following
section, blocking conditions play a much more central role in belief updates for
multiply connected networks.

M U L T I P L Y C O N N E C T E D N E T W O R K S

As noted earlier, most belief networks created for practical purposes are not
constrained to the singly connected structure. Superimposing such a constraint
could make the structure of the problem inadequate. However, if we allow
the network to be multiply connected, we can introduce loops. A loop, also
known as an elementary circuit (Berge [21], p. 7), is defined in terms of

Probabilistic Inference in Belief Networks 287

Figure 3. Example of a small belief network. We are interested in the probability of
node D, given evidence E. Since node D has not been instantiated, it does not pass
messages from B to C or vice versa. Therefore, cycling of information in loop A-B-C-D
is not a problem in this example. However, messages passed from A through B to D
are not independent of messages passed from A through C to D.

undirected paths. An undirected path between two nodes X~ and Xk is defined
as a sequence of nodes [X1 Xk] such that in the belief network there exists
an arc from Xi to Xi+I or from Xi+I to Xi for each i E {1 k - 1}. A
loop is an undirected path [X1 Xk] in which (1) the initial node XI co-
incides with the terminal node Xk, and (2) apart from the coincidental initial
and terminal nodes, every node in [Xl Xk] is distinct. By definition, loops
occur only in multiply connected networks. Loops are problematic for Pearl's
SCBN algorithm, because the algorithm acts only through local operations on
the nodes; when there are loops in the network, propagated information may
cycle through the loops indefinitely.

In addition to possible cycling of information, multiply connected belief net-
works present another problem: Parents of a node may share information from
elsewhere in the network; therefore, they may not independently influence the
probability distribution of their common child. Due to the local nature of belief
propagations in Pearl's SCBN algorithm, this phenomenon can lead to incorrect
probability calculations unless an instantiated node prevents passage of shared
information. An example will clarify this problem.

Consider the case given in Figure 3, where we are interested in the current
probability of node D, given evidence node E, which is a predecessor of node
A. Without loss of generality, we assume that the possible values of node A
are a and - a ; nodes B, C, and D are also binary-valued. Assume that nodes
A-D have not been observed. Because node D has not been observed, it will
fulfill the blocking conditions described earlier; therefore, messages will not go
around the loop formed by nodes A-D but rather will stop propagation at node
D. In this example we shall show that unless node A, B, or C is part of the
loop cutset, the results of evidence propagation will not be correct according to
the laws of probability, because the effects of evidence node E can reach node
D through two paths.

2gg H. Jacques Suermondt and Gregory F. Cooper

If none of nodes A, B, or C are instantiated, we first use evidence E to cal-
culate the new belief distribution for node A. Next, the evidence is propagated
to nodes B and C. Nodes B and C send the information to node D. Node D
now reads the messages from B and C and calculates its current belief.

Because of the local nature of belief propagation in Pearl's SCBN algorithm,
the probabilities for any node are calculated by considering only the current
beliefs for that node's neighbors, as well as the conditional probability tables
relating the node to its neighbors. Thus, the probabilities for node D are cal-
culated by the SCBN algorithm as follows:

P(d]E) = P(dlb, c)P(b IE)P(c IE)

+ P(dlb, -~)P(b IE)P(-~c IE)

+ P(d l~b, c)P(~b IE)P(c IE)

+ P(dl-,b, --¢)P(-~b IE)P(-~c IE)

P(b [E) and P(c IE) are calculated locally as follows:

(1)

P(b [E) = P(b [a)P(a IE) + P(b I--~)P(-~]E)

P(c IE) : P(c]a)P(a IE) ÷ P(c [--~)P(-~a IE)

Analogously, we can calculate P(~b [E) and P(--~ IE). The problem in calcu-
lating the probabilities for node D arises from substituting these probabilities
into Eq. (1). If the network were singly connected, the resulting calculation
would be equivalent to

P(dlE) = E P(d, A, B, CIE)
A,B,C

However, since node A is a common predecessor of both parents of node D,
substituting the locally calculated values for P(b IE), P(-~b IE), P(c [E), and
P (- c l E) into Eq. (1) does not give us a calculation that is equivalent to this
sum. When we collect terms, we obtain an equation that contains several terms
that are inconsistent with the axioms of probability. An example of such an
incorrect term is

P(dlb, c)P(b la)P(a [E)P(c I--~)P(-~a I E)

Note that this term contains the probabilities P(a[E) and P(--,a[E), which are
logically incompatible with each other. The product of these terms is inconsis-
tent with the probability distributions specified by the belief-network represen-
tation. Due to the local nature of belief propagation, however, these terms are

Probabilistic Inference in Belief Networks 289

unavoidable unless we instantiate node A, B, or C. If we fail to do this, we get
cross-multiplications of incompatible terms.

We can prevent this situation by instantiating node A. We will then consider
separately the case where node A has value a and that where it has value --~a.
The belief distribution for node D is calculated as a combination of these cases:

P(d IE) = P(d la, E)P(a IE) + P(dl-m, E)P(-m IE)

If we use Pearl's SCBN algorithm, we calculate P(d]a, E) as follows:

P(d]a, E) = P(dlb, c)P(b la, E)P(c la, E)

+ P(dlb, ~)P(bla, E)P(~cla, E)

(2)

+ P(dl-~b, c)P(~b la, E)P(c la, E)

+ P(dl~b, ~)P(-~b I a, E)P(--c I a, E) (3)

is equal to P(dlb, c, a) because of the blocking condi-

P(alb, c)p (b la)P(c la)P(a IE)

+ P(dlb, ~)P(b la)P(~c la)P(a IE)

+ P(dl--~b, c)P(-~b la)P(c [a)P(a IE)

+ P(dl-~b, --c)P(-~b l a) P (~ la)P(a IE)

+ P(d Ib, c)P(bl--a)-P(cl-a)P(--a IE)

+ p (a l b , ~) p (b I - - a) P (~ I--a)P(-~ IE)

or, equivalently,

+ P(dl--,b, c)P(~b I m)P(c lm)P(m IE)

+ P(dl--,b, ---~)P(~b I--~a)P(--~ I--a)P(--~ IE) (4)

P(dlE) = p(a, A, B, CIE)
A,B,C

P (d I E) =

where P(dlb, c)
tions; similarly, P(dlb, ~c), P(dl~b, c), and P(dl-~b, ~c) are equal to
P(dlb, --,c, a), F'(dl-~, c, a), and P(dl~b, -~c, a), respectively. We can com-
pute P(dl-'a, E) in a manner analogous to Eq. (3).

By instantiating node A, we are effectively treating it as an evidence node;
therefore, due to the blocking conditions, P(bla, E) is equal to P(bla). Anal-
ogously, P(c la, E) equals P(c la), and so on. After substituting these simplifi-
cations into Eq. (3) (and its analogs), and substituting Eq. (3) (and its analogs)
into Eq. (2), we have the following result:

290 H. Jacques Suermondt and Gregory F. Cooper

Equation (4) is consistent with the axioms of probability theory. Thus, by in-
stantiating node A to each of its possible values and combining the results, we
can use Pearl's SCBN algorithm to calculate P(dlE).

We can obtain the same result by instantiating either node B or node C, rather
than node A, to each of its values. Instantiating one of these nodes prevents
inconsistent products of conditional probabilities.

In summary, the instantiated nodes must not only stop infinite cycling of
information, but also enable the local probability calculations to achieve proba-
bilistically correct results. In general, to get belief calculations consistent with
the axioms of probability when using Pearl's SCBN algorithm in multiply con-
nected belief networks, we must satisfy the following loop-cutset condition:

Instantiate at least one node from every loop in the belief network such that
this node is a child to no more than one other node in the same loop.

If we do not instantiate at least one node from every loop in the network,
we may fail to prevent cycling of information. To obtain consistent probability
calculations, as described in this section, we also need to prevent the situation in
which information can reach a node along multiple pathways; since only those
instantiated nodes in a loop that are a child to no more than one other node in
that loop will block an information pathway within the loop, we must instantiate
at least one such node. Therefore, we need to satisfy the loop-cutset condition.

THE METHOD OF CONDITIONING

Pearl's SCBN algorithm to propagate messages by means of exclusively local
operations on nodes applies only to singly connected networks; for multiply
connected networks, there are several methods based on modification of this
algorithm (Pearl [13]), all of which may suffer from combinatorial explosion
because probabilistic inference using belief networks is known to be NP-hard
(Cooper [22]). One such technique is the method of conditioning (Pearl [12,
13]).

The method of conditioning is based on instantiating a small set of nodes,
the loop cutset, to "cut" all loops in a multiply connected belief network. The
nodes of the loop cutset act as though they were evidence nodes and thus prevent
cycling of information by way of the blocking conditions described earlier (see
Fig. 4). By instantiating the nodes of the loop cutset, we satisfy the loop-cutset
condition.

Thanks to the blocking conditions, the effects of new evidence can be cal-
culated using Pearl's SCBN algorithm. The results of these calculations are
then weighted by the joint probability of the nodes in the loop outset, given
the observed evidence. This joint probability of the loop-cutset nodes can be
obtained during initialization of the network by sequentially instantiating these

Probabilistic Inference in Belief Networks 291

add to

loop

Figure 4. Function of the loop cutset. Loop-cutset nodes use the blocking conditions to
separate ancestor nodes from descendant nodes, and descendant nodes from one another.
Thus, loops in a multiply connected network are cut to leave a singly connected network.
The node on the right is darkened to indicate that it has been instantiated.

nodes (Suermondt and Cooper [23]); when evidence is introduced, the joint
probability is updated dynamically, as described by Pearl [12] and Suermondt
and Cooper [23].

The correctness of the approach of conditioning is based on the following
equation. Given evidence E and a loop cutset consisting of nodes C1 Cn,
then, for any node X,

P(xlE) = ~ P(xlE, CI Cn)P(Cl c,,Ig) (5)
e l t...,Cn

In the calculation for the new belief P(x IE), the probability of x given a certain
instantiation of the loop-cutset nodes, P(x IE , c l c n) , and the joint proba-
bility of that loop-cutset instantiation, P(cl cn IE), can both be calculated
by Pearl's SCBN algorithm [5].

A good way to look at belief updates using the method of conditioning is to act
as though, rather than there being a single belief network, there is a collection
of networks. The number of possible instantiations such that we cover every
possible combination of value assignments to the members of the loop cutset
determines the number of copies of the belief network. These copies, which we
have thus far called instantiations, must all be processed when a new piece of
evidence arrives.

In Figure 5, if we assume that our loop cutset consists of node A, then the
copies of the network will be instantiation 1, in which we assume that node A
has value a, and instantiation 2, in which we assume that node A is assigned
--a. When we observe a new piece of evidence, the information in each network
must be updated independently.

Intuitively, this method makes sense. When one is confronted with a problem
that is too complex to handle, then an obvious strategy is to divide the problem
into cases. We consider what would happen if we made certain simplifying as-
sumptions; subsequently, we adjust the solution to take into account our original

292 H. Jacques Suermondt and Gregory F. Cooper

Instmttimioa 1 Insttmtiation 2

Figure 5. How multiple instantiations are considered. Node A has been assigned a
different value in each instantiation, effectively stopping messages from B to A to C,
and vice versa.

assumptions. Unfortunately, this method may require a significant amount of
computation time. For example, if our loop cutset consists of just 10 binary
nodes, then we need 2 l° = 1024 terms in the sum of Eq. (5). The time com-
plexity of this approach is exponential in the number of nodes in the loop cutset.
We can imagine highly connected belief networks for which this method would
not be practical owing to the large size of the loop cutset. However, provided
that we can find a small loop cutset for the multiply connected network, the
method of conditioning provides a workable and intuitively clear solution.

The remainder of this article addresses the problem of finding a small loop
cutset.

FINDING T H E MINIMAL LOOP CUTSET

In general, probabilistic inference using belief networks is NP-hard (Cooper
[22]). The method of conditioning is a generally applicable inference algorithm
for belief networks; therefore, we can expect that in the worst cases infer-
ence using this method will be of exponential time complexity with respect to
the number of nodes in the network. In particular, the time complexity of a
probability update of a single node using the method of conditioning will be
proportional to the product of the number of values of the loop-outset nodes.

The exponential nature of the method of conditioning makes finding a small
loop eutset important; if possible, this loop cutset should be minimal. As men-
tioned earlier, however, finding the minimal loop cutset is also an NP-hard
problem. We can show that the minimal loop cutset (MLC) problem is NP-hard
by reducing the minimal vertex cover (MVC) problem to the MLC problem.
The MVC problem, which is known to be NP-hard (Garey and Johnson [24], p.
190), is defined as follows: Given a finite undirected graph (V, E) with vertices
V and edges E, find a subset W of V that is of smallest cardinality such that

Probabilistic Inference in Belief Networks 293

Figure 6. Loop Lij. Each edge between nodes Vi and V i in the minimal vertex cover
problem corresponds to loop Lij in the minimal loop cutset problem.

for each edge e in E, e has an endpoint in V'. Informally, the reduction from
the MVC problem to the MLC problem is as follows. Each edge (Vi, Vj) in
an instance of the MVC problem induces the structure shown in Figure 6 in the
corresponding instance of the MLC problem.

In Figure 6, Vi, V j , I)ij , O[j are propositional variables, and uij and o:. ,j are
instantiated to either T or F. The reduction thus constructs a loop Liy in the
MLC problem instance for each edge in the MVC problem instance. Each edge
in the MVC problem instance induces four nodes in the MLC problem instance,
each of which has no more than two parents. Thus, the reduction is polynomial
in the size of the MVC problem instance. By the loop-cutset condition given
earlier (see Multiply Connected Networks), for each loop Lij in the MLC
problem instance, we must include one of { Vi }, { Vj }, or { Vi, Vj } in the loop
cutset. Furthermore, by the loop-outset condition, neither node oij nor node v:- I j

can serve to cut the loop t i j , so neither node would appear in a minimal loop
cutset of the MLC problem instance. Selecting one of { Vi }, { Vj }, or { Vi, Vj }
as a cutset for loop Lij in the MLC problem instance corresponds to selecting
one of {Vi}, {Vj}, or {Vi, V i} to cover edge (Vi, Vj) in the MVC problem
instance. Conversely, selecting one of { Vi }, { Vj }, or { Vi, Vj } to cover edge
(Vi, Vj) in the MVC problem instance corresponds to selecting one of {Vi},
{Vj}, or {Vi, Vj} as a cutset for loop Lij in the MLC problem instance.
Thus, there is a one-to-one correspondence between finding the minimal loop
cutset and finding the minimal vertex cover. Therefore, finding the minimal
loop cutset is NP-hard.

Figure 7 shows an example. Here, {VI, V3} is a minimal loop cutset in the
MLC problem and a minimal vertex cover in the MVC problem. However,
{VI, V2} is neither because it leaves edge (V3, V4) in MVC uncovered and it
leaves loop L3,4 in MLC uncut.

Because of the computational complexity of the MLC problem, we have
developed the heuristic algorithm described in the next section to find a loop
cutset that is generally small but that is not guaranteed to be minimal. The
worst-case time complexity for finding a loop outset using this algorithm is
O(n 2) for a belief network of n nodes.

294 H. Jacques Suermondt and Gregory F. Cooper

Figure 7. Reduction of a simple instance of the MVC problem in an undirected graph
to an instance of the MLC problem in a belief network.

A HEURISTIC ALGORITHM FOR FINDING THE LOOP CUTSET

It is important to have as small a loop cutset as possible in order to minimize
the number of possible instantiations of the loop-cutset nodes. The following
algorithm creates a loop cutset that satisfies the loop-cutset condition. It is
heuristic in the sense that it attempts to find a small loop cutset, but it does
not guarantee that the minimal set will always be found. Its main steps are as
follows:

1. Remove all parts of the network that are not in any loop.
2. If there are any nodes left, find a good loop-cutset candidate. A good

loop-cutset candidate is defined as a node that satisfies the loop-cutset
condition and the heuristic criteria described in the following subsections.
Add this node to the loop cutset, and then remove it from the network.

3. If no nodes remain, halt; else, return to step 1.

A More Detailed Description of the Heuristic Algorithm

Step 1 is based on the fact that we want to add nodes to our loop cutset
only if these nodes are part of at least one loop. No singly connected nodes
of the belief network will be members of the loop cutset; therefore, all singly
connected parts can be deleted. A singly connected branch of a belief network
is defined as a subgraph S of the network such that (1) there is exactly one
path between any two nodes of S and (2) there is at most one arc in the belief
network such that this arc is shared by a node of S and any node of the belief
network not in S. If a set of n nodes is a singly connected branch, there are
exactly n - 1 arcs connecting the nodes (Harary [17], p. 33).

We start the process of removing singly connected branches by finding any
nodes that have a single parent and no children or that have a single child and no
parents; in other words, we find nodes that have only a single neighbor. These

Probabilistic Inference in Belief Networks

<
<

(a) fa)

295

(c)

Figure 8. A belief network that illustrates the heuristic algorithm. (a) The original
network; (b) the network after removal of all singly connected branches; (c) what is left
of the network after a loop has been removed.

nodes are not part of any loop, so we can remove them from our network,
because they do not need to be part of the loop cutset. We also remove the
arcs that connect each pruned node to its single neighbor. After removing a
node and its arc, we consider its neighbor. If this neighbor now also meets the
condition for removal (that is, it has a single neighbor), then we can repeat
the process. We continue until no nodes with a single neighbor remain in the
network.

Let us illustrate how we remove the singly connected branches of the network
in Figure 8a. Node A has only one neighbor; it is therefore not part of any loop,
so we can remove it. We follow its arc to node C, which now has two neighbors,
since node A has been deleted. If a node has more than one neighbor, we do
not know whether it is part of a loop; for example, both nodes C and E have
two neighbors; node C is not part o f any loop, but node E is. As we cannot yet
tell whether node C is a member of any loop, we leave this node; first, we see
whether there is another node we can remove. In this case, node B also has only
a single neighbor. Therefore, we delete node B and follow its arc, returning
to node C. This time, node C has only one neighbor left, because nodes A
and B have been deleted, so we now know that node C is not part of a loop
and we can delete it. We follow its arc to node D. Node D has two neighbors,
so we cannot continue. There are no other nodes with only a single neighbor;
therefore, we have completed step 1. At this point, no nodes with fewer than
two neighbors remain in the network. Since each singly connected branch of the
network contains at least one node with fewer than two neighbors (Harary [17],
p. 34), we conclude that all singly connected branches of the belief network
have been removed; all nodes remaining in the network are therefore members
of one or more loops.

The goal of step 2 is to find a node that satisfies the loop-cutset condition for
as many loops as possible, in order to minimize the number of possible instan-

296 H. Jacques Suermondt and Gregory F. Cooper

tiations of the loop-cutset nodes. Therefore, in step 2, we employ a heuristic
strategy that has the following three components.

1. We consider only those nodes that have one or no parents. Thus, we avoid
nodes that violate the loop-cutset condition by having more than one parent
in the same loop.

2. Of the nodes that remain under consideration, we select the node that
has the most neighbors. Since all nodes remaining in our network are
members of one or more loops, the number of loops of which a node
is a member will increase with the number of neighbors that that node
has. By adding the node with the most neighbors, we hope to minimize
the number of nodes that must be added to the loop cutset to satisfy the
loop-cutset condition.

3. If there is a choice among multiple nodes that each have the same number
of neighbors, then we select the node with the lowest number of possible
values. This strategy will help us to minimize the number of possible value
assignments to the loop-cutset nodes.

In the next section we shall discuss this heuristic in more detail.
After heuristically deciding which node is a good loop-cutset member, we add

this node to our set and remove it from the network. By removing a node that
is in a loop, we potentially make the remainder of that loop singly connected.
Because we may thus create new singly connected branches in the network, we
need to return to step 1 and remove these branches.

In Figure 8b, nodes G and J have more than one parent, so they cannot be
considered for the loop cutset. The nodes remaining under consideration all
have two neighbors and are therefore equally attractive candidates by the first
two criteria. If, for example, node E has fewer possible values (e.g., two) than
any other node (e.g., all others have three or more values), by the fewest-values
criterion we decide to add it to our loop cutset. After removing node E, we
can prune its neighbors--nodes D and F--because these nodes each have only
one remaining neighbor. After these nodes have been removed, once more all
remaining nodes have more than one neighbor, so all nodes are members of one
or more loops. Therefore, we need to look for the best loop-cutset candidate
again.

With what is left of the network (see Fig. 8c), we repeat the same process.
Node G has the most neighbors of all nodes with one or no parents, so we
select it next. After adding node G to the set and deleting it from our network,
we follow its arcs to nodes H and I. These nodes now have only one neighbor
left, so we can remove them. For either one of them, we follow the arc to node
J, which has no remaining neighbors. We remove node J, and we are finished.
Our final loop cutset consists of nodes E and G.

Alternative Heuristics for Selecting a Loop-Cutset Node

Selecting a good loop-cutset candidate in step 2 has a great influence on
the eventual size of the loop cutset. In determining which node to make our

Probabilistic Inference in Belief Networks 297

u s

g ~
.<

Weight an numbe~" ~ neilthl~'s Wei~t ~ mal~r e~ values

Heuristic strategy

Figure 9. The effect of different heuristic criteria on the average number of values
per loop-outset node. In this graph, we characterize the expected effect of varying the
heuristic strategy from considering only the number of neighbors to considering only
the number of values of each candidate.

next candidate, we pay attention to two factors: (1) the number of values of
the node, because the number of instantiations of the loop cutset grows by the
product of the numbers of values of the loop-cutset nodes, and (2) the number
of neighbors of the node. The latter factor is important because a node with
many neighbors usually will be in more loops than will a node with few neigh-
bors. By selecting a node that is a member of multiple loops, we may be able
to cut all those loops with a single node, rather than having to cut every loop
separately.

If we consider the spectrum of strategies that vary from considering only the
number of neighbors to considering only the number of values of the loop-cutset
candidate, we find that the two criteria have independent effects. In Figure 9,
we characterize the effects of the two criteria on the average number of values
of all the loop-cutset nodes. The curve in Figure 9 is based on our experience
with combinations of the two heuristics in randomly generated networks, as
described in the Evaluation section. If we fail to consider the number of values
of each candidate in selecting the loop cutset, the average number of values
per loop-cutset node grows quickly. The resulting large average number of
values per loop-cutset node will have an adverse effect on the total number of
instantiations of the loop-cutset nodes.

As shown in Figure 10, however, it also is necessary to consider the number
of neighbors of the candidate in order to restrict the number of nodes in the
loop outset. If we consider only the number of values of each candidate, we get
a very large loop cutset, albeit one with a low average number of values per
loop-cutset member.

In Figure 11, we summarize the combined effect of the two strategies on the
variable of interest, the total number of instantiations of the loop-cutset nodes.
If we ignore the number of values of each loop-outset candidate, we get a loop
cutset that is suboptimal in that it has an unnecessarily high average number of
values per loop-cutset node. On the other hand, if we focus on only the number

298 H. Jacques Suermondt and Gregory F. Cooper

eL
O O

W ~ m humor ~ ~ b a r l W ~ on a u ~ o(vaJues

Heuristic strategy

Figure 10. The effect of different heuristic criteria on the number of nodes in the loop
outset. If we consider exclusively the number of values of the nodes to be included in
the loop outset, the total number of loop-cutset members becomes very large.

of values of the loop-cutset candidates, ignoring the number of neighbors of the
candidates, we also obtain a suboptimal loop cutset--it has too many nodes.

The optimal strategy is one that considers both the number of values and
the number of neighbors of each loop-cutset candidate. Our experiments have
shown that we obtain the best results when we consider foremost the number
of neighbors of the loop-outset candidate, breaking ties by selecting the node
with the lower number of values (see under Evaluation). If, in some belief
networks, there are large discrepancies between the numbers of values of cutset
candidates, then we might consider giving the number of values priority over
the neighbor-maximization criterion; we might also combine the two criteria
into a single weight function. Both criteria attempt to minimize the number of
instantiations of the loop-outset nodes, but if the nodes are similar in number
of values, the neighbor-maximization criterion is likely to be preferable.

7

W ~ h (on numba of ne~htx)n W ~ h t o~ numb~ of ~dues

Heuristic strategy

Figure 11. The effect of different heuristic criteria on the number of instantiations of
the nodes in the loop cutset. In selecting the members of the loop cutset, we obtain the
smallest number of loop-cutset instantiations if we consider both the number of neighbors
and the number of values of each node under consideration.

Probabilistic Inference in Belief Networks 299

Computational Time Complexity

The worst-case time complexity for finding a loop cutset using this algorithm
is O(n2), where n is the number of nodes in the belief network. The algorithm
can be described in terms of the following procedures. The first procedure is to
visit all nodes in the network and select a node with fewer than two neighbors.
Given that we know the number of neighbors (the degree) of each node, this
procedure is O(n) time. The second procedure is to determine the best loop-
cutset candidate. We find the best loop-cutset candidate by visiting all nodes
and rating the nodes on the basis of heuristic criteria. Since rating the nodes
can be done in constant time given that we have available the degree of each
node, this procedure also is O(n). Finally, there is a procedure to remove a
selected node. Given that we need to visit each neighbor of a removed node to
update the degree of the neighbor, removal of a node also is O(n).

We can summarize the algorithm as follows:

WHILE any nodes remain
IF there is a node with fewer than two neighbors

THEN select a node with fewer than two neighbors O(n)
ELSE select a loop-cutset candidate O(n)
Remove the selected node O(n)

END WHILE

Finding the heuristic loop cutset is done by an outer loop, which we repeat
until no nodes remain in the network. During each cycle through the outer
loop, we execute the first procedure, selecting a singly connected node of the
network. If no node can be selected by the first procedure, no singly connected
portions of the network remain; therefore, we execute the second procedure,
selecting a loop-cutset candidate, as described in the preceding subsection. After
selecting either a singly connected node or a loop-cutset candidate, we remove
the selected node. Thus, during each cycle of the outer loop, exactly one node
is removed from the network; therefore, the outer loop cannot be executed more
than n times.

Thus, in the worst case, our algorithm repeats n times three procedures, each
of O(n). Therefore, the worst-case time complexity of our algorithm is O(n2).

EVALUATION

We have implemented the loop-cutset algorithm discussed in the preceding
section for a general belief-network tool called KNET (Chavez and Cooper
[25]). We have tested the heuristic algorithm on randomly generated belief
networks, each of which we created by the following procedure. First, we
specified the number of nodes and arcs that we wanted the network to have; this

300 H. Jacques Suermondt and Gregory F. Cooper

gave us an indication of the connectivity of the network. For example, a network
with 20 nodes and 19 arcs would be singly connected, but a network with 20
nodes and 25 arcs might contain six loops. After specifying the number of nodes
and arcs, we generated a belief network of the desired number of nodes that was
maximally connected; that is, there were as many arcs as there could be without
the graph being cyclic. We created a maximally connected graph by numbering
all nodes and creating arcs from each node to all higher-numbered nodes in the
graph. After generating such a maximally connected graph, we eliminated arcs
at random until the desired number of arcs was achieved; before eliminating
any arc, we made sure that the belief network would remain connected. After
completing these arc eliminations, we had a belief network of random topology
given the specified number of nodes and arcs.

The principal bias of this method is that the method does not create graphs
that are not connected. We introduced this bias because our purpose was to
test our algorithm in networks resembling real belief networks, and, in our
experience, these networks are generally connected. Because of this selection
bias, our method of creating random belief networks does not guarantee that all
members of the class of networks with the specified number of arcs and nodes
are equally likely to be generated, since all arcs are not equally likely to be
removed. However, the generated networks did provide us with an indication
of the performance of our algorithm for a broad range of networks.

Using this mechanism, we generated a total of 600 random networks to use as
testbeds for our heuristic algorithm to find the loop cutset. In the Introduction,
we defined the minimal loop cutset as the set of nodes that satisfies the loop-
cutset condition described under Multiply Connected Networks, such that the
product of the numbers of values of these nodes is less than or equal to that
of any other set of nodes also satisfying the loop-cutset condition. Because the
task of finding the minimal loop cutset is NP-hard, we decided to limit our
test cases to small networks (20-30 nodes, no more than 35 arcs per network).
For these small networks, we could determine the minimal loop-cutset size by
exhaustive search. For the test cases, we varied the number of nodes, the number
of values per node, and the connectivity of the networks. Thus, we arrived at
the following test cases:

I . One hundred networks containing 20 nodes, 25 arcs; each node is as-
signed randomly between two and six values.

I I . One hundred networks containing 20 nodes, 25 arcs; each node is
assigned randomly between two and ten values.

I I I . One hundred networks containing 20 nodes, 30 arcs; each node is
assigned randomly between two and six values.

IV. One hundred networks containing 20 nodes, 30 arcs; each node is
assigned randomly between two and ten values.

V. One hundred networks containing 30 nodes, 35 arcs; each node is
assigned randomly between two and six values.

Probabilistic Inference in Belief Networks 301

Table 1. Summary of Evaluation Data for Six Sets of Test Networks

SetI SetlI Set HI Set IV SetV SetVI

Number of networks

Number of nodes in each network

Number of arcs in each network

Possible number of values of
each node

Percentage of networks in which
minimal loop outset was found

Average ratio of loop-cutset sizes
(heuristic/minimal) in networks
for which the minimal loop
cutset was not found (~)

100 100 100 100 100 100

20 20 20 20 30 30

25 25 30 30 35 35

2-6 2-10 2-6 2-10 2-6 2-10

77 75 64 61 75 67

1.72 2.38 2.06 2.72 1.96 2.29

VI. One hundred networks containing 30 nodes, 35 arcs; each node is
assigned randomly between two and ten values.

The first two sets of networks are the smallest, with 20 nodes and 25 arcs
each. The base case consists of set I. In set II we consider the change in perfor-
mance as we increase the average cardinality of the nodes. The test networks of
sets III and IV are more highly connected than are those of the first two sets,
thus posing a more difficult task of finding a minimal loop outset. The average
cardinality of the nodes in set IV is greater than that in set III. By comparing
test networks V and VI to sets I and II, we hope to get an indication of what
happens when we increase the number of nodes of the networks. Set VI has a
greater average cardinality than does set V, and the connectivity of the networks
of sets V and VI is approximately the same as that of the networks of sets I and
II.

Results of the Evaluation

For each of these sets of test networks, we compared the loop cutset generated
by our heuristic algorithm with the minimal loop cutset generated by exhaustive
search. Table 1 shows our results.

In approximately 70% of the networks studied, our heuristic algorithm found
the minimal loop outset. Let us call the percentage of networks in which our
heuristic algorithm found the minimal loop cutset the success rate S. For set I,
the heuristic algorithm located the minimal loop cutset in 77% of the cases (95%
confidence interval: 68.8-85.2%). For set II, in which the average cardinality
per node is increased, the heuristic algorithm found the minimal loop cutset in

302 H. Jacques Suermondt and Gregory F. Cooper

75% of the cases (95% confidence interval: 66.5-83.5%). In set III, which has a
much greater connectivity than do sets I and II, the heuristic algorithm found the
minimal loop cutset in 64% of the cases (95% confidence interval: 54.6-73.4%).
In set IV, where the average number of values per node is increased compared
to set III , the success rate is 61% (95% confidence interval: 51.4-70.6%).
In the remaining networks, which, compared to sets I and II, have the same
connectivity but a greater number of nodes, the success rate was higher: For set
V, the heuristic algorithm found the minimal loop cutset in 75% of the networks
(95% confidence interval: 66.5-83.5%); in set VI, the success rate was 67%
(95% confidence interval: 57.8-76.2%).

In the cases where the heuristically generated loop cutset was suboptimal, it is
clear from the ratios of numbers of instantiations that the price of a suboptimal
loop outset is high: Having too many nodes can easily double the number of
possible instantiations of the loop-cutset nodes. Let us define R as the ratio of
the number of instantiations of the heuristically generated loop cutset to that of
the minimal loop cutset; let RN be the mean value of R for the networks in
which a minimal loop cutset was not found. The values of RN are shown in
Table 1. For the networks of set I, the value of RN is 1.72. For the networks
of set II, the value of R~v is slightly higher: 2.375. Set III has an RN of 2.06.
For set IV, RN is 2.72, the greatest value of all our sets of test networks. Set
V has an RN of 1.96, and for set VI, RN is 2.29. In Figure 12, we display the
range of R for each of our six sets of test networks.

When we compare sets of test networks that differ in only the average number
of values of the nodes (set I versus set II; set III versus set IV; and set V versus
set VI), we find that the difference in success rate S for each of these pairs of
sets is not very great. For set I versus set II, X 2 = 0.1028; for set III versus set
IV, X 2 ---- 0.192, and for set V versus set VI, X 2 = 1.554. None of these values
are statistically significant at the 5% level. This finding lends support to the
conclusion that the effect of the number of values of each node on the ability of
the algorithm to locate the minimal loop cutset is relatively minor. However,
we notice that for each of these pairs of sets the value of RN is greater in the
set with the higher average number of values per node, although this increase
was not statistically significant for any of the pairs.

I f we increase the connectivity of the network, locating a minimal loop cut-
set becomes progressively more difficult. As we see when we compare the
test networks of set I to those of set III, the success rate of the heuristic
algorithm decreases from 77% to 64% (X 2 = 4.063, p < 0.05). Similarly,
when we compare set II to set IV, we see a decrease in S from 75% to 61%
(X 2 = 4.503, p < 0.05). This decrease, which is statistically significant in both
eases, leads us to believe that when we extrapolate to highly connected belief
networks, the performance of the heuristic algorithm will not be as good as it
is in sparsely connected networks. However, the method of conditioning, for
which our heuristic algorithm finds a loop cutset, is not particularly well suited

Probabilistic Inference in Belief Networks 303

t ~ z

lO

6

4
2

z

~ z

likn , !

1 2 3 4
Ratio - - test networks I (20 nodes, 25 arcs, 2-6 values per node)

: i f ~]
2 3 4 5 6 7 8

Ratio - - test networks I I (20 nodes, 25 arcs. 2 -10 values per node)

I 2 3 4 5
Rat.to - - test netwozks HI (20 nodes, 30 arcs, 2--6 values per node)

, ,
, • i |

1 2 3 4 5 6 7 8 9 10
RaUo ~ test rL-twm'ks IV (20 nodes, 30 arcs. 2 -10 values per node)

Ill k ', ,
I 2 3 4 5

Ratio - - test networks V (30 nodes, 35 arcs, 2 -6 values per node)

1 2 3 4 5 6 7

Ratto ~ test netwoz~s "v'] (30 nodes. 35 arcs. 2 -10 values per node)

Figure 12. The ratio R of heuristic loop-cut,set size to minimal loopcutset size for the
test networks for which our heuristic algorithm did not locate a minimal loop cutset.

304 H. Jacques Suermondt and Gregory F. Cooper

for use in highly connected belief networks, since in such networks even the
minimal loop-cutset size will be prohibitively large.

When we increase the number of nodes in the network while holding the
connectivity of the network constant, we do not see a significant deterioration
in the heuristic algorithm's performance. The networks of sets V and VI have
a connectivity and average number of values similar to those of sets I and II,
respectively. The networks of sets V and VI, however, have 30 nodes each,
whereas those of sets I and II have 20 nodes each. When we compare the
results for set V to those for set I, we see that there is only a minor decrease in
success rate (from 77% to 75%, X 2 -- 0.110, not significant). The success rate
in set VI is 67%, a decrease from the success rate of 75% in set II (X 2 = 1.55,
not significant). Also, the values of RN are not significantly different in sets V
and VI compared to sets I and II. Thus, these results suggest that increasing
the number of nodes per network does not significantly affect the performance
of the heuristic algorithm.

Discussion

The most noticeable effect of increasing the average number of values of the
nodes in our test networks is that for those networks in which a minimal loop
cutset is not found the ratio R becomes larger on average. When the average
number of values per node increases, the effects of including unnecessary nodes
in the loop cutset become more serious. In set IV, for example, there was one
network in which the number of instances of the heuristically located loop cutset
was 10 times greater than the size of the minimal loop cutset (see Fig. 12).
The success rate, however, is not significantly affected by the average number
of values of the nodes.

Increasing the number of nodes did not significantly affect the success rate
or the value of RN in our test cases. When we increased the connectivity of
the networks, however, we saw a significant decrease in success rate. We de-
termined that the principal reason for not finding a minimal loop cutset in these
networks was that our algorithm does not consider nodes with multiple par-
ents as loop-cutset candidates; therefore, when there is a structure of adjacent
loops, as shown in Figure 13, the heuristic algorithm will often fail to find the
optimal loop cutset. In Figure 13, the network consists of two adjacent loops,
A-B-C-D and D-E-F-G. The minimal loop cutset, if we assume that all nodes
are binary, would consist of node D. However, the heuristic algorithm will
not consider node D as a candidate, because this node has two parents that are
members of a loop. Thus, we will obtain a suboptimal loop cutset, for example,
nodes A and E. Adjacent-loop structures such as this example accounted for
all the failures in our test cases. Unfortunately, testing for such structures and
correcting the loop cutset whenever an adjacent-loop structure arises makes the
task of finding the loop cutset more complex.

Probabilistic Inference in Belief Networks 305

Figure 13. Adjacent-loop structure. This belief-network structure caused our heuristic
algorithm to fall to find the minimal loop cutset in approximately 30% of our test cases.

Our preliminary results indicate that the heuristic loop-cutset algorithm that
we have described performs well at finding a small loop cutset in polynomial
time. Finding a small loop cutset is necessary if we want to use Pearl's method
of conditioning. Therefore, the loop-cutset algorithm can assist in applying
Pearl's method of conditioning to probabilistic inference for a select class of
belief networks.

A C K N O W L E D G M E N T S

We thank Lyn Dupre, Eric Horvitz, Ross Shachter, and Ramesh Patil for
helpful comments on earlier versions of this paper. Support for this work was
provided by the National Science Foundation under grant IRI-8703710, by the
U.S. Army Research Office under grant P-25514-EL, and by the National Li-
brary of Medicine under grant LM-07033. Computer facilities were provided by
the SUMEX-AIM resource under grant LM-05208 from the National Institutes
of Health.

References

1. Cooper, G. F., NESTOR: a computer-based medical diagnostic aid that integrates
causal and diagnostic knowledge, PhD Thesis, Stanford Univ., Stanford, Cal., 1984.

2. Horvitz, E. J., Breese, J. S., and Henrion, M., Decision theory in expert systems
and artificial intelligence, Int. J. Approximate Reasoning 2, 247-302, 1988.

3. Howard, R. A., and Matheson, J. E., Readings on the Principles and Applica-
tions of Decision Analysis, Strategic Decisions Group, Menlo Park, Cal., 1984.

4. Lemmer, J. F., Generalized Bayesian updating of incompletely specified distribu-
tions, Large Scale Syst., 5, 55-68, 1983.

5. Pearl, J., Fusion, propagation and structuring in belief networks, AI 29, 241-288,
1986.

6. Rousseau, W. F., A method for computing probabilities in complex situations, Tech.
Report 6252-2, Center for Systems Research, Stanford Univ., Stanford, Cal., 1968.

7. Spiegelhalter, D. J., and Knill-Jones, R. P., Statistical and knowledge-based ap-

306 H. Jacques Suermondt and Gregory F. Cooper

proaches to clinical decision-support systems, with an application in gastroenterol-
ogy, J. R. Stat. Soc. A 147, 35-77, 1984.

8. Chavez, R. M., and Cooper, G. F., A fully polynomial randomized approximation
scheme for the Bayesian inference problem, Report KSL-88-72, Knowledge Systems
Laboratory, Stanford Univ., Stanford, Cal., 1988.

9. Henrion, M., Propagation of uncertainty by probabilistic logic sampling in Bayes'
networks, in Uncertainty in Artificial Intelligence 2 (J. F. Lemmer and L. N.
Kanal, Eds.), Elsevier, New York, 149-164, 1988.

10. Kim, J. H., and Pearl, J., A computational model for causal and diagnostic rea-
soning in inference engines, Proceedings of the 8th International Conference on
AI, Karlsruhe, West Germany, 190-193, 1983.

l l . Lanritzen, S. L., and Spiegelhalter, D. J., Local computations with probabilities
on graphical structures and their application to expert systems, J. R. Stat. Soc. B
50(2), 157-224, 1988.

12. Pearl, J., A constraint-propagation approach to probabilistic reasoning, in Uncer-
tainty in Artificial Intelligence (L. N. Kanal and J. F. Lemmer, Eds.), Elsevier,
New York, 357-369, 1986.

13. Pearl, J., Distributed revision of composite beliefs, A I 33, 173-215, 1987.
14. Pearl, J., Evidential reasoning using stochastic simulation of causal models, A I 32,

245-257, 1987.
15. Shachter, R. D., Evaluating influence diagrams, Op. Res. 34, 871-882, 1986.
16. Shachter, R. D., Probabilistic inference, Op. Res. 36, 589-604, 1988.
17. Harary, F., Graph Theory, Addison-Wesley, Menlo Park, Cal., 1972.
18. Shier, D. R., and Whited, D. E., Iterative algorithms for generating minimal cutsets

in directed graphs, Networks 16, 133-147, 1986.
19. Pearl, J., Probabilistic Reasoning in Expert Systems: Networks of Plausible

Inference, Morgan Kaufmann, San Mateo, Cal., 1988.
20. Pearl, J., and Verma, T. S., The logic of representing dependencies by directed

graphs, Proceedings of the AAAI-87 Sixth National Conference on AI, Seattle,
Wash., 374-379, 1987.

21. Berge, C., The Theory of Graphs and its Applications, Wiley, New York, 1962.
22. Cooper, G. F., The computational complexity of probabilistic inference using belief

networks, A I (in press).
23. Suermondt, H. J., and Cooper, G. F., Initialization for the method of conditioning

in Bayesian belief networks, Report KSL-89-61, Knowledge Systems Laboratory,
Stanford Univ., Stanford, Cal., 1989.

24. Garey, M. R., and Johnson, D. S., Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, San Francisco, Cal., 1979.

25. Chavez, R. M., and Cooper, G. F., KNET: integrating hypermedia and normative
Bayesian modeling, Proceedings o f the 4th Workshop on Uncertainty in AI,
Minneapolis, Minn., 49-54, 1988.

