
Probabilistic Inference in 
Multiply Connected Belief 

Networks Using Loop Cutsets 
H. Jacques Suermondt and Gregory F. Cooper 

Stanford University, Stanford, California 

ABSTRACT 

The method of  conditioning permits probabilistic inference in multiply connected 
belief networks using an algorithm by Pearl. This method uses a select set of  nodes, 
the loop cutset, to render the multiply connected network singly connected. We dis- 
cuss the function of  the nodes of  the loop cutset and a condition that must be met 
by the nodes of  the loop cutset. We show that the problem of finding a loop cutset 
that optimizes probabilistic inference using the method of  conditioning is NP-hard. 
We present a heuristic algorithm for finding a small loop cutset in polynomial time, 
and we analyze the performance of  this heuristic algorithm empirically. 
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I N T R O D U C T I O N  

Bayesian belief networks provide an intuitive method for representing knowl- 
edge in a probabilistic framework. A belief network is an acyclic directed graph 
containing nodes that represent chance variables of quantities of interest. Each 
node assumes a set of values that are mutually exclusive and exhaustive. The 
arcs in a belief network represent the probabilistic relationships between nodes. 
These relationships can be causal, correlational, or a combination of the two. 
Other terms used for the belief-network representation are probabilistic in- 
f luence diagrams, causal networks, and Bayesian nets (Cooper [1], Horvitz 
et al. [2], Howard and Matheson [3], Lemmer [4], Pearl [5], Rousseau [6], 
Spiegelhalter and Knill-Jones [7]). 

Once a domain has been represented as a belief network, the probability of 
any node can be calculated conditioned on the values of any available evidence 
nodes. An evidence node, also called instantiated node, fixed-value node, 
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(a) (b) 

Figure 1. Examples of belief networks. (a) A singly connected belief network. (b) A 
multiply connected belief network. 

or observed node, is a belief-network node for which a single value has been 
established with certainty. We propagate the observed value of an evidence 
node throughout the belief network such that each proposition in the network 
is assigned a new measure of belief consistent with the axioms of probability 
theory. There are currently several algorithms for this process of probabilistic 
inference (Lemmer [4], Chavez and Cooper [8], Henrion [9], Kim and Pearl 
[10], Lauritzen and Spiegelhalter [11], Pearl [5, 12-14], Schachter [15, 16]). 

Pearl's algorithm for updating probabilities in singly connected belief net- 
works (SCBNs) is well known [5]. The main limitation of this algorithm is 
that the performance of belief updates in time that is linear in the size of the 
network is limited to singly connected belief networks. A singly connected 
belief network, also known as a causal polytree, has at most one path (in the 
undirected sense) from any node to any other node (see Fig. la) (Harary [17], 
p. 32). A multiply connected belief network, on the other hand, can have more 
than one path (in the undirected sense) between nodes (see Fig. lb). 

Unfortunately, many belief networks of practical use are multiply connected. 
Pearl presents several ways to apply the SCBN algorithm to such networks (Pearl 
[5, 12, 13]. One, the method of conditioning, or reasoning by assumptions, 
provides a reasonable solution provided that the network is not highly connected 
(Pearl [12]). The method of conditioning is based on selecting a set of nodes, 
the loop cutset, from the belief network and then considering separately all 
possible combinations of values that these nodes can have. In other words, we 
treat each possible combination of values of the nodes of the loop cutset as 
a separate case. Once the nodes of the loop cutset have been instantiated, the 
belief network can be treated as though it were singly connected for the purpose 
of inference. Thus, a loop cutset in the method of conditioning differs from the 
graph-theoretic concept of a outset: Graph-theoretically, a outset is a set of 
nodes or arcs the removal of which disconnects the graph (Shier and Whited 
[18]). Our notion of a loop cutset is a set of nodes whose instantiation makes a 
multiply connected belief network functionally singly connected. 

Because each possible combination of values of the nodes of the loop cutset 
has to be considered separately in inference, we are interested in finding the 



Probabilistic Inference in Belief Networks 285 

(a) Ca) (c) 

Figure 2. Blocking conditions. Because the blocking conditions are in effect, (a) a fixed- 
value node (shaded) no longer transmits information between parent and child nodes; 
also, (b) information passing between child nodes is blocked. (c) In nodes that have not 
been observed and that do not have any observed descendants, no information is passed 
between parent nodes. 

minimal loop cutset, which we define to be the set of nodes satisfying the 
requirements of  the method of conditioning such that the product of the number 
of values of these nodes is minimal. We shall show that the problem of finding a 
minimal loop cutset is NP-hard; however, it is possible in many belief networks 
to find rapidly a small set of nodes such that this set will be a minimal or near- 
minimal loop cutset. We describe a heuristic algorithm that will locate such a 
set of nodes, and we discuss the efficacy of this algorithm in finding a minimal 
loop cutset. 

P E A R L ' S  S C B N  A L G O R I T H M  

Pearl's SCBN algorithm performs probabilistic inference through a series of 
local probabilistic propagation operations, in which each node receives infor- 
mation messages from its neighboring nodes and combines these messages to 
update its measure of probability. Each node determines which of its neighbors 
need to receive updated information in order to maintain a correct probability 
distribution. Thus, through entirely local operations, the algorithm updates the 
probabilities for the nodes in the belief network to incorporate new evidence. 
See Pearl [5, 13] for a more detailed discussion. 

There are situations in which the structure of the network is such that in- 
stantiation of one node will have no effect on the probability distribution of 
some other nodes in the network. To prevent unnecessary calculations for nodes 
whose belief distributions will not be affected anyway, we can set blocking con- 
ditions for transmission of information. These blocking conditions, based on 
the criterion of d-separation discussed by Pearl [6, 19] and Pearl and Verma 
[20], implement the idea that certain portions of the network are independent 
of other portions given that the values for certain nodes are fixed. The blocking 
conditions are the following (see also Fig. 2): 

• A fixed-value node does not send information from its children to its par- 
ents or from its parents to its children. 
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• A fixed-value node does not send information from one child to any other 
children. 

• A node whose value is not fixed and that does not have any fixed-value 
descendants does not send information from one parent to any other par- 
ents. 

The last condition is an illustration of the property of belief networks of  in- 
dependence except through arcs. If  a node has not been instantiated, then 
information from one parent will not convey any information about the proba- 
bilities of the other parents (if we assume that the only path between the parents 
is through their common child). For a fixed-value node, however, each parent 
node functions as a possible explanation for that node value. Therefore, infor- 
mation about the belief distribution of one parent will affect the distributions 
of the others. The following example will clarify this property. 

Consider two possible causes for a severe headache: a subdural hematoma 
and a brain tumor. Normally, the probability of having a subdural hematoma 
will not influence the probability of having a brain tumor: The two probability 
distributions are marginally independent. However, if we observe that a person 
has a serious headache, the probability of each of these two causes increases. 
Now, if a CT scan shows that the patient has a subdural hematoma, this observa- 
tion explains the headache; therefore, the probability of a brain tumor decreases 
again. Thus, only if the child node (headache) has been observed does one par- 
ent node (subdural hematoma) influence the probability distribution of another 
(brain tumor). 

For singly connected networks, the structure of the belief network determines 
when nodes should stop sending information. Even if no blocking conditions 
are observed, the worst that can happen is that the new information will be 
transmitted to parts of the network where it will not change any probability 
distributions. The fact that a pathway between nodes is blocked means only 
that beyond that block no beliefs are changed by the new information, so the 
extra work of recalculating those beliefs is unnecessary. Because information is 
never sent back down an arc from which it arrived, belief propagation comes to 
a natural halt for singly connected networks. As we shall show in the following 
section, blocking conditions play a much more central role in belief updates for 
multiply connected networks. 

M U L T I P L Y  C O N N E C T E D  N E T W O R K S  

As noted earlier, most belief networks created for practical purposes are not 
constrained to the singly connected structure. Superimposing such a constraint 
could make the structure of the problem inadequate. However, if we allow 
the network to be multiply connected, we can introduce loops. A loop, also 
known as an elementary circuit (Berge [21], p. 7), is defined in terms of 
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Figure 3. Example of a small belief network. We are interested in the probability of 
node D, given evidence E. Since node D has not been instantiated, it does not pass 
messages from B to C or vice versa. Therefore, cycling of information in loop A-B-C-D 
is not a problem in this example. However, messages passed from A through B to D 
are not independent of messages passed from A through C to D. 

undirected paths. An undirected path between two nodes X~ and Xk is defined 
as a sequence of nodes [X1 . . . . .  Xk] such that in the belief network there exists 
an arc from Xi to Xi+I or from Xi+I to Xi for each i E {1 . . . . .  k - 1}. A 
loop is an undirected path [X1 . . . . .  Xk] in which (1) the initial node XI co- 
incides with the terminal node Xk, and (2) apart from the coincidental initial 
and terminal nodes, every node in [Xl . . . . .  Xk] is distinct. By definition, loops 
occur only in multiply connected networks. Loops are problematic for Pearl's 
SCBN algorithm, because the algorithm acts only through local operations on 
the nodes; when there are loops in the network, propagated information may 
cycle through the loops indefinitely. 

In addition to possible cycling of information, multiply connected belief net- 
works present another problem: Parents of a node may share information from 
elsewhere in the network; therefore, they may not independently influence the 
probability distribution of their common child. Due to the local nature of belief 
propagations in Pearl's SCBN algorithm, this phenomenon can lead to incorrect 
probability calculations unless an instantiated node prevents passage of shared 
information. An example will clarify this problem. 

Consider the case given in Figure 3, where we are interested in the current 
probability of node D, given evidence node E, which is a predecessor of node 
A. Without loss of generality, we assume that the possible values of node A 
are a and - a ;  nodes B, C, and D are also binary-valued. Assume that nodes 
A-D have not been observed. Because node D has not been observed, it will 
fulfill the blocking conditions described earlier; therefore, messages will not go 
around the loop formed by nodes A-D but rather will stop propagation at node 
D. In this example we shall show that unless node A, B, or C is part of the 
loop cutset, the results of  evidence propagation will not be correct according to 
the laws of probability, because the effects of evidence node E can reach node 
D through two paths. 
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If none of nodes A, B, or C are instantiated, we first use evidence E to cal- 
culate the new belief distribution for node A. Next, the evidence is propagated 
to nodes B and C. Nodes B and C send the information to node D. Node D 
now reads the messages from B and C and calculates its current belief. 

Because of the local nature of belief propagation in Pearl's SCBN algorithm, 
the probabilities for any node are calculated by considering only the current 
beliefs for that node's neighbors, as well as the conditional probability tables 
relating the node to its neighbors. Thus, the probabilities for node D are cal- 
culated by the SCBN algorithm as follows: 

P(d]E) = P(dlb, c)P(b IE)P(c IE) 

+ P(dlb, -~)P(b IE)P(-~c IE) 

+ P(d l~b, c)P(~b IE)P(c IE) 

+ P(dl-,b, --¢)P(-~b IE)P(-~c IE) 

P(b [E) and P(c IE) are calculated locally as follows: 

(1) 

P(b [E) = P(b [a)P(a IE) + P(b I--~)P(-~ ]E) 

P(c IE) : P(c ]a)P(a IE) ÷ P(c [--~)P(-~a IE) 

Analogously, we can calculate P(~b [E) and P(--~ IE). The problem in calcu- 
lating the probabilities for node D arises from substituting these probabilities 
into Eq. (1). If the network were singly connected, the resulting calculation 
would be equivalent to 

P(dlE) = E P(d, A, B, CIE) 
A,B,C 

However, since node A is a common predecessor of both parents of node D, 
substituting the locally calculated values for P(b IE), P(-~b IE), P(c [E), and 
P ( - c l E )  into Eq. (1) does not give us a calculation that is equivalent to this 
sum. When we collect terms, we obtain an equation that contains several terms 
that are inconsistent with the axioms of probability. An example of such an 
incorrect term is 

P(dlb, c)P(b la)P(a [E)P(c I--~)P(-~a I E)  

Note that this term contains the probabilities P(a[E) and P(--,a[E), which are 
logically incompatible with each other. The product of these terms is inconsis- 
tent with the probability distributions specified by the belief-network represen- 
tation. Due to the local nature of belief propagation, however, these terms are 
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unavoidable unless we instantiate node A, B, or C. If we fail to do this, we get 
cross-multiplications of incompatible terms. 

We can prevent this situation by instantiating node A. We will then consider 
separately the case where node A has value a and that where it has value --~a. 
The belief distribution for node D is calculated as a combination of these cases: 

P(d IE) = P(d la, E)P(a IE) + P(dl-m, E)P(-m IE) 

If we use Pearl's SCBN algorithm, we calculate P(d]a, E) as follows: 

P(d]a, E) = P(dlb, c)P(b la, E)P(c la, E) 

+ P(dlb, ~)P(bla, E)P(~cla, E) 

(2) 

+ P(dl-~b, c)P(~b la, E)P(c la, E) 

+ P(dl~b, ~)P(-~b I a, E)P(--c I a, E) (3) 

is equal to P(dlb, c, a) because of the blocking condi- 

P(alb, c )p (b  la)P(c la)P(a IE) 

+ P(dlb, ~ )P(b  la)P(~c la)P(a IE) 

+ P(dl--~b, c)P(-~b la)P(c [a)P(a IE) 

+ P(dl-~b, --c)P(-~b l a ) P ( ~  la)P(a IE) 

+ P(d Ib, c)P(bl--a)-P(cl-a)P(--a IE) 

+ p ( a l b ,  ~ ) p ( b  I - - a ) P ( ~  I--a)P(-~ IE) 

or, equivalently, 

+ P(dl--,b, c)P(~b I m)P(c lm)P(m IE) 

+ P(dl--,b, ---~)P(~b I--~a)P(--~ I--a)P(--~ IE) (4) 

P(dlE) = p(a, A, B, CIE) 
A,B,C 

P ( d I E )  = 

where P(dlb, c) 
tions; similarly, P(dlb, ~c), P(dl~b, c), and P(dl-~b, ~c) are equal to 
P(dlb, --,c, a), F'(dl-~, c, a), and P(dl~b, -~c, a), respectively. We can com- 
pute P(dl-'a, E) in a manner analogous to Eq. (3). 

By instantiating node A, we are effectively treating it as an evidence node; 
therefore, due to the blocking conditions, P(bla, E) is equal to P(bla). Anal- 
ogously, P(c la, E) equals P(c la), and so on. After substituting these simplifi- 
cations into Eq. (3) (and its analogs), and substituting Eq. (3) (and its analogs) 
into Eq. (2), we have the following result: 
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Equation (4) is consistent with the axioms of probability theory. Thus, by in- 
stantiating node A to each of its possible values and combining the results, we 
can use Pearl's SCBN algorithm to calculate P(dlE). 

We can obtain the same result by instantiating either node B or node C, rather 
than node A, to each of its values. Instantiating one of these nodes prevents 
inconsistent products of conditional probabilities. 

In summary, the instantiated nodes must not only stop infinite cycling of 
information, but also enable the local probability calculations to achieve proba- 
bilistically correct results. In general, to get belief calculations consistent with 
the axioms of probability when using Pearl's SCBN algorithm in multiply con- 
nected belief networks, we must satisfy the following loop-cutset condition: 

Instantiate at least one node from every loop in the belief network such that 
this node is a child to no more than one other node in the same loop. 

If we do not instantiate at least one node from every loop in the network, 
we may fail to prevent cycling of information. To obtain consistent probability 
calculations, as described in this section, we also need to prevent the situation in 
which information can reach a node along multiple pathways; since only those 
instantiated nodes in a loop that are a child to no more than one other node in 
that loop will block an information pathway within the loop, we must instantiate 
at least one such node. Therefore, we need to satisfy the loop-cutset condition. 

THE METHOD OF CONDITIONING 

Pearl's SCBN algorithm to propagate messages by means of exclusively local 
operations on nodes applies only to singly connected networks; for multiply 
connected networks, there are several methods based on modification of this 
algorithm (Pearl [13]), all of which may suffer from combinatorial explosion 
because probabilistic inference using belief networks is known to be NP-hard 
(Cooper [22]). One such technique is the method of conditioning (Pearl [12, 
13]). 

The method of conditioning is based on instantiating a small set of nodes, 
the loop cutset, to "cut"  all loops in a multiply connected belief network. The 
nodes of the loop cutset act as though they were evidence nodes and thus prevent 
cycling of information by way of the blocking conditions described earlier (see 
Fig. 4). By instantiating the nodes of the loop cutset, we satisfy the loop-cutset 
condition. 

Thanks to the blocking conditions, the effects of new evidence can be cal- 
culated using Pearl's SCBN algorithm. The results of these calculations are 
then weighted by the joint probability of the nodes in the loop outset, given 
the observed evidence. This joint probability of the loop-cutset nodes can be 
obtained during initialization of the network by sequentially instantiating these 
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add to 

loop 

Figure 4. Function of the loop cutset. Loop-cutset nodes use the blocking conditions to 
separate ancestor nodes from descendant nodes, and descendant nodes from one another. 
Thus, loops in a multiply connected network are cut to leave a singly connected network. 
The node on the right is darkened to indicate that it has been instantiated. 

nodes (Suermondt and Cooper [23]); when evidence is introduced, the joint 
probability is updated dynamically, as described by Pearl [12] and Suermondt 
and Cooper [23]. 

The correctness of the approach of conditioning is based on the following 
equation. Given evidence E and a loop cutset consisting of nodes C1 . . . . .  Cn, 
then, for any node X, 

P(xlE) = ~ P(xlE,  CI . . . . .  Cn)P(Cl . . . . .  c,,Ig) (5) 
e l  t...,Cn 

In the calculation for the new belief P(x  IE), the probability of x given a certain 
instantiation of the loop-cutset nodes, P(x  IE ,  c l . . . . .  c n ) ,  and the joint proba- 
bility of that loop-cutset instantiation, P(cl . . . . .  cn IE), can both be calculated 
by Pearl's SCBN algorithm [5]. 

A good way to look at belief updates using the method of conditioning is to act 
as though, rather than there being a single belief network, there is a collection 
of networks. The number of possible instantiations such that we cover every 
possible combination of value assignments to the members of the loop cutset 
determines the number of copies of the belief network. These copies, which we 
have thus far called instantiations, must all be processed when a new piece of 
evidence arrives. 

In Figure 5, if we assume that our loop cutset consists of node A, then the 
copies of  the network will be instantiation 1, in which we assume that node A 
has value a, and instantiation 2, in which we assume that node A is assigned 
--a. When we observe a new piece of evidence, the information in each network 
must be updated independently. 

Intuitively, this method makes sense. When one is confronted with a problem 
that is too complex to handle, then an obvious strategy is to divide the problem 
into cases. We consider what would happen if we made certain simplifying as- 
sumptions; subsequently, we adjust the solution to take into account our original 
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Instmttimioa 1 Insttmtiation 2 

Figure 5. How multiple instantiations are considered. Node A has been assigned a 
different value in each instantiation, effectively stopping messages from B to A to C, 
and vice versa. 

assumptions. Unfortunately, this method may require a significant amount of 
computation time. For example, if our loop cutset consists of just 10 binary 
nodes, then we need 2 l° = 1024 terms in the sum of Eq. (5). The time com- 
plexity of this approach is exponential in the number of nodes in the loop cutset. 
We can imagine highly connected belief networks for which this method would 
not be practical owing to the large size of the loop cutset. However, provided 
that we can find a small loop cutset for the multiply connected network, the 
method of conditioning provides a workable and intuitively clear solution. 

The remainder of this article addresses the problem of finding a small loop 
cutset. 

FINDING T H E  MINIMAL LOOP CUTSET 

In general, probabilistic inference using belief networks is NP-hard (Cooper 
[22]). The method of conditioning is a generally applicable inference algorithm 
for belief networks; therefore, we can expect that in the worst cases infer- 
ence using this method will be of exponential time complexity with respect to 
the number of nodes in the network. In particular, the time complexity of a 
probability update of a single node using the method of conditioning will be 
proportional to the product of the number of values of the loop-outset nodes. 

The exponential nature of the method of conditioning makes finding a small 
loop eutset important; if possible, this loop cutset should be minimal. As men- 
tioned earlier, however, finding the minimal loop cutset is also an NP-hard 
problem. We can show that the minimal loop cutset (MLC) problem is NP-hard 
by reducing the minimal vertex cover (MVC) problem to the MLC problem. 
The MVC problem, which is known to be NP-hard (Garey and Johnson [24], p. 
190), is defined as follows: Given a finite undirected graph (V, E)  with vertices 
V and edges E, find a subset W of V that is of smallest cardinality such that 
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Figure 6. Loop Lij. Each edge between nodes Vi and V i in the minimal vertex cover 
problem corresponds to loop Lij in the minimal loop cutset problem. 

for each edge e in E,  e has an endpoint in V'. Informally, the reduction from 
the MVC problem to the MLC problem is as follows. Each edge (Vi, Vj) in 
an instance of the MVC problem induces the structure shown in Figure 6 in the 
corresponding instance of the MLC problem. 

In Figure 6, Vi, V j ,  I)ij , O[j are propositional variables, and uij and o:. ,j are 
instantiated to either T or F. The reduction thus constructs a loop Liy in the 
MLC problem instance for each edge in the MVC problem instance. Each edge 
in the MVC problem instance induces four nodes in the MLC problem instance, 
each of which has no more than two parents. Thus, the reduction is polynomial 
in the size of the MVC problem instance. By the loop-cutset condition given 
earlier (see Multiply Connected Networks), for each loop Lij in the MLC 
problem instance, we must include one of { Vi }, { Vj }, or { Vi, Vj } in the loop 
cutset. Furthermore, by the loop-outset condition, neither node oij nor node v:- I j  

can serve to cut the loop t i j ,  so neither node would appear in a minimal loop 
cutset of the MLC problem instance. Selecting one of { Vi }, { Vj }, or { Vi, Vj } 
as a cutset for loop Lij in the MLC problem instance corresponds to selecting 
one of {Vi}, {Vj}, or {Vi, V i} to cover edge (Vi, Vj) in the MVC problem 
instance. Conversely, selecting one of { Vi }, { Vj }, or { Vi, Vj } to cover edge 
(Vi, Vj) in the MVC problem instance corresponds to selecting one of {Vi}, 
{Vj}, or {Vi, Vj} as a cutset for loop Lij in the MLC problem instance. 
Thus, there is a one-to-one correspondence between finding the minimal loop 
cutset and finding the minimal vertex cover. Therefore, finding the minimal 
loop cutset is NP-hard. 

Figure 7 shows an example. Here, {VI, V3} is a minimal loop cutset in the 
MLC problem and a minimal vertex cover in the MVC problem. However, 
{VI, V2} is neither because it leaves edge (V3, V4) in MVC uncovered and it 
leaves loop L3,4 in MLC uncut. 

Because of the computational complexity of the MLC problem, we have 
developed the heuristic algorithm described in the next section to find a loop 
cutset that is generally small but that is not guaranteed to be minimal. The 
worst-case time complexity for finding a loop outset using this algorithm is 
O(n 2) for a belief network of n nodes. 
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Figure 7. Reduction of a simple instance of the MVC problem in an undirected graph 
to an instance of the MLC problem in a belief network. 

A HEURISTIC ALGORITHM FOR FINDING THE LOOP CUTSET 

It is important to have as small a loop cutset as possible in order to minimize 
the number of possible instantiations of the loop-cutset nodes. The following 
algorithm creates a loop cutset that satisfies the loop-cutset condition. It is 
heuristic in the sense that it attempts to find a small loop cutset, but it does 
not guarantee that the minimal set will always be found. Its main steps are as 
follows: 

1. Remove all parts of the network that are not in any loop. 
2. If  there are any nodes left, find a good loop-cutset candidate. A good 

loop-cutset candidate is defined as a node that satisfies the loop-cutset 
condition and the heuristic criteria described in the following subsections. 
Add this node to the loop cutset, and then remove it from the network. 

3. If  no nodes remain, halt; else, return to step 1. 

A More Detailed Description of the Heuristic Algorithm 

Step 1 is based on the fact that we want to add nodes to our loop cutset 
only if these nodes are part of at least one loop. No singly connected nodes 
of the belief network will be members of the loop cutset; therefore, all singly 
connected parts can be deleted. A singly connected branch of a belief network 
is defined as a subgraph S of the network such that (1) there is exactly one 
path between any two nodes of S and (2) there is at most one arc in the belief 
network such that this arc is shared by a node of S and any node of the belief 
network not in S. If  a set of n nodes is a singly connected branch, there are 
exactly n - 1 arcs connecting the nodes (Harary [17], p. 33). 

We start the process of removing singly connected branches by finding any 
nodes that have a single parent and no children or that have a single child and no 
parents; in other words, we find nodes that have only a single neighbor. These 
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Figure 8. A belief network that illustrates the heuristic algorithm. (a) The original 
network; (b) the network after removal of all singly connected branches; (c) what is left 
of the network after a loop has been removed. 

nodes are not part of  any loop, so we can remove them from our network, 
because they do not need to be part of  the loop cutset. We also remove the 
arcs that connect each pruned node to its single neighbor. After removing a 
node and its arc, we consider its neighbor. If  this neighbor now also meets the 
condition for removal (that is, it has a single neighbor), then we can repeat 
the process. We continue until no nodes with a single neighbor remain in the 
network. 

Let us illustrate how we remove the singly connected branches of  the network 
in Figure 8a. Node A has only one neighbor; it is therefore not part of  any loop, 
so we can remove it. We follow its arc to node C, which now has two neighbors, 
since node A has been deleted. If  a node has more than one neighbor, we do 
not know whether it is part of  a loop; for example, both nodes C and E have 
two neighbors; node C is not part o f  any loop, but node E is. As we cannot yet 
tell whether node C is a member of  any loop, we leave this node; first, we see 
whether there is another node we can remove. In this case, node B also has only 
a single neighbor. Therefore, we delete node B and follow its arc, returning 
to node C. This time, node C has only one neighbor left, because nodes A 
and B have been deleted, so we now know that node C is not part of  a loop 
and we can delete it. We follow its arc to node D. Node D has two neighbors, 
so we cannot continue. There are no other nodes with only a single neighbor; 
therefore, we have completed step 1. At this point, no nodes with fewer than 
two neighbors remain in the network. Since each singly connected branch of  the 
network contains at least one node with fewer than two neighbors (Harary [17], 
p. 34), we conclude that all singly connected branches of  the belief network 
have been removed; all nodes remaining in the network are therefore members 
of  one or more loops. 

The goal of  step 2 is to find a node that satisfies the loop-cutset condition for 
as many loops as possible, in order to minimize the number of  possible instan- 
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tiations of  the loop-cutset nodes. Therefore, in step 2, we employ a heuristic 
strategy that has the following three components. 

1. We consider only those nodes that have one or no parents. Thus, we avoid 
nodes that violate the loop-cutset condition by having more than one parent 
in the same loop. 

2. Of  the nodes that remain under consideration, we select the node that 
has the most neighbors. Since all nodes remaining in our network are 
members of  one or more loops, the number of loops of which a node 
is a member will increase with the number of neighbors that that node 
has. By adding the node with the most neighbors, we hope to minimize 
the number of nodes that must be added to the loop cutset to satisfy the 
loop-cutset condition. 

3. If  there is a choice among multiple nodes that each have the same number 
of neighbors, then we select the node with the lowest number of possible 
values. This strategy will help us to minimize the number of possible value 
assignments to the loop-cutset nodes. 

In the next section we shall discuss this heuristic in more detail. 
After heuristically deciding which node is a good loop-cutset member, we add 

this node to our set and remove it from the network. By removing a node that 
is in a loop, we potentially make the remainder of  that loop singly connected. 
Because we may thus create new singly connected branches in the network, we 
need to return to step 1 and remove these branches. 

In Figure 8b, nodes G and J have more than one parent, so they cannot be 
considered for the loop cutset. The nodes remaining under consideration all 
have two neighbors and are therefore equally attractive candidates by the first 
two criteria. If, for example, node E has fewer possible values (e.g., two) than 
any other node (e.g., all others have three or more values), by the fewest-values 
criterion we decide to add it to our loop cutset. After removing node E, we 
can prune its neighbors--nodes D and F--because these nodes each have only 
one remaining neighbor. After these nodes have been removed, once more all 
remaining nodes have more than one neighbor, so all nodes are members of  one 
or more loops. Therefore, we need to look for the best loop-cutset candidate 
again. 

With what is left of  the network (see Fig. 8c), we repeat the same process. 
Node G has the most neighbors of all nodes with one or no parents, so we 
select it next. After adding node G to the set and deleting it from our network, 
we follow its arcs to nodes H and I. These nodes now have only one neighbor 
left, so we can remove them. For either one of them, we follow the arc to node 
J, which has no remaining neighbors. We remove node J, and we are finished. 
Our final loop cutset consists of nodes E and G. 

Alternative Heuristics for Selecting a Loop-Cutset Node 

Selecting a good loop-cutset candidate in step 2 has a great influence on 
the eventual size of the loop cutset. In determining which node to make our 
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Figure 9. The effect of different heuristic criteria on the average number of values 
per loop-outset node. In this graph, we characterize the expected effect of varying the 
heuristic strategy from considering only the number of neighbors to considering only 
the number of values of each candidate. 

next candidate, we pay attention to two factors: (1) the number of values of 
the node, because the number of instantiations of the loop cutset grows by the 
product of the numbers of values of the loop-cutset nodes, and (2) the number 
of neighbors of the node. The latter factor is important because a node with 
many neighbors usually will be in more loops than will a node with few neigh- 
bors. By selecting a node that is a member of multiple loops, we may be able 
to cut all those loops with a single node, rather than having to cut every loop 
separately. 

If we consider the spectrum of strategies that vary from considering only the 
number of neighbors to considering only the number of values of the loop-cutset 
candidate, we find that the two criteria have independent effects. In Figure 9, 
we characterize the effects of the two criteria on the average number of values 
of all the loop-cutset nodes. The curve in Figure 9 is based on our experience 
with combinations of the two heuristics in randomly generated networks, as 
described in the Evaluation section. If we fail to consider the number of values 
of each candidate in selecting the loop cutset, the average number of values 
per loop-cutset node grows quickly. The resulting large average number of 
values per loop-cutset node will have an adverse effect on the total number of 
instantiations of the loop-cutset nodes. 

As shown in Figure 10, however, it also is necessary to consider the number 
of neighbors of the candidate in order to restrict the number of nodes in the 
loop outset. If we consider only the number of values of each candidate, we get 
a very large loop cutset, albeit one with a low average number of values per 
loop-cutset member. 

In Figure 11, we summarize the combined effect of the two strategies on the 
variable of interest, the total number of instantiations of the loop-cutset nodes. 
If we ignore the number of values of each loop-outset candidate, we get a loop 
cutset that is suboptimal in that it has an unnecessarily high average number of 
values per loop-cutset node. On the other hand, if we focus on only the number 
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Figure 10. The effect of different heuristic criteria on the number of nodes in the loop 
outset. If we consider exclusively the number of values of the nodes to be included in 
the loop outset, the total number of loop-cutset members becomes very large. 

of  values of the loop-cutset candidates, ignoring the number of neighbors of the 
candidates, we also obtain a suboptimal loop cutset--it has too many nodes. 

The optimal strategy is one that considers both the number of  values and 
the number of neighbors of  each loop-cutset candidate. Our experiments have 
shown that we obtain the best results when we consider foremost the number 
of neighbors of the loop-outset candidate, breaking ties by selecting the node 
with the lower number of values (see under Evaluation). If, in some belief 
networks, there are large discrepancies between the numbers of values of cutset 
candidates, then we might consider giving the number of values priority over 
the neighbor-maximization criterion; we might also combine the two criteria 
into a single weight function. Both criteria attempt to minimize the number of 
instantiations of the loop-outset nodes, but if the nodes are similar in number 
of values, the neighbor-maximization criterion is likely to be preferable. 

7 
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Figure 11. The effect of different heuristic criteria on the number of instantiations of 
the nodes in the loop cutset. In selecting the members of the loop cutset, we obtain the 
smallest number of loop-cutset instantiations if we consider both the number of neighbors 
and the number of values of each node under consideration. 
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Computational Time Complexity 

The worst-case time complexity for finding a loop cutset using this algorithm 
is O(n2), where n is the number of nodes in the belief network. The algorithm 
can be described in terms of the following procedures. The first procedure is to 
visit all nodes in the network and select a node with fewer than two neighbors. 
Given that we know the number of neighbors (the degree) of each node, this 
procedure is O(n) time. The second procedure is to determine the best loop- 
cutset candidate. We find the best loop-cutset candidate by visiting all nodes 
and rating the nodes on the basis of heuristic criteria. Since rating the nodes 
can be done in constant time given that we have available the degree of each 
node, this procedure also is O(n). Finally, there is a procedure to remove a 
selected node. Given that we need to visit each neighbor of a removed node to 
update the degree of the neighbor, removal of a node also is O(n). 

We can summarize the algorithm as follows: 

WHILE any nodes remain 
IF there is a node with fewer than two neighbors 

THEN select a node with fewer than two neighbors O(n) 
ELSE select a loop-cutset candidate O(n) 
Remove the selected node O(n) 

END WHILE 

Finding the heuristic loop cutset is done by an outer loop, which we repeat 
until no nodes remain in the network. During each cycle through the outer 
loop, we execute the first procedure, selecting a singly connected node of the 
network. If no node can be selected by the first procedure, no singly connected 
portions of the network remain; therefore, we execute the second procedure, 
selecting a loop-cutset candidate, as described in the preceding subsection. After 
selecting either a singly connected node or a loop-cutset candidate, we remove 
the selected node. Thus, during each cycle of the outer loop, exactly one node 
is removed from the network; therefore, the outer loop cannot be executed more 
than n times. 

Thus, in the worst case, our algorithm repeats n times three procedures, each 
of O(n). Therefore, the worst-case time complexity of our algorithm is O(n2). 

EVALUATION 

We have implemented the loop-cutset algorithm discussed in the preceding 
section for a general belief-network tool called KNET (Chavez and Cooper 
[25]). We have tested the heuristic algorithm on randomly generated belief 
networks, each of which we created by the following procedure. First, we 
specified the number of nodes and arcs that we wanted the network to have; this 
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gave us an indication of the connectivity of the network. For example, a network 
with 20 nodes and 19 arcs would be singly connected, but a network with 20 
nodes and 25 arcs might contain six loops. After specifying the number of nodes 
and arcs, we generated a belief network of the desired number of  nodes that was 
maximally connected; that is, there were as many arcs as there could be without 
the graph being cyclic. We created a maximally connected graph by numbering 
all nodes and creating arcs from each node to all higher-numbered nodes in the 
graph. After generating such a maximally connected graph, we eliminated arcs 
at random until the desired number of arcs was achieved; before eliminating 
any arc, we made sure that the belief network would remain connected. After 
completing these arc eliminations, we had a belief network of random topology 
given the specified number of nodes and arcs. 

The principal bias of this method is that the method does not create graphs 
that are not connected. We introduced this bias because our purpose was to 
test our algorithm in networks resembling real belief networks, and, in our 
experience, these networks are generally connected. Because of this selection 
bias, our method of creating random belief networks does not guarantee that all 
members of the class of  networks with the specified number of arcs and nodes 
are equally likely to be generated, since all arcs are not equally likely to be 
removed. However, the generated networks did provide us with an indication 
of the performance of our algorithm for a broad range of networks. 

Using this mechanism, we generated a total of 600 random networks to use as 
testbeds for our heuristic algorithm to find the loop cutset. In the Introduction, 
we defined the minimal loop cutset as the set of nodes that satisfies the loop- 
cutset condition described under Multiply Connected Networks, such that the 
product of  the numbers of values of  these nodes is less than or equal to that 
of any other set of  nodes also satisfying the loop-cutset condition. Because the 
task of finding the minimal loop cutset is NP-hard, we decided to limit our 
test cases to small networks (20-30 nodes, no more than 35 arcs per network). 
For these small networks, we could determine the minimal loop-cutset size by 
exhaustive search. For the test cases, we varied the number of nodes, the number 
of values per node, and the connectivity of the networks. Thus, we arrived at 
the following test cases: 

I .  One hundred networks containing 20 nodes, 25 arcs; each node is as- 
signed randomly between two and six values. 

I I .  One hundred networks containing 20 nodes, 25 arcs; each node is 
assigned randomly between two and ten values. 

I I I .  One hundred networks containing 20 nodes, 30 arcs; each node is 
assigned randomly between two and six values. 

IV. One hundred networks containing 20 nodes, 30 arcs; each node is 
assigned randomly between two and ten values. 

V. One hundred networks containing 30 nodes, 35 arcs; each node is 
assigned randomly between two and six values. 
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Table 1. Summary of Evaluation Data for Six Sets of Test Networks 

SetI SetlI Set HI Set IV SetV SetVI 

Number of networks 

Number of nodes in each network 

Number of arcs in each network 

Possible number of values of 
each node 

Percentage of networks in which 
minimal loop outset was found 

Average ratio of loop-cutset sizes 
(heuristic/minimal) in networks 
for which the minimal loop 
cutset was not found ( ~ )  

100 100 100 100 100 100 

20 20 20 20 30 30 

25 25 30 30 35 35 

2-6 2-10 2-6 2-10 2-6 2-10 

77 75 64 61 75 67 

1.72 2.38 2.06 2.72 1.96 2.29 

VI. One hundred networks containing 30 nodes, 35 arcs; each node is 
assigned randomly between two and ten values. 

The first two sets of networks are the smallest, with 20 nodes and 25 arcs 
each. The base case consists of set I. In set II we consider the change in perfor- 
mance as we increase the average cardinality of the nodes. The test networks of 
sets III and IV are more highly connected than are those of the first two sets, 
thus posing a more difficult task of finding a minimal loop outset. The average 
cardinality of the nodes in set IV is greater than that in set III. By comparing 
test networks V and VI to sets I and II, we hope to get an indication of what 
happens when we increase the number of nodes of the networks. Set VI has a 
greater average cardinality than does set V, and the connectivity of the networks 
of sets V and VI is approximately the same as that of the networks of sets I and 
II. 

Results of  the Evaluation 

For each of these sets of test networks, we compared the loop cutset generated 
by our heuristic algorithm with the minimal loop cutset generated by exhaustive 
search. Table 1 shows our results. 

In approximately 70% of the networks studied, our heuristic algorithm found 
the minimal loop outset. Let us call the percentage of networks in which our 
heuristic algorithm found the minimal loop cutset the success  rate S. For set I, 
the heuristic algorithm located the minimal loop cutset in 77% of the cases (95% 
confidence interval: 68.8-85.2%). For set II, in which the average cardinality 
per node is increased, the heuristic algorithm found the minimal loop cutset in 
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75% of the cases (95% confidence interval: 66.5-83.5%). In set III,  which has a 
much greater connectivity than do sets I and II, the heuristic algorithm found the 
minimal loop cutset in 64% of the cases (95% confidence interval: 54.6-73.4%). 
In set IV, where the average number of values per node is increased compared 
to set III ,  the success rate is 61% (95% confidence interval: 51.4-70.6%). 
In the remaining networks, which, compared to sets I and II, have the same 
connectivity but a greater number of nodes, the success rate was higher: For set 
V, the heuristic algorithm found the minimal loop cutset in 75% of the networks 
(95% confidence interval: 66.5-83.5%); in set VI, the success rate was 67% 
(95% confidence interval: 57.8-76.2%). 

In the cases where the heuristically generated loop cutset was suboptimal, it is 
clear from the ratios of numbers of  instantiations that the price of a suboptimal 
loop outset is high: Having too many nodes can easily double the number of 
possible instantiations of  the loop-cutset nodes. Let us define R as the ratio of 
the number of instantiations of the heuristically generated loop cutset to that of 
the minimal loop cutset; let RN be the mean value of R for the networks in 
which a minimal loop cutset was not found. The values of RN are shown in 
Table 1. For the networks of set I, the value of RN is 1.72. For the networks 
of set II, the value of R~v is slightly higher: 2.375. Set III  has an RN of 2.06. 
For set IV, RN is 2.72, the greatest value of all our sets of test networks. Set 
V has an RN of 1.96, and for set VI, RN is 2.29. In Figure 12, we display the 
range of R for each of our six sets of test networks. 

When we compare sets of test networks that differ in only the average number 
of values of the nodes (set I versus set II; set III versus set IV; and set V versus 
set VI), we find that the difference in success rate S for each of these pairs of  
sets is not very great. For set I versus set II, X 2 = 0.1028; for set III  versus set 
IV, X 2 ---- 0.192, and for set V versus set VI, X 2 = 1.554. None of these values 
are statistically significant at the 5% level. This finding lends support to the 
conclusion that the effect of the number of values of each node on the ability of  
the algorithm to locate the minimal loop cutset is relatively minor. However, 
we notice that for each of these pairs of sets the value of RN is greater in the 
set with the higher average number of values per node, although this increase 
was not statistically significant for any of the pairs. 

I f  we increase the connectivity of the network, locating a minimal loop cut- 
set becomes progressively more difficult. As we see when we compare the 
test networks of set I to those of set III,  the success rate of the heuristic 
algorithm decreases from 77% to 64% (X 2 = 4.063, p < 0.05). Similarly, 
when we compare set II to set IV, we see a decrease in S from 75% to 61% 
(X 2 = 4.503, p < 0.05). This decrease, which is statistically significant in both 
eases, leads us to believe that when we extrapolate to highly connected belief 
networks, the performance of the heuristic algorithm will not be as good as it 
is in sparsely connected networks. However, the method of conditioning, for 
which our heuristic algorithm finds a loop cutset, is not particularly well suited 
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Figure 12. The ratio R of  heuristic loop-cut,set size to minimal loopcutset  size for the 
test networks for which our heuristic algorithm did not locate a minimal loop cutset. 
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for use in highly connected belief networks, since in such networks even the 
minimal loop-cutset size will be prohibitively large. 

When we increase the number of nodes in the network while holding the 
connectivity of  the network constant, we do not see a significant deterioration 
in the heuristic algorithm's performance. The networks of sets V and VI have 
a connectivity and average number of  values similar to those of  sets I and II, 
respectively. The networks of sets V and VI, however, have 30 nodes each, 
whereas those of sets I and II have 20 nodes each. When we compare the 
results for set V to those for set I, we see that there is only a minor decrease in 
success rate (from 77% to 75%, X 2 -- 0.110, not significant). The success rate 
in set VI is 67%, a decrease from the success rate of 75% in set II (X 2 = 1.55, 
not significant). Also, the values of RN are not significantly different in sets V 
and VI compared to sets I and II. Thus, these results suggest that increasing 
the number of  nodes per network does not significantly affect the performance 
of the heuristic algorithm. 

Discussion 

The most noticeable effect of increasing the average number of values of the 
nodes in our test networks is that for those networks in which a minimal loop 
cutset is not found the ratio R becomes larger on average. When the average 
number of  values per node increases, the effects of including unnecessary nodes 
in the loop cutset become more serious. In set IV, for example, there was one 
network in which the number of instances of the heuristically located loop cutset 
was 10 times greater than the size of the minimal loop cutset (see Fig. 12). 
The success rate, however, is not significantly affected by the average number 
of values of the nodes. 

Increasing the number of nodes did not significantly affect the success rate 
or the value of RN in our test cases. When we increased the connectivity of  
the networks, however, we saw a significant decrease in success rate. We de- 
termined that the principal reason for not finding a minimal loop cutset in these 
networks was that our algorithm does not consider nodes with multiple par- 
ents as loop-cutset candidates; therefore, when there is a structure of adjacent 
loops, as shown in Figure 13, the heuristic algorithm will often fail to find the 
optimal loop cutset. In Figure 13, the network consists of two adjacent loops, 
A-B-C-D and D-E-F-G. The minimal loop cutset, if we assume that all nodes 
are binary, would consist of  node D. However, the heuristic algorithm will 
not consider node D as a candidate, because this node has two parents that are 
members of a loop. Thus, we will obtain a suboptimal loop cutset, for example, 
nodes A and E. Adjacent-loop structures such as this example accounted for 
all the failures in our test cases. Unfortunately, testing for such structures and 
correcting the loop cutset whenever an adjacent-loop structure arises makes the 
task of finding the loop cutset more complex. 
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Figure 13. Adjacent-loop structure. This belief-network structure caused our heuristic 
algorithm to fall to find the minimal loop cutset in approximately 30% of our test cases. 

Our preliminary results indicate that the heuristic loop-cutset algorithm that 
we have described performs well at finding a small loop cutset in polynomial 
time. Finding a small loop cutset is necessary if we want to use Pearl's method 
of conditioning. Therefore, the loop-cutset algorithm can assist in applying 
Pearl's method of conditioning to probabilistic inference for a select class of 
belief networks. 
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