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1. Introduction 

Quick Medical Reference (QMR®) 
is a microcomputer-based decision-
support tool for diagnosis in internal 
medicine. We are developing a deci-
sion-theoretic version of QMR, which 
we call QMR-DTI. In Part I of this 
series, we discussed the reasons for 
developing a decision-theoretic QMR, 
the belief-network representation that 
we have used in the QMR-DT knowl-
edge base (KB), and the algorithms 
that we implemented for inference on 
the QMR-DT KB. We have focused 
our research to date on the probabilis-
tic component of the QMR-DT 
system. 

® QMR is a registered trademark of the Uni-
versity of Pittsburgh. 

I We are currently using the INTERNIST-I 
KB (circa 1986). rather than the more recent 
QMR KB. These two KBs are quite similar. 
to the extent that the methods in this paper 
can be applied to the latter KB as well. For 
simplicity. where the distinction between the 
INTERNIST-J KB and QMR KB is inconse-
quential. we will refer to the INTERNIST-I 
KB as the QMR KB. 
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Probabilistic Diagnosis Using 
a Reformulation of the 
INTERNIST -l/QMR Knowledge 
Base 
II. Evaluation of Diagnostic Performance 

Abstract: We have developed a probabilistic reformulation of the Quick 
Medical Reference (QMR) system. In Part I of this two-part series, we 
described a two-level, multiply connected belief-network representation. 
of the QMR knowledge base and a simulation algorithm to perform' 
probabilistic inference on the reformulated knowledge base. In Part II of. 
this series, we report on an evaluation of the probabilistic QMR, in which 
we compare the performance of QMR to that of our probabilistic system 
on cases abstracted from continuing medical education materials from 
Scientific American Medicine. In addition, we analyze empirically several 
components of the probabilistic model and simulation algorithm. 
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Following the convention used in 
Part I, we refer to the QMR-DT KB 
and the assumptions that it includes as 
the QMR-DT model. These assump-
tions, which we examined in Part I, 
are marginal independence of dis-
eases, conditional independence of 
findings given any hypothesis of dis-
eases, causal independence of the in-
fluence of multiple diseases on a single 
finding, and binary-valued findings 
and diseases. Thus, we distinguish the 
QMR-OT model from the algorithms 
that we use for probabilistic inference 
on the QMR-DT model. 

Briefly, to review our algorithms, 
we aim to compute the posterior mar-
ginal probability P (dt I F) for all dis-
eases di given a set of findings F, 
where dt is the event that disease d i is 
present. Note that P (dt I F) does not 
assume that only d i is present, but 
rather allows for multiple diseases to 
be present in the patient. Calculation 
of P(dt I F) using the QMR-DT two-
level belief network is an NP-hard 
problem, however [1]. 

We implemented an algorithm that 
uses Bayes' rule under the added as-

sumption that diseases are mutually 
exclusive. We call this algorithm tabu-
lar Bayes' rule (TB), to reflect the fact 
that it is Bayes' rule under this as-
sumption and the assumption that 
findings are conditionally independent 
given any disease. We also im- \ 
plemented a heuristic algorithm, called Ii 
iterative tabular Bayes' algorithm.: 
(ITB), which applies TB several times 
to a set of findings. We call the set of 
diseases concluded by ITB as likely 
disease candidates for a particular set 
of findings the heuristic-importance 
set. 

A stochastic simulation algorithm 
was implemented to approximate the 
posterior marginal probabilities of dis-
eases P(dt I F), where we do not 
make the assumption that at most one 
disease can be present in a patient. We 
will henceforth use the notation 
P(dt I F) to denote the estimates of 
the posterior marginal probabilities of 
disease that the simulation algorithm 
produces. This stochastic simulation 
algorithm, which we call S, uses the 
output of ITB as a heuristic to im-
prove the convergence properties of 
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the simulation in computing P( dt IF). 
That is, we focus the attention of the 
simulation initially on the diseases 
recommended by ITB. In addition, 
algorithm S uses a technique called 
self-importance sampling to refine this 
focus as the simulation progresses. We 
refer the reader to Part I, Section 3, 
for a detailed discussion of the infer-
ence algorithms that we implemented. 

In this paper, we report an evalua-
tion of the diagnostic performance of 
QMR-DT on one set of test cases. We 
focus first on relatively simple test 
cases to determine if the model and 
algorithms produce acceptable results. 
Specifically, in Section 2, we describe 

.. ow we selected and constructed the 

.diagnostic test cases and how we com-
'\STpared various inference algorithms. In 

Section 3, we report the results of the 
evaluation of diagnostic performance 
and sensitivity analysis of the QMR-
DT model and algorithms. In Sec-
tion 4, we provide a discussion of the 
experiments that we performed. A 
description of the notation used in this 
paper appears in the Appendix. 

2. Experimental Design 

To investigate the relative diagnos-
tic accuracy of QMR and QMR-DT, 

ewe compared the performance of 
. QMR with that of S on a set of test 

In the remainder of Section 2, 
we describe the test cases used in the 
experiment, techniques used to com-
pare the performance of QMR and S, 
and sensitivity analyses testing various 
components of the model and the 
simulation algorithm. 

2.1 Test Cases 
To evaluate QMR and S, we used 

cases abstracted from the Scientific 
American Medicine (SAM) Continu-
ing Medical Education service [2]. The 
SAM cases provide physicians with a 
means of reviewing current clinical 
practice and of keeping abreast of new 
developments in internal medicine. 
Cases are created following specific 
guidelines by an expert in the subspe-
cialty area containing the diagnosis in 
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the case. The cases typically contain 
diagnoses consisting of a single dis-
ease, or occasionally two or three 
diseases. After an expert creates a 
case, it is reviewed by the SAM edito-
rial staff for accuracy and for consis-
tency with other SAM cases. 

Subscribers to the SAM Continuing 
Medical Education service use cases in 
the following manner. In either com-
puter-based or paper format, an intro-
duction to a clinical scenario is pre-
sented. The reader is then given a 
variety of choices to obtain additional 
information. New information is not 
revealed unless the reader selects an 
item on the computer display or on 
paper by using a special marker. De-
pending on the items selected, the 
user follows one of several paths in a 
branching logic to make a diagnosis 
and to choose therapy. For didactic 
purposes, each information item has a 
number associated with it that repre-
sents an ad hoc rating of the clinical 
usefulness of the information for diag-
nostic or management purposes in the 
case. These ratings are made initially 
by the case author, and are reviewed 
by the editors of SAM. A score to 
assess performance in the case is cre-
ated by summing the positive and 
negative weights associated with each 
information item selected. 

In abstracting the SAM cases, we 
selected only those findings that had a 
positive score - that is, those findings 
whose presence or absence was rele-
vant to diagnosis or management in 
the case. We also limited the ab-
stracted findings to those that typically 
would be available after initial evalu-
ation and workup in a physician's 
office, emergency room, or outpatient 
clinic. We attempted to simulate the 
diagnostic dilemma faced by a doctor 
in the early stages of the clinical 
course of disease. Thus, we did not 
include information that would be 
available only after an extended diag-
nostic workup. Typically, this set of 
information comprises a fraction of 
the available information in a SAM 
case. Much of the information in the 
SAM cases pertains to evolving pa-
tient management, a large part of the 
SAM educational exercise. The infor-
mation pertaining to patient manage-
ment, however, is not required by a 

clinician or diagnostic system to make 
the diagnoses that we listed in the 
reference diagnoses for a SAM case. 

For the purpose of this study, we 
define the reference diagnosis of a 
SAM case to be those diseases 
specified by SAM as the patient's 
diagnosis, such that the findings for 
each of the diseases in the diagnosis 
were present on initial evaluation of 
the patient. Additional diagnoses may 
be specified by SAM as occurring in a 
case sometime later' in the clinical 
course. For instance, if other findings 
appeared after the initial evaluation, 
leading to an additional diagnosis, we 
did not include the additional diag-
nosis in the reference diagnosis for the 
case. 

The SAM case findings were first 
translated into the vocabulary of 
QMR for analysis of QMR and then 
into INTERNIST-l terms, if possible, 
for analysis of QMR-DT. Recall the 
distinction between the two knowl-
edge bases: INTERNIST -1 was used 
to create QMR-DT. QMR was used to 
evaluate the performance of QMR-
DT. Because QMR is the successor of 
INTERNIST-I, it contains a more 
contemporaneous vocabulary for de-
scribing findings, and additional find-
ings. Although the abstraction process 
was generally straightforward, we en-
countered three types of difficulties: 
(1) mapping a negative (absent or 
normal) finding to INTERNIST-l and 
QMR terms when the finding occurs 
only as a positive finding in the IN-
TERNIST-I KB and QMR KB; (2) 
mapping broad, categorical findings; 
and (3) mapping findings for which 
there does exist a QMR label, but 
does not exist a sufficiently congruent 
INTERNIST-l label. We discuss each 
difficulty in turn. 

Most INTERNIST-l and QMR 
findings do not contain specific 
categories to denote a finding as nor-
mal. For instance, to denote an abnor-
mal level of serum cholesterol, we 
may choose from either of the two 
binary findings: CHOLESTEROL BLOOD 
INCREASED or CHOLESTEROL BLOOD DE-
CREASED. But to specify that the 
cholesterol value is normal, we must 
specify that both of the abnormal 
cholesterol findings are negative [3]. 
Next, consider findings corresponding 
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to continuous variables for which 
there exist three or more INTER-
NIST-I/QMR descriptors. For exam-
ple, to specify an abnormal serum 
glutamic oxaloacetic transaminase 
(SGOT) level, we may choose from 
any of the three findings: SGOT 40 TO 
119, SGOT 120 TO 400, or SGOT GTR THAN 
400. To specify a normal SGOT value, 
we record SGOT 40 TO 119 as a negative 
finding; that is, we indicate as negative 
the least abnormal choice of the find-
ing of interest to represent a normal 
finding. This procedure is acceptable 
when, in the normal course of a dis-
ease process, all levels of abnormality 
may be expected; thus, if anyone 
abnormal level is present, the disease 
should be considered as a possible 
diagnosis. Problems may arise, how-
ever, when not all values may be 
expected in the course of the disease, 
or when an extreme abnormal finding 
is required to cause a disease to be 
considered or rejected. For example, 
consider a disease profile containing 
the finding SGOT GTR THAN 400 but not 
SGOT 120 TO 400, or SGOT GTR THAN 400. 
Diseases of this type may not be 
penalized as diagnostic possiblities be-
cause we enter only the least abnormal 
finding as negative or absent. When a 
negative finding if is entered, the pos-
terior probability of a disease d; is 
diminished only if if is in the profile of 
d;. We expect this problem to be 
small, because most disease profiles in 
the INTERNIST-l KB have all 
categories of multi valued findings en-
tered on relevant disease profiles [4]. 
For example, the disease profile of 
HEPATITIS ACUTE VIRAL includes the 
three findings SGOT 40 TO 119, SGOT 120 
TO 400, or SGOT GTR THAN 400 which 
together encompass the entire range 
of abnormal SGOT values. 

SAM cases often report negative 
categorical findings that represent 
broad concepts in the history and 
physical examination. However, there 
is no convenient way in QMR or 
INTERNIST-l to represent, for ex-
ample, a negative review of systems. 
When specific findings from a review 
of systems were relevant to a SAM 
case, the findings were typically of-
fered in the case as information items 
that could be selected by the reader. If 
the case gave only a negative review of 
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systems without subsequently detail-
ing findings relevant to the case, we 

,did not use this information. Also, we 
did not infer negative findings unless 
they appeared as specific information 
items in the case. 

Next, consider the QMR finding 
BRAIN CT SELLA TURCICA ENLARGED. 
This finding is an example of simple 
lack of congruence between a QMR 
finding and findings in INTERNIST-
1, since it appears in the QMR finding 
hierarchy but is absent from the IN-
TERNIST-I hierarchy. The INTER-
NIST-I KB contains the finding SKULL 
XRAY SELLA ENLARGED, which we used 
as a surrogate for the finding BRAIN CT 
SELLA TURCICA ENLARGED. 

A more complicated example of 
lack of congruence between QMR and 
INTERNIST -1 findings is a finding 
about the absence of heart murmur. 
QMR represents the presence of heart 
murmur with a specific finding, HEART 
MURMUR PRESENT. This term allows us 
to indicate the absence of heart mur-
mur by recording this finding as nega-
tive in QMR. By contrast, INTER-
NIST-I does not have the high-level 
representation HEART MURMUR PRE-
SENT. It is possible to indicate that all 
different types of heart murmurs are 
negative, but to do so we would have 
to enter more than 40 different types 
of heart murmurs as negative. Thus, 
to represent the absence of heart mur-
mur using INTERNIST-l terminol-
ogy, we record HEART MURMUR SYS-
TOLIC EJECTION LEFT STERNAL BORDER as 
a negative finding. In this and other 
similar situations we attempted to 
select a common INTERNIST-l find-
ing that was associated with many of 
the same diseases associated with the 
QMR finding. Some important dis-
eases, however, that do not contain 
the surrogate finding in their disease 
profiles will not be affected by the 
presence or absence of the surrogate 
finding. In those cases where there did 
not exist an INTERNIST-l finding 
that was identical to the QMR finding, 
we ran QMR with the best possible 
mapping of case findings into QMR 
terminology, and ran the QMR-DT 
algorithms using the closest mapping 
into INTERNIST-l terms. 

In this evaluation of diagnostic per-
formance we analyzed only test cases 

containing a single disease in the refer-
ence diagnosis. We sought to deter-
mine if the QMR-DT model and simu-
lation algorithm gave adequate results 
on relatively straightforward cases. In 
a subsequent study we plan to evalu-
ate the performance of QMR-DT on 
more complex, multiple-disease cases. 
The static nature of our test cases 
makes the usual hypothetico-deduc-
tive approach to diagnosis impossible. 
A physician or a computer-based diag-
nostic aid cannot iteratively hy-
pothesize and refine a differential 
diagnosis with new evidence when all 
of the case evidence is given at once. 
QMR is intended to be used in a 
"mixed-initiative" manner between,' 
system and physician user [5]. Unlike .. , 
INTERNIST-I, which has a partition-W' 
ing algorithm that allows the system to 
focus iteratively on different problem 
areas [6], QMR applies a scoring 
scheme once, and then provides other 
options to the user for solving difficult 
cases [7]. Because we could not a 
priori define an experimental protocol 
to take advantage of these options in a 
controlled fashion, we were unable to 
employ a mixed-initiative approach in 
our evaluation of QMR performance. 
Thus, QMR performance may not 
reach its optimal level of accuracy in 
our evaluation. We believe, neverthe-
less, that similar limitations apply to 
the QMR-DT test algorithms and that 
the comparison is useful. 

Of the total of 62 SAM cases that. 
were made available to us, we rejected 
15 because the reference diagnosis was 
not contained in the QMR KB, and six 
others because the primary diagnosis 
did not appear in the INTERNIST-l 
KB. Of the remaining 41 SAM cases, 
38 contained single-disease diagnoses. 
We rejected three SAM cases with 
multiple disease diagnoses because of 
the difficulty of properly analyzing 
these cases with a mixed-initiative or 
hypothetico-deductive approach. We 
used 15 of the 38 remaining cases to 
test the various inference algorithms 
while we were developing them. We 
reserved 23 of the 38 cases for our 
evaluation study. None of the cases in 
the set of 23 was presented to any of 
the algorithms before the final evalua-
tion. Information on the diagnoses 
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and findings of the 23 SAM cases 
appears in Table l. 

. We did not randomly sample from 
the set of 38 cases to create the set of 
evaluation cases. Rather, we used for 
development and testing the first 15 
applicable SAM cases that we re-
ceived from Scientific American 
Medicine, and we used for evaluation 
the cases that we received after we 
began testing. 

2.2 Comparison of Rank Ordering 

We are interested primarily in 
evaluating the diagnostic accuracy of 

. QMR and QMR-DT. By diagnostic 
"accuracy, we mean how high an al-
;. gorithm ranks the reference diagnoses 

on a differential diagnosis. According 
to this definition, an algorithm would 
be perfectly accurate if it ranked the 
reference diagnosis highest in all 
cases. We limit our comparison in this 
study to ranks because QMR does not 
produce a probabilistic differential. 
The version of QMR we used pro-
duces two different types of diagnostic 
opinion: (1) a set of "potentially inter-
esting diagnostic hypotheses", which 
consists of a rank-ordered list of dis-
eases and QMR scores; and (2) one or 
more "unifying hypotheses", each of 
which consists of primary diagnosis 
with various possible antecedent and 

. consequent diseases. In this paper; we 
.. limit our analysis of QMR's perform-
fA ance to the rank-ordered list of dis-
'. eases. 

To compare diagnostic algorithms, 
we used a two-sided Wilcoxon signed-
rank test [8] in pairwise comparisons 
of rank ordering of diseases. Specifi-
cally we used the Wilcoxon test to 
compare the rank orderings of al-
gorithm S with those of QMR and 
ITB. For each pairwise comparison, 
the null hypothesis is that the rank 
orderings of the algorithms are the 
same. 

2.3 Sensitivity Analyses 

We distinguish a sensitivity analysis 
on the QMR-DT model from a sen-
sitivity analysis on the simulation al-
gorithm. We refer to a sensitivity 
analysis on the model as one in which 
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we vary either the connectIvIty or 
probabilities of the belief network that 
we call the QMR-DT model, to pro-
duce a second model, QMR-DT'. 
Thus, given a set of findings F, we 
would not expect the posterior dis-
tribution implied by the QMR-DT' 
model to be equal to the posterior 
distribution implied by the QMR-DT 
model. By contrast, in a sensitivity 
analysis of the simulation algorithm, 
we hold the QMR-DT model constant 
and change one of the components of 
the algorithm. Accordingly, with the 
admissible simulation algorithms we 
shall apply we expect that, in the limit, 
the estimates F(dt I F), for each dis-
ease d;, will converge to the values 
P(dt I F) implied by the QMR-DT 
model. However, after a finite amount 
of simulation, P(dt I F) may deviate 
significantly from P(dt I F). 

2.3.1 Analysis of the QMR-DT 
Model 

In our sensitivity analysis of the 
QMR-DT model, we present the ef-
fect of each of the following assump-
tions on the differential output of the 
S algorithm: uniform leak prob-
abilities, uniform prior probabilities of 
disease, and mutually exclusive dis-
eases. We discuss each of these analy-
ses in turn. 

Recall from Part I, Section 2.2.3 
that the leak probability represents 
the probability that a finding is caused 
either spontaneously (e. g., a false 
positive) or by a disease not modeled 
in the QMR KB. We performed the 
analysis of uniform leak probabilities 
to investigate the influence on per-
formance provided by the leak prob-
abilities that we derived. We shall use 
the term S/UL to refer to S running 
on the model QMR-DT' where 
P(f+ I only Lr} = 10-5 , and Lr is the 
leak event. The lowest prior probabil-
ity of diseases in the QMR KB is 
approximately 2 X 10-5. We used the 
value of 1 x 10-5 because the leak 
probabilities generally should be low-
er than the prior probability of dis-
eases that are modeled in the QMR 
KB to avoid over representation of the 
leak event. 

We perform the analysis of uniform 
disease prior probabilities to investi-

gate whether the prior probabilities in 
the QMR-DT model derived from the 
National Center for Health Statistics 
hospital discharge data enhanced the 
performance of the system. To ex-
amine the diagnostic behavior of the 
QMR-DT model under the added as-
sumption of uniform prior prob-
abilities of diseases, we apply the S 
algorithm using uniform prior prob-
abilities of diseases to estimate 
P (dt IF). We shall use the term SI 
U D to refer to S running on a model 
QMR-DT', where each disease is as-
signed a prior probability of P (dt) = 
10-3 . There are many other values that 
we could have used as the uniform 
prior probability of disease. However, 
this value would not change the rank 
order in the values of P(dt I F). Note 
that the leak probabilities for S/uD 
also were calculated using uniform 
prior probabilities on diseases. 

In addition, we examined the per-
formance of the QMR-DT model 
under the assumption of mutually ex-
clusive diseases. Under this assump-
tion, we can use TB to compute P(only 
dt I F, Jl), where Jl is the assumption 
of mutually exclusive diseases. We 
performed this analysis as a point of 
comparison to investigate the influ-
ence provided by modeling the possi-
bility that a patient may have more 
than one disease. Recall the equation 
for computing P(only dt I F, Jl): 

P(only dt I F, 11) = 

P(F I only df) P(only df) 

2,P(F I only dt) P(only dt) 
k = L 

(4) 

Not that (4) includes a term for the 
prior probability of a single disease, 
P(only d:). Since the NCHS data that 
we are using allows us to compute only 
prior probabilities of the form P (d: ), 
which allow other diseases to be pre-
sent in a patient, we use P (d:) as a 
proxy for P(only d:). 

To test statistically the sensitivity 
analyses, we compare, using the Wil-
coxon signed-rank test, the rank as-
signed to the reference diagnosis in a 
case by S/uL, StUD, and TB to that 
assigned by S. We test the null hy-
pothesis that the rank orderings (of 
the reference diagnosis) produced by 
two algorithms are identical. 
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2.3.2 Analysis of the Algorithm S 

In a sensitivity analysis of algorithm 
S, we compare the probabilistic output 
of two modified versions of S to the 
probabilistic output of S itself. Thus, 
we use the posterior distribution of S 
as our reference distribution. Recall 
from Part I, Section 3.3 that S uses 
both heuristic priming from ITB and 
self-importance sampling. We refer to 
the S algorithm with no self-import-
ance sampling as SINSI. Similarly, we 
refer to the S algorithm with no ITB 
heuristic as SINITB. Like S, SINS I 
obtains its initial importance distribu-
tion Po from the heuristic-importance 
set of ITE. By contrast, SINITB does 
not use the heuristic-importance set to 
generate Po. Rather, SINITB sets Po 
(dt) for all dj to the greater of 10-3 or 
the prior probability on dj . SINITE 
uses the same self-importance updat-
ing function as does S. 

In addition to comparing S to SINSI 
and SINITB, we compared S to a 
second run of S, which we will call S2. 
We compared the probability distribu-
tions generated by Sand S2 to ex-
amine the reproducibility of the simu-
lation estimates. Note that reproduci-
bility of the posterior distributions 
using the same simulation algorithm 
(with a different random number 
seed) is a necessary but insufficient 
condition for proof of convergence of 
the estimates to the posterior distribu-
tion of QMR-DT. Since Sand S2 were 
both run for the same number of trials 
per case, we arbitrarily select S as the 
reference algorithm. 

To compare the posterior distribu-
tions of S to SINSI, SINITB, and S2, 
we use a measure of the correlation of 
the two distributions over the ten 
diseases that S determines to have the 
highest posterior marginal prob-
abilities. Let dA (i) be the disease as-
signed the ith rank by algorithm A. 
Thus, for example, dA (1) is the most 
probable disease according to al-
gorithm A. Let Px(d+ A (i) I F) be the 
probability that algorithm X assigns to 
disease dA (i) given the finding set F. 
We define the correlation rCA, B) as 
the correlation coefficient over the 
pairs (PA[d+A(i) IF], PB[d+A(i) I FJ) 
for 1 :S i :S1O. For example, to com-
pare the posterior marginal prob-
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Table 1 Diagnoses and number of findings for the single-disease Scientific American 
Medicine (SAM) cases (N = 23) used in the evaluation. 

SAM case Diagnosis I F+ I" I F-I b 

number 

1 acute myocardial infarction 18 11 
6 ulcerative colitis 11 15 

15 chronic active hepatitis 16 9 
20 systemic lupus erythematosus 15 22 
22 acute myocardial infarction 24 8 
23 celiac sprue 18 18 
25 acute pyelonephritis 26 30 
27 pUlmonary tuberculosis 12 8 
28 mitral-valve prolapse 20 8 
29 Legionnaires' pneumonia 22 8 
30 idiopathic thrombocytopenic purpura 17 21 
31 primary transient sarcoidosis 24 19 
33 nephrolithiasis 25 30 
34 diffuse esophageal spasm 17 45 
35 Alzheimer's disease 16 18 
37 idiopathic pericarditis 31 29 
40 giant cell arteritis 12 29 
42 acute myocardial infarction 17 25 
46 ulcerative colitis 18 21 
47 acromegaly 16 28 
50 polycythemia vera 12 19 
51 thyroid papillary carcinoma 10 20 
53 aortic dissection 17 26 

mean 18 20 

"I F+ I is the number of positive findings in the case 
b I F-I is the number of negative findings in the case 

abilities generated by algorithm S to 
those generated by algorithm S2 on a 
specific test case, we compare the 
correlation coefficient over the pairs 
(Ps[d+ S(i) I F],PS2 [d+ SO) I F])forl:Si 
:S1O. In general, rCA, B) is not sym-
metric. 

Because of the large number of 
diseases in the QMR-DT KB, when 
we run the diagnostic algorithms on 
the SAM cases, we record only the 
posterior marginal probabilities of the 
diseases ranked in the top 20 positions 
by any particular algorithm. If the 
rank assigned by algorithm B is great-
er than 20 for any dA (i), such that 1 :S i 
:S 10, then we bound PB(d+ A (i) I F) 
between 0 and P B (d+ A (20) I F). In such 
cases, we use PB(d+ A (20) I F)/2 as the 
value for PB(d+ A (i) I F), since 
P B (d+ A (20) I F)/2 is the expected value 
of P B (d+ A (i) I F), assuming that 
P B (d+ A Ii) I F) is symmetrically distri-
buted between 0 and P B (d+ A (20) I F). 
For example, suppose that the 
jth-ranked disease of S does not ap-
pear in the top 20 ranked diseases of 
S2, and that Ps2 (d+ S(20) I F) = 0.01, 

then we use the value of 0.005 for 
Ps2 (d+ S(j) I F). 

We used a matched-pair t test to 
examine the difference in two correla-
tion coefficients from two algorithms 
[8]. Using the SAM cases, we test two Ii 

null hypotheses with a two-tailed" 
matched-pair t test with a level of ( 
significance of p = 0.05. The first null 
hypothesis is that the absence of the 
self-importance sampling from S does 
not degrade significantly the perform-
ance of the algorithm. We test this 
hypothesis with a matched-pair t test 
to investigate whether the correlation 
of posterior probabilities between 
SINSI versus S are equal to those 
between S2 versus S. The second null 
hypothesis is that the absence of the 
heuristic-importance set generated by 
ITB does not degrade significantly the 
performance of the S algorithm. We 
test this hypothesis by using the 
matched-pair t test to investigate 
whether the correlations of posterior 
probabilities between SINITB versus S 
are equal to those between S2 versus 
S. 
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Table 2 Ranks assigned to the reference diagnosis of the 23 SAM cases. 

.. .. 

SAM case QMR 
number 

1 6 
6 2 

15 1 
20 1 
22 1 
23t -(1) 
25 3 
27 1 
28 1 
29 3 
30 5 
31 12 
33 2 
34 1 
35 1 
37 2 
40 1 
42 4 
46 1 
47 1 
50 1 
51 2 
53 3 

Key: 
- Reference diagnosis not ranked 

TS 

1 
2 
1 
1 
1 
5(1) 
1 
1 
2 
4 
2 
9 
2 
6 
1 

17 
1 
1 
1 
1 
1 
2 
1 

Algorithm 
ITS S S/UD S/UL 

1 1 1 1 
1 2 2 2 
1 2 2 1 
1 1 1 1 
1 1 2 1 

20(1) 103{1 ) 4{1 ) 216{1 ) 
2 1 2 6 
3 1 1 1 
1 1 1 1 

11 9 6 106 
3 7 17 36 

11 24 166 255 
17 2 1 1 
12 4 4 445 

3 1 2 2 
2 2 7 8 
1 1 1 352 
3 2 2 1 
1 1 1 1 
1 1 1 1 
2 1 1 1 
5 57 22 30 
1 1 1 1 

t In case 23, we identified retrospectively an intermediate pathophysiologic state of 
malabsorption. The rank of malabsorption appears in parentheses for each algorithm. 

3. Results 

We implemented TB, ITB, S, S/ 
UD, S/UL, SINITB, and SINS I in 
LightSpeed Pascal on a Macintosh 
IIci. We used Version 10.729 of QMR 
with a version of the QMR KB that is 

• dated 6/14/89. QMR running on a PS/2 
A Model 50 performed inference on 
., each of the SAM cases in 5 to 20 

seconds. For all the test cases that we 
ran for this study, TB required an 
average of 3 seconds (range 0.5 to 14 
seconds) on each case, ITB required 
an average of 29 seconds per case 
(range 5 to 68 seconds) and S com-
pleted a total of 40,000 trials in an 
average of 94 minutes (range 46 to 
173 minutes). (Note that the running 
times for S/UO, S/UL, SINITB, and 
S/NSI are similar to the running time 
of S.) 

3.1. A Comparison of Ranks and 
an Analysis of the QMR-DT Model 

After running these algorithms on 
the SAM cases, we record for each 
algorithm the ranks that the algorithm 
assigns to the diseases in the reference 
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diagnosis of each test case. These 
ranks appear in Table 2; a "-" appears 
where an algorithm did not assign a 
rank to a disease in the reference 
diagnosis. We emphasize that QMR 
was not used in an interactive fashion 
and that the results presented herein 
represent its performance under con-
strained evaluation conditions [5]. For 
example, note that in test case 23 the 
reference diagnosis is "celiac sprue" 
(Table 1). When this case was ana-
lyzed with QMR it did not provide a 
rank for the reference diagnosis, how-
ever, it listed "malabsorption" as its 
topmost diagnosis (Table 2). In this 
instance QMR suggested a more gen-
eral diagnosis, or intermediate 
pathophysiologic state, above the rank 
of the reference diagnosis. In this 
case, the diagnosis suggested by QMR 
was found to accurately represent the 
essential clinical state of a case; yet it 
did not suggest the reference diag-
nosis. For the purposes of our study, 
however, we use only the ranks of the 
reference diagnosis and acknowledge 
that our results represent only an 
initial laboratory evaluation of the 
various models and algorithms [9]. 

We also summarize the ranking 
performance of each algorithm by not-
ing the number of reference diagnoses 
ranked in the top position, the top 5 
positions, the top 10 positions, and 
the top 20 positions. These summaries 
of the ranks appear in Table 3. The 
results of the Wilcoxon signed-rank 
test on the rank-ordering performance 
of the algorithms relative to S are 
shown in Table 4. 

As discussed in Section 2.1, none of 
the 23 SAM cases in Table 1 was used 
during the development of the simula-
tion algorithms. That is, the results 
reported in Table 2 were those ob-
tained the first time that QMR, TB, 
ITB, S, S/UO, and S/uL were run on 
any of the SAM cases.2 

The primary aim of the evaluation 
in this paper is to compare the per-
formance of S with QMR on the SAM 
cases. The summary of the ranks 
(Table 3) assigned by the two al-
gorithms indicates that S performs 
comparably to QMR on the SAM 
cases. As shown in Table 4, the Wil-
coxon signed-rank test failed at a level 

When we first ran SAM 45, we found that 
TS, ITB, S, and SIUL assigned to the refer-
ence diagnosis of primary aldosteronism a 
posterior probability of O. The reason for this 
behavior is that the gender-adjusted prior 
probability assigned to primary aldosteron-
ism was O. Recall our assumption in Part I for 
assigning a prior probability to an age- or 
gender-specific category for which the NCHS 
statistics indicated that there were a neglig-
ible number of hospital discharges for a 
particular disease. The prior probability was 
calculated based on the discharges remaining 
after the discharges from other categories 
were subtracted from the general discharges. 
In the case of primary aldosteronism, the 
total number of patients discharged was listed 
as 3,000, whereas the number of females 
discharged was 3,000. Thus, our system infer-
red that no males were discharged with the 
diagnosis of primary aldosteronism and set to 
zero the prior probability of primary aldoste-
ronism given that the patient is male. Only SI 
UD used a nonzero prior probability for this 
event, since it set all prior probabilities to 
10-3 . When we discovered this error, we 
assigned the value of 1.000 to the number of 
males discharged with primary aldosteron-
ism. We then re-ran TS. ITS, S. and S/UL, 
SINITB, and S/NSl on SAM 45. The lowest 
discharge value reported in the NCHS data 
was 2,000. Thus, 1,000 is the expected value 
of males discharged with primary aldosteron-
ism, assuming a symmetric distribution of this 
value between 0 and 2,000. 
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Table 3 Summary of the ranks assigned to the reference diagnoses of SAM cases (N = 23). 

Summary statistic QMR (%) 

Number in top 1 11 (48) 
Number in top 5 21 (91) 
Number in top 10 21 (91) 
Number in top 20 22 (96) 

of statistical significance of p = 0.05 to 
reject the null hypothesis that the rank 
orderings of the two algorithms are 
identical on the SAM cases. 

We also use the results of the rank-
ordering performance on SAM cases 
in our sensitivity analysis on various 
components of the QMR-DT model. 
Let us first examine the difference in 
performance that we observe when we 
add the assumption of mutually exclu-
sive disease hypotheses to the QMR-
DT model. When we compare the 
performance summary of S to TB, we 
see that TB performs slightly better 
than S on the SAM cases (Table 3). 
The difference in performance, how-
ever, is not significant at the p = 0.05 
level (Table 4). 

We would expect TB to rank-order 
the reference diagnoses at least as well 
as S on test cases with a reference 
diagnosis consisting of a single disease 
because TB' assumes that at most one 
disease can exist in the patient. In 
other words, since the restrictive as-
sumption of TB is compatible with the 
SAM test cases, the algorithm is tai-
lored to the diagnostic task. Since 
each of the diagnoses of the cases in 
the SAM set contains a single disease, 
we introduce only additional degrees 
of freedom into the diagnostic al-
gorithm by modeling the interaction of 
multiple diseases, as in algorithm S. 

The rank-ordering data suggest 
either that the QMR-DT model is not 
sensitive to prior probabilities on dis-
eases for the cases tested, or that the 
prior probabilities that we have as-
signed to the diseases are inaccurate. 
We see from Table 3 that S performed 
only slightly better than did S/UD on 
the SAM cases. The differences were 
not significant at the p = 0.05 level. 
However, in Table 4, we see in the 
sensitivity analysis of the leak prob-
abilities a statistically significant dif-
ference (p = 0.05) on the SAM cases 
between the rank-ordering perform-
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Algorithm 
TB (%) ITB (%) S (%) S/UD (%) S/UL (%) 

13 ( 57) 10 ( 43) 12 (52) 10 (43) 12 (52) 
20 ( 87) 18 ( 78) 18 (78) 18 (78) 14 (61) 
22 ( 96) 18 ( 78) 20 (87) 20 (87) 16 (70) 
23 (100) 23 (100) 20 (87) 21 (91) 16 (70) 

Table 4 Values of the test statistic, T, for a two-sided Wilcoxon signed-rank test comparing 
the rank ordering generated by algorithm S with the rank orderings generated by five other 
algorithms. 

Algorithm 
QMR TB ITB S/UD S/UL 

Wilcoxon T: 15 13.5 39 59 14.5 b 
T (0.05, n)a 13 10 21 25 17 
n 11 10 14 15 13 

a T(0.05, n) is the critical value for the Tstatistic at the p = 0.05 level of significance for n pairs f 
of observations with nonzero difference. ' 
bWhen the computed value of Tis less than T(0.05, n), we can reject the null hypothesis (at t 
the p = 0.05 level) that the rank ordering of S is identical to that of another algorithm. 

Tallie 5 Correlation coefficients comparing the estimates of the posterior marginal prob-
abilities of diseases generated by three algorithms to the posterior distribution of S on the 
SAM cases. 

Correlation coefficient 
SAM case number r(S, S2) r(S, S/NSIj r (S, S/NITB) 

0.96 0.83 0.99 
6 1.00 0.97 0.95 

15 0.92 0.78 0.67 
20 1.00 1.00 1.00 
22 0.61 0.30 0.63 
23 0.87 0.89 0.99 
25 0.97 0.87 0.68 
27 0.94 0.96 1.00 
28 0.97 0.94 0.99 
29 0.91 0.97 0.96 
30 0.90 1.00 1.00 
31 0.94 0.37 0.79 
33 0.98 0.79 0.92 
34 0.98 0.51 0.97 
35 1.00 1.00 0.99 
37 0.82 0.65 0.67 
40 1.00 0.97 1.00 
42 0.99 0.98 0.99 
46 1.00 1.00 1.00 
47 1.00 0.76 0.90 
50 0.99 0.97 0.96 
51 1.00 1.00 1.00 
53 1.00 0.91 0.99 

pooled a 0.93 0.81 0.89 

aThe pooled correlation coefficient is computed from the pairs (PS[d+S(i) I Fj, Pa[d+s(i) I Fj) 
for 1 i 10 for all the SAM cases. 

ance of Sand S/UL. Note that on 
SAM cases 29, 30, 34, and 40 in 
Table 2, S ranked the reference diag-
nosis in the top 20 of its differential, 
whereas S/UL placed the reference 
diagnosis much lower in its differen-
tial. 

3.2 Analysis of the Simulation-
Algorithm S 

In a sensitivity analysis of the simu-
lation algorithm to its component 
heuristics, we compared the posterior 
distribution generated by S with the 
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posterior distributions of S2, SINS I , 
and SINITB. Table 5 shows the values 
for the correlation coefficient r(A, B), 
as defined in Section 2.3. Each of the 
correlation coefficients r(A, B) cor-
responds to a scatterplot of the data 
points(PA[d+ A (i) I Fj,PB(d+ A (i) I Fj) 
for 1 :'5i :'510. To summarize graphical-
ly the similarity of a posterior distribu-
tion from two algorithms A and B, we 
overlay the scatterplots from several 
test cases to form an aggregate scatter-
plot. In Figure 1 appears the aggre-
gate scatterplot for reS, S2) on the 
SAM cases. Similarly, the aggregate 
scatterplot for reS, SINS I) appears in 

_ Figure 2, and the plot for reS, Sf 
• NITB) appears in Figure 3. 

i Note that the posterior distribu-
tions of Sand S2 were very similar 
over the top 10 diseases of the pos-
terior distribution generated by S. We 
see from Figure 1 that the points in 
the aggregate scatterplot of S2 versus 
S lie close to the identity line. The 
similarity of the distributions of Sand 
S2, as shown in Figure 1, supports the 
hypothesis that S is converging to the 
posterior distribution implied by 
QMR-DT. 

To analyze the sensitivity of S to the 
ITB heuristic on the SAM cases, we 
compared the aggregate scatterplot of 
SINITB versus S found in Figure 3 
(pooled r = 0.89) to that of S2 versus S 

• found in Figure 1 (pooled r = 0.93). 

• 
The pooled r values indicate that Sf 

. NITB correlates with the distribution 
of S nearly as well as S2 does. The 
pairs of correlations reS, S2) and reS, 
SINITB) for each of the SAM cases 
are not found to be significantly differ-
ent by the two-tailed matched-pair t 
test (p = 0.05). This result suggests 
that absence of the ITB heuristic does 
not degrade significantly the converg-
ence of simulation in the SAM cases. 
By contrast, when we compare the 
aggregate scatterplot in Figure 2 of Sf 
NSI versus S (pooled r = 0.81) to the 
plot in Figure 1 of S2 versus S (pooled 
r = 0.93), we see that the absence of 
the self-importance heuristic on the 
SAM cases led to significant disparity 
between the estimates of SINSI and S. 
The two-tailed matched-pair t test (p 
= 0.05) of the pairs of correlations 
reS, S2) and reS, SINSI) for each of 
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Fig. 1 A plot of the 
posterior estimates of 
S2 as a function of the 
corresponding top 10 
estimates from S, 
pooled from the 
23 SAM cases 
(r = 0.93). 

Fig.2 A plot of the 
posterior estimates of 
SINSI as a function of 
the corresponding 
top 10 estimates from 
S, pooled from the 
23 SAM cases 
(r = 0.81). 

Fig.3 A plot of the 
posterior estimates of 
S/NITB as a function of 
the corresponding 
top 10 estimates from 
S, pooled from the 
23 SAM cases 
(r = 0.89). 
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the SAM cases rejected the null hy-
pothesis that the pairs of correlations 
were identical; this result suggests 
that the absence of the self-import-
ance heuristic degrades the correlation 
with S. If we believe that the estimates 
of S are close to the posterior distribu-

tion implied by the QMR-DT model 
(as suggested by the similarity of the 
distributions of Sand S2), then it 
seems that the estimates of SINSI have 
not converged to the posterior dis-
tribution implied by the QMR-DT 
model in SAM cases. 
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In summary, the S algorithm exhib-
ited diagnostic accuracy that is com-
parable to that of QMR on the SAM 
cases. The difference in the rank-
ordering performance of the two al-
gorithms was not statistically signifi-
cant at the p = 0.05 level using a 
Wilcoxon signed-rank test. We have 
evidence that the estimates of Shave 
converged to the posterior distribution 
implied by the QMR-DT model, since 
the estimates of S2 are very similar to 
those of S. In our sensitivity analysis 
of the QMR-DT model, we observed 
that neither the added assumption of 
mutually exclusive diseases nor uni-
form prior probabilities on diseases 
caused a statistically significant differ-
ence in the rank ordering of the refer-
ence diagnosis of the SAM cases. The 
assumption of uniform leak prob-
abilities did, however, degrade the 
performance of S in the SAM cases to 
a significant (p = 0.05) extent. In our 
sensitivity analysis of the two heuris-
tics used by S, we observed that the 
estimates of SINS I (S without self-
importance updating) were markedly 
different from those of S. Estimates of 
SINITB (S without the heuristic itera-
tive tabular Bayes' algorithm) were 
not significantly different from those 
of S. 

4. Discussion 

In this study, we reformulated the 
QMR KB into a probabilistic model 
(the QMR-DT KB) using a belief-
network representation. We com-
pared the performance of QMR to an 
implementation of stochastic simula-
tion on the QMR-DT model. We 
found that, on single-diagnosis cases 
abstracted from continuing medical 
education materials from Scientific 
American Medicine, the simulation 
algorithm S performed comparably to 
the QMR diagnostic algorithm. In our 
sensitivity analysis of three compo-
nents of the model, we found that only 
the assumption of uniform leak prob-
abilities on findings resulted in a sig-
nificant degradation in performance. 
In our analysis of the heuristics used 
by the S algorithm, we found that the 
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algorithm was sensItlve to the ab-
sence of a self-importance updating 
heuristic. 

Noteworthy issues in this study in-
clude: (1) insensitivity of the QMR-
DT model to uniform prior prob-
abilities of diseases, (2) the value we 
used for the uniform leak probability, 
(3) difficulties in abstracting cases, (4) 
lack of a gold-standard distribution 
against which to compare our simula-
tion algorithms, (5) the running time 
of the simulation, (6) limitations of 
our rank -ordering comparison metric, 
(7) limited use of QMR's diagnostic 
capabilities, and (8) shortcomings of 
the QMR-DT belief network model. 
We address each of these concerns in 
turn. 

4.i insensitivity to Prior Probabilities 

We found that the QMR-DT model 
was insensitive to uniform prior prob-
abilities of diseases. This result may be 
caused by noise in the prior prob-
abilities of diseases that we used; our 
mapping between ICD-9-CM terms 
and INTERNIST-I diseases was inex-
act. Alternatively, the prior prob-
abilities of the diseases in the SAM 
cases may differ from those in the 
population from which our discharge 
statistics were collected. Also, it is 
possible that the weight of the evi-
dence in the diagnostic cases that we 
used dominates the prior probabilities 
of diseases in deriving posterior prob-
abilities of diseases. 

4.2 Uniform Leak Probabilities 

Recall from Part I, Section 2.2.3 
that the leak probability of a finding is 
the probability that the finding occurs 
in the absence of any disease in the 
QMR KB, where Lf is the event that 
the leak is active. In our study of the 
effect of uniform leak probabilities, 
we used 10-5 as the value of P(f+ I Lf 
only) for each f E P+. We could have 
used other values for the uniform leak 
probability, such as the mean leak 
probability (1.8 x 10-3) or the median 
leak probability (1.9 x 10-4). Values 
of P(f+ I Lf only) other than 10-5 

might have led to different rank order-
ings in the posterior marginal prob-
abilities of diseases P (dt I F) in the 

analysis of uniform leak probabilities. 
In any case, the observed effect of the 
uniform leak probabilities relative to 
the effect of the uniform prior prob-
abilities on the diagnostic perform-
ance of the system suggests that the 
QMR-DT model may be more sensi-
tive to leak probabilities than to prior 
probabilities of diseases for the types 
of cases tested. 

4.3 Abstracting Test Cases 

We chose to use the SAM continu-
ing medical education cases because 
they are in a standardized format that 
was amenable to abstraction, and be-
cause they have undergone review 
both by experts in the domain and by I 
experts in test-case construction.· 
These cases, however, are only an 
approximation of real clinical cases. 
The case creator or the case abstracter 
may introduce bias into the evidence 
set, due to differences in experience 
with similar clinical cases [10]. As 
described in Section 2.1, it was not 
always possible to map findings from a 
case into the finding representations 
present in QMR or INTERNIST-I. 
Because QMR's vocabulary is richer 
than that of INTERNIST-I, we en-
countered a number of findings that 
we could map into QMR terminology 
but not into INTERNIST-1 terminolo-
gy. Thus, because our current QMR-
DT belief network is based on the { 
INTERNIST-1 KB, on occasion we . 
had to use proxy findings from the I 
INTERNIST-1 KB. Instead of run-
ning QMR on only the case findings 
that were translatable into INTER-
NIST-I terminology, we ran QMR 
with the best possible mapping of case 
findings into QMR terminology. We 
attempted to reduce bias in case ab-
straction by following a standardized 
protocol, and by having a single re-
viewer for each case. 

4.4 Lack of a Gold-Standard 
Posterior Distribution 

Ideally, to examine the converg-
ence properties of the simulation that 
we are using, we would like to know 
the posterior distribution implied by 
the QMR-DT model - that is, a gold-
standard distribution. It is possible 
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that Henrion's TopN algorithm [11] 
would be able to produce tight bounds 
on the posterior probabilities of dis-
eases for large cases. In addition, the 
recursive decomposition algorithm 
[12] appears promising as an exact 
method to calculate the posterior 
probabilities of diseases in an accept-
able amount of time in some cases. As 
these methods were under develop-
ment at the time this project was 
initiated, we chose to use a simulation 
algorithm. We are currently inves-
tigating these other possibilities. 

One of the problems of the simula-
tion algorithm that we describe in this 

• 
paper is that the algorithm does not 

; provide us with a measure of the error I of its estimates of the posterior prob-
abilities of diseases. In the absence of 
a gold-standard distribution and the 
absence of error measurements, we 
gain confidence in the estimates of the 
simulation when separate executions 
of the simulation on a specific set of 
evidence produce similar distribu-
tions. Although we report the results 
for only two runs of the simulation 
algorithm (S and S2), the close agree-
ment between the distributions pro-
duced by Sand S2 for each of the 
SAM cases gives us reason to believe 
that the estimates of S have converged 
to the posterior distribution implied 
by the QMR-DT model. 

• We also have used the S algorithm 
,. for inference on cases abstracted from 
". clinicopathologic conference (CPC) 

cases. These cases may contain a large 
number of findings and multiple, co-
existing diseases in their diagnoses. 
On many of these cases, we did not 
observe a high degree of correlation 
between the distributions of S and of 
S2. We continue to study the behavior 
of the simulation algorithm and work 
to improve the algorithm's converg-
ence properties. One improvement 
that we have explored is Markov blan-
ket scoring (MBS) [13, 14]. Our re-
sults indicate that the MBS modifica-
tion increases the rate of convergence 
as a function of the number of trials 
[15]. In fact, we observed that sepa-
rate executions of S with the MBS 
modification are able to reproduce the 
posterior probability distributions of 
disease in complex CPC cases. 
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4.5 Running Time of the Simulation 
Algorithm 

We do not believe that the pro-
longed running time of our serial im-
plementation of S on a personal com-
puter will be a long-term limitation for 
practical applications. The simulation 
that we are using is readily amenable 
to parallelization. For example, we 
can decompose the simulation by trials 
(instantiations of the belief networkf, 
since each of the trials within one self-
importance sampling interval is inde-
pendent of the other trials. The run-
ning time of the simulation should 
decrease as a linear function of the 
number of processors. For example, a 
shared-memory parallel-computing 
machine with 64 processors, each with 
the computing power of a 68030 (the 
microprocessor in a Macintosh IIci), 
would decrease the time of computa-
tion by a factor of approximately 64, 
from approximately 94 minutes (the 
average running time of S on a Macin-
tosh IIci on the cases reported in this 
study) to 1.5 minutes. Similar ma-
chines are currently accessible on the 
Internet for use in research such as the 
QMR-DT project. 

Moreover, the simulation can in-
corporate any heuristic information to 
improve convergence time. (Con-
versely, a bad heuristic may degrade 
the convergence.) The S algorithm 
uses two heuristics: a set of approxi-
mately 20 diseases recommended by 
ITB as initial likely diagnostic can-
didates, and a self-importance sampl-
ing heuristic to update the sampling 
distribution based on the algorithm's 
current estimates of the posterior 
probabilities of diseases. In addition, 
we could incorporate information ob-
tained from a physician familiar with a 
diagnostic case. For example, the phy-
sician could suggest diseases that he 
believes are likely in a patient given 
the findings observed. If the QMR-
DT KB included a hierarchy of dis-
eases (based on organ systems, for 
example), then the physician could 
also suggest the classes of the diseases 
that he believes to be present in the 
patient. In addition, he could provide 
the system with an estimate of the 
number of diseases that he believes to 
be present. Any of this information, if 

reasonably accurate, probably would 
improve the convergence time of the 
simulation. 

4.6 Rank-ordering Evaluation Metric 

In our evaluation of QMR-DT, we 
used as an evaluation metric the rank 
assigned by S or by QMR to the 
reference diagnosis. We realize that 
this metric is limited. The evaluation 
reported in this paper is part of an 
iterative cycle of test and refinement. 
We do not intend this analysis to be a 
definitive evaluation of QMR-DT or 
QMR. In a future more extensive 
comparison, we might want to use 
metrics that involve clinical opinion, 
or eventually patient outcome 
measures - when the systems are used 
clinically. For example, we might 
score the output of the two systems 
using the judgment of an expert re-
garding which differential most accu-
rately reflects the probable state of the 
patient in light of the findings pre-
sented. Also, we could examine the 
effect of the system's differential on a 
physician's diagnostic beliefs or work-
up plans. Eventually, it would be 
useful to perform a field evaluation of 
the QMR-DT system, similar to the 
field testing of QMR described in [16]. 

4.7 Intended Use of QMR 

We used QMR in this study in a 
manner different from that intended 
by the system's developers. Specifical-
ly, QMR is intended to be used by a 
physician in an interactive mode [17]. 
Our use of QMR was limited to apply-
ing the QMR diagnostic algorithm 
once to each set of positive and nega-
tive findings. We did not provide the 
algorithm with additional positive or 
negative findings based on queries 
that can be generated by the al-
gorithm. The developers of QMR re-
port that, even after all the positive 
findings for a case have been entered, 
the addition of negative findings (to 
the set of negative findings entered 
initially) during an interaction with a 
clinician can increase QMR's diagnos-
tic accuracy [4]. 

Similar limitations, however, apply 
to the use and evaluation of the al-
gorithms we implemented, such as S. 
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Within a decision-theoretic frame-
work, it is also possible to analyze a 
case in an interactive mode. Specifi-
cally, given a utility model, we can use 
value-of-information analyses to guide 
selection of additional information 
and refine a disease hypothesis. We 
are developing approximate methods 
to compute non-myopically the value 
of new information given an evidence 
set [18]. Techniques such as these may 
allow hypotheses to be iteratively gen-
erated and refined in a manner similar 
to the intended use of QMR [4]. 

4.8 Shortcomings of the QMR-DT 
Belief Network Model 

Because the current QMR-DT KB 
is a straightforward reformulation of 
the INTERNIST-l KB, both KBs suf-
fer from many of the same shortcom-
ings. The developers of INTERNIST-
1 cite several of these deficiencies in 
[6]: a lack of temporal modeling, a 
lack of representation of degree of 
severity, a lack of anatomic knowl-
edge, and an absence of a representa-
tion of intermediate pathophysiologic 
states. Moreover, some of the assump-
tions we made initially in our prob-
abilistic model, as we discussed in 
Part I, Section 2.1, may be respon-
sible for the diagnostic inaccuracies of 
S on the SAM cases. It will be impor-
tant to investigate which of the as-
sumptions have the most effect on the 
performance of the system. We be-
lieve that the performance will im-
prove when we add dependencies be-
tween findings and restructure the KB 
causally to more correctly model find-
ings that predispose to disease. Also, 
adding dependencies between diseases 
probably would improve the perform-
ance of the QMR-DT model on multi-
ple-disease cases. 

5. Conclusion 

The results that we report In this 
study suggest that the rank-ordering 
performance of our current probabilis-
tic reformulation of QMR is compar-
able to that of QMR on cases of the 
level of difficulty of SAM continuing 
medical education materials. In addi-
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tion, it appears that the QMR-DT 
model is not very sensitive to uniform 
prior probabilities of disease. The 
model is, however, sensitive to the 
values of the uniform leak prob-
abilities on findings (the probability 
that a finding occurs in the absence of 
any disease in the QMR KB) that we 
used in this study. We presented evi-
dence showing that the S algorithm 
produces estimates of posterior margi-
nal probabilities of diseases that are 
close to the posterior marginal prob-
abilities of diseases implied by the 
QMR-DT model on the SAM cases. 
Our sensitivity analysis of the al-
gorithm indicates that on the SAM 
cases, the S algorithm relies more 
heavily on the self-importance updat-
ing heuristic than it does on the heuris-
tic-importance set. 

Since QMR-DT uses a formal prob-
abilistic representation of knowledge, 
we are able to make explicit each of 
the assumptions in the model. We 
plan to test the QMR-DT system 
further, to investigate those assump-
tions in the model that are most cru-
cial to system performance. Because 
QMR-DT is a probabilistic system, we 
can eventually combine the output of 
the system with a utility model to 
create recommendations for cost-ef-
fective test ordering and decision-
theoretic therapy planning. 

The principal result of this study is 
that we were able to reformulate a 
large heuristic KB into a probabilistic 
system that achieved diagnostic accu-
racy comparable to that of QMR in a 
laboratory evaluation. Over 20 person 
years were devoted to building the 
QMR KB; thus, we saved a substan-
tial amount of time by building QMR-
DT as a reformulation of QMR. Hav-
ing explicitly noted each of the as-
sumptions in the current QMR-DT 
model, we are now able to begin to 
evaluate their consequences. 
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Appendix: Notation and 
Abbreviations 

1. Algorithms 

TB 

ITB 

S 

S2 

SINS I 

S/NITB 

Tabular Bayes' algo-
rithm. An algorithm 
that uses Bayes' rule 
under the assumptions 
of (1) mutually exclu-
sive disease hypotheses 
and (2) conditional in-
dependence of findings 
given any disease. 
Iterative tabular Bayes' 
algorithm. A heuristic ( 
algorithm that applies 
TB successively to vari-
ous subsets of the set of 
findings. 
A likelihood-weighting 
simulation algorithm 
that uses two heuris-
tics: a heuristic-import-
ance set from ITB and 
self-importance sampl-
ing. 
A second run of the S 
algorithm. 
An algorithm identical 
to S, except that it does 
not use self-importance 
sampling. 
An algorithm identical 
to S, except that it does 
not use a heuristic-im-
portance set generated 
by ITB. 
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• t 

• " 

2. Knowledge Base (KB) 

d i 

h 
F 

F+ 

H 

3. Correlation 

A disease in the KB 
A finding in the KB 
A set of findings that 
are observed 
A set of positive find-
ings that are observed 
A set of negative find-
ings that are observed 
The number of ele-
ments of F+ 
The number of ele-
ments of F-
A hypothesis of dis-
eases, In which each 
disease is assigned a 
value of present or ab-
sent 

P A ( d+ B (i) I F) The marginal posterior 
probability that al-
gorithm A assigns to 
the ith-ranked disease 
of the posterior dis-
tribution from al-
gorithm B. 
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