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,81. Introduction 

The INTERNIST-1 system was de-
veloped at the University of Pitts-
burgh as an experimental decision-
support tool in general internal 
medicine [1-4]. When presented with 
findings from a patient's history, phys-
ical examination, and laboratory-test 
results, INTERNIST-l used a heuris-
tic reasoning method with a quasi-
probabilistic scoring scheme to suggest 
likely disease candidates and to guide 
the physician in the patient's workup. 

In 1985, an extension of the IN-
TERNIST-I knowledge base (KB) 
was incorporated into a successor to 
INTERNIST-I, called Quick Medical 
Reference (QMR®) [3, 5]. QMR uses 

® QMR is a registered trademark of the Uni-
versity of Pittsburgh. 
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a new inference algorithm running on 
an IBM-compatible personal compu-
ter. QMR provides a clinician with 
many functions to access the QMR 
knowledge base. The developers of 
QMR classify the functions of the 
system into three levels [6]. First, a 
clinician can use QMR as an electronic 
textbook of medicine to display the 
findings associated with a disease, the 
diseases associated with a finding, or 
diseases related to a particular dis-
ease. Second, a clinician can use QMR 
as a diagnostic spreadsheet to show 
how particular groups of diseases and 
findings may co-occur. Third, a clini-
cian can use QMR as an expert-con-
sultant program, to analyze a diagnos-
tic case. In this mode, QMR can 
provide diagnostic hypotheses con-
taining multiple, pathophysiologically 
related diseases, or critique a diagnos-

tic hypothesis that the clinician sug-
gests. 

In developing a decision-theoretic 
version of QMR, which we call Quick 
Medical Reference, Decision Theoretic 
(QMR-DT), we are currently most 
interested in addressing the diagnostic 
functions contained in the expert-con-
sultant mode of QMR. By a decision 
theoretic system, we mean a system 
that conforms to the principles of 
decision theory. Decision theory uses 
the axioms of probability theory and 
utility theory to provide a framework 
for choosing among alternative 
courses of action. Probability theory is 
a logic of degrees of belief, containing 
a set of axioms for expressing degrees 
of belief in propositions and for com-
bining beliefs to derive measures of 
belief in related events. Utility theory 
comprises a set of axioms for ascribing 
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Fig. 1 The two-level belief-network representation of the current QMR-OT KB. The disease 
nodes are labeled d l •...• dn and the finding nodes are labeled fl •...• fm . The probabilistic 
dependencies between diseases and findings are specified with directed arcs between 
nodes. where an arc points in the causal direction that we assume; that is. we assume that 
diseases cause findings. 

numerical values to outcomes of 
events [7]. 

Our research to date has focused on 
building the probabilistic component 
of QMR-DT: a probabilistic model 
and method of inference for diagnosis 
in internal medicine. The initial goal 
of the project is to evaluate the per-
formance of a probabilistic version of 
QMR, investigating the computation-
al and representational tractability of 
a probabilistic approach. We are de-
veloping incrementally the QMR-DT 
system. More specifically, we build 
the first probabilistic model using as 
much of the QMR KB as possible, we 
test the accuracy of the inferential 
algorithms on this simple model, then 
we refine the model and algorithms, 
successively based on the performance 
of the system. Ultimately, we plan to 
add a utility model to the probabilistic 
component to make a complete deci-
sion-theoretic model. 

We are currently using the INTER-
NIST-I KB (circa 1<)86), rather than 
the more recent QMR K8. These two 
KBs are quite similar but the QMR 
KB contains newer disease profiles 
and updates of profiles from the IN-
TERNIST-I K8. The methods in this 
paper are applicable to transforming 
the QMR K8 as well. For simplicity, 
where the disti nction between the IN-
TERNIST-I K8 and QMR KB is 
inconsequential, we will refer to the 
INTERNIST-I K8 as the QMR K8. 
The reader should note, however, that 
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our probabilistic reformulation IS 

based on the INTERNIST-i KB. 
We believe there are many reasons 

for seeking probabilistic systems in 
medicine. By using a probabilistic 
model, we make explicit our assump-
tions - those used in building both the 
KB and the algorithms for inference. 
Moreover, such a KB is built on the 
well-developed and widely understood 
language of probability, providing re-
searchers with a theoretical basis for 
creating diagnostic systems and a com-
mon vocabulary for facilitating discus-
sion and collaboration. The use of a 
common language also makes it poss-
ible to share independently developed 
probabilistic inference algorithms and 
KBs. We can, for example, incorpo-
rate statistics on the local prior proba-
bility of disease in various clinical 
settings. For those diseases about 
which we have sparse statistical data, 
we can rely on expert subjective es-
timates of prior probability. We can 
update these subjective probabilities 
incrementally as local clinical data are 
accumulated [8, <)]. 

The current output from QMR-DT 
is a differential of leading diagnoses 
with a posterior marginal probability 
associated with each disease. We be-
lieve that a probabilistic differential is 
a more meaningful measure of belief 
than is a differential with a heuristic 
score. Furthermore, with the develop-
ment of a utility model. we can use 
these probabilities for expected-utility 

decision making, thus building a deci-
sion-theoretic system on top of our 
probabilistic one. We plan eventually 
to use the results of the expected-
utility component of the system for 
cost-effective test ordering and 
therapeutic planning. 

We chose QMR as the system to 
reformulate into a decision-theoretic 
version for several reasons. First, the 
QMR KB is the culmination of over 
20 person - years of work; Version 
LO.729 (dated 6/14/89) of the QMR 
K8 covers over 600 diseases and 4,000 
findings [10]. Since the QMR KB is so 
large, inference on a probabilistic ver-
sion of it presents a significant chal-
lenge. Second, the task of diagnosis in t 
internal medicine can be a formidable 
one, since a patient often has more . 
than one disease. We cannot make the 
simplifying assumption that only a 
single disease is present, as has been 
done in some other domains where 
probabilistic inference has been ap-
plied successfully [ll, 12]. Third, the 
developers of INTERNIST-i and 
QMR have demonstrated that the sys-
tems perform well on difficult cases: in 
a retrospective study, INTERNIST-l 
performed comparably to hospital 
clinicians on cases from clinicopatho-
logical conferences (CrCs) [l], and in 
a prospective study, QMR performed 
better than the ward team on diagnos-
tically challenging cases [13]. These 
results give us reason to believe that a, 
probabilistic reformulation of QMR 
also might perform well as a diagnostic 
decision-support system, since they 
indicate that the relationships in the 
QMR knowledge base can support 
accurate diagnostic inference. Our re-
search hypothesis is that a probabilis-
tic reformulation of QMR will also 
provide accurate diagnostic perform-
ance relative to QMR. 

In this paper, we build on the work 
of many researchers in probabilistic 
inference, probabilistic inference in 
medicine, and probabilistic inference 
in medicine using belief networks (see 
[14-16] for a review of probabilistic 
inference on belief networks). In Sec-
tion 2, we describe how we built the 
QMR-DT model. Section 3 presents 
the algorithms uscd for inference on 
the modcl. I n Section 4, we discuss 
limitations of thc model and dircctions 
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for future research. The Appendix 
contains a summary of the notation 
used in this paper. In Part II of this 
series we discuss our laboratory evalu-
ation of the probabilistic reformula-
tion of QMR relative to QMR. 

2. The QMR-DT Model 

The QMR-DT model is built on a 
belief-network representation. A be-
lief network is a graphical representa-
tion of probabilistic dependencies 
among variables [17]. Belief networks 
are also known as Bayesian belief 
networks and causal probabilistic net-
works. More specifically, a belief net-
work is a directed acyclic graph in 
which each node represents a random 
variable or uncertain quantity [16]. 
The arcs in the graph often denote 
direct causal influences between var-
iables, where the strength of the influ-
ence is specified by tables of condi-
tional probabilities. Conversely, the 
absence of an arc between two nodes 
denotes an assertion of independence 
between the corresponding random 
variables. Many researchers have dis-
cussed the promise of using belief 
networks as an efficient, expressive 
knowledge representation for expert 
systems that reason under uncertainty 
[11, 15, 16, 18-20]. 

We have reformulated the associa-
tions between diseases and findings of 
the QMR disease profiles [1] into a 
belief-network representation. This 
reformulation is also described in [21, 
22]. The QMR-DT KB consists of a 
two-level belief network of n diseases 
and m findings, as shown in Figure 1. 
Other work on inference using two-
level networks appears in [23-25]. 
Each of the n diseases {d1 ... dn } may 
be present or absent in a patient, and 
each of the m findings {fl" .j,,,} may 
be unobserved or observed to be pre-
sent or absent. We refer to a disease 
hypothesis H as an assignment of 
presence or absence to each disease in 
{d i ... dll }: 

H = {d; = present I d; E H+} 
U {d; = absent I d; E H-} 

where H+ is the set of all diseases 
asserted to be present and H - is the 
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set of all diseases asserted to be ab-
sent. Note that I H+ I + I H- I = n. 

An arc of probabilistic dependency 
between nodes representing a disease 
d and finding f exists in the QMR-DT 
KB if and only if there exists a link 
between d and f in the INTERNIST-l 
disease profile of d. The QMR-DT 
KB thus contains n = 534 adult dis-
eases and m = 4,040 findings, with 
40,740 arcs depicting dependencies 
between diseases and findings. Recall 
the QMR-DT KB is based on the 
INTERNIST-l KB, which also con-
tains 534 adult diseases and 4,040 
findings. We define the QMR-DT 
model as the combination of the two-
level QMR-DT belief network de-
picted in Figure 1 and the assumptions 
that we describe in Section 2.1. Thus, 
we distinguish the QMR-DT model 
from the probabilistic inference al-
gorithms that we apply to the model. 

2.1 Assumptions in the Model 

To reduce the representational and 
computational complexity of the cur-
rent version of QMR-DT, we made 
several simplifying assumptions. In 
this section, we describe specific ex-
amples where these assumptions are 
not accurate. Although we know that 
the assumptions are inaccurate in such 
cases, we are taking an incremental 
approach in developing the QMR-DT 
model: we examine the performance 
of the system with these assumptions 
with the intention of eventually mod-
ifying those that appear most critical 
to accurate diagnostic performance. 

Assumptions evident from Figure 1 
include marginal independence of dis-
eases and conditional independence of 
findings given any hypothesis of dis-
eases. We model both findings and 
diseases as binary variables. Also, we 
model the influence of multiple dis-
eases on a finding assuming causal 
independence. We discuss causal inde-
pendence in detail in Section 2.1.4. 
Many of these assumptions have been 
used in previous probabilistic diagnos-
tic systems [26]. The major assump-
tion found in many of these systems, 
which we do not make in QMR-DT, is 
that the patient has at most one dis-

ease. In fact, we allow for the possibil-
ity that the patient may have any 
number of diseases. In the remainder 
of Section 2.1, we address the 
strengths and weaknesses of the as-
sumptions that we make in the current 
QMR-DT model. 

2.1.1 Marginal Independence 
of Diseases 

The absence of arcs among disease 
nodes in the belief network of Fi-
gure 1 denotes the assumption that 
diseases are marginally independent. 
Under this assumption, we can com-
pute the probability of a disease hy-
pothesis H from the prior probabilities 
of the states of the diseases in R: 

peR) = n P(dtJ n P(dT), (1) 
diE H+ d;EH-

where dj is the event that disease d; is 
present, and dT is the event that 
disease dj is absent. We have no 
reason to question the assumption of 
marginal independence between appa-
rently unrelated diseases in the QMR-
DT KB such as myocardial infarction 
and primary hyperparathyroidism. On 
the other hand, some disease combi-
nations in the QMR-DT KB are clear-
ly dependent. For example, the prob-
ability of congestive heart failure is 
greatly increased in a patient with 
significant aortic stenosis. 

Although the QMR KB represents 
relationships among diseases, we have 
chosen initially to simplify QMR-DT 
by not including these relationships in 
the belief-network model. As we dis-
cuss in Section 3.2, however, we do 
use the relationships among diseases 
in one of our heuristic scoring func-
tions to help improve the speed of 
inference. 

2.1.2 Conditional Independence 
of Findings 

The absence of arcs among finding 
nodes in Figure 1 denotes the assump-
tion that findings are conditionally 
independent given any disease hy-
pothesis. Let Fbe a set of findings that 
are observed for a particular patient, 
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where m' = 1 F I, F+ is the set of 
findings observed to be present, and 
F- is the set of findings observed to be 
absent. Note that many findings may 
be unobserved and thus appear in 
neither F+ nor F-. 

The assumption of conditional in-
dependence of findings given any hy-
pothesis allows us to compute the 
conditional probability of a set of 
findings F given a disease hypothesis 
H as follows: 

P(F 1 H) = P(F+ 1 H) P(F- 1 H) = 
IT p(r 1 H) IT p(r 1 H). (2) 

f E F+ f E F-

(a) 

An example of a belief network in 
which this conditional-independence 
assumption is valid appears in Fi-
gure 2. This example depicts a condi-
tional-independence assumption in 
the QMR-DT belief network. Sup-
pose that we know that the only dis-
ease present in a particular patient is 
bronchial adenocarcinoma. Then, we 
have a certain belief (probability) that 
the patient has blood-streaked 
sputum. Suppose we are then told that 
the patient's endobronchial biopsy 
suggests adenocarcinoma. Since this 
new information does not change our 
belief that the patient has blood-

(b) 

Fig.2 A belief net-
work representing 
conditional inde-
pendence of the 
findings adenocar-
cinoma on endob-
ronchial biopsy and 
blood-streaked 
sputum given that 
bronchial adenocar-
cinoma is present. 

Fig.3 Belief networks modeling conditional independence of findings given a disease. (a) 
The network displays the belief that muscle weakness and constipation are conditionally 
independent given the intermediate pathophysiologic state of increased serum calcium. (b) 
The network reflects the belief that muscle weakness and constipation are conditionally 
independent given primary hyperparathyroidism. Although the model in (a) is a more 
accurate depiction of the dependencies among variables, we currently use the model in (b) 
as an approximation. 
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streaked sputum 1, given that the dis-
ease state is bronchial adenocarcino-
ma only, we can compute P(BRON-
CHOSCOPY ENDOBRONCHIAL BIOPSY 
ADENOCARCINOMA, SPUTUM BLOOD 
STREAKED 1 only BRONCHIAL ADENO-
CARCINOMA) by multiplying the two 
component probabilities P(BRONCHO-
SCOPY ENDOBRONCHIAL BIOPSY ADENO-
CARCINOMA 1 only BRONCHIAL ADENO-
CARCINOMA) and P(SPUTUM BLOOD 
STREAKED 1 only BRONCHIAL ADENO-
CARCINOMA). 

Figure 3(a) shows a belief network 
representing an example in which 
there exists an intermediate pathophy-
siologic state between a disease and 
that disease's manifestations. Note t 
that the assumption of conditional -. 
independence is accurate for muscle . 
weakness and constipation, given in-
creased serum calcium as depicted in 
Figure 3(a). On the other hand, mus-
cle weakness and constipation are not 
conditionally independent given prim-
ary hyperparathyroidism, as depicted 
in Figure 3(b) and as represented cur-
rently in the QMR-DT KB. The inde-
pendence relationship depicted in 3(b) 
is less accurate because of the exist-
ence of the intermediate state of in-
creased serum calcium: Knowledge of 
constipation increases the belief in 
muscle weakness because it increases 
the belief in increased serum calcium, 
even when we are given that primary 
hyperparathyroidism is present. AI- , 
though the model in Figure 3(a) is a 
more accurate representation of the / 
dependencies among the variables, we 
currently use the model in 3(b) as an 
approximation. 

2.1.3 Binary Diseases and Findings 

We assume each finding and dis-
ease to be binary: diseases are either 
present or absent, and observed find-
ings are either present or absent. This 
assumption simplifies the probabilistic 
transformation of the QMR KB, 
which likewise contains binary find-
ings and diseases. Finer gradations in 
the representation of findings and dis-
eases not only would be more intui-

I In this example, we ignore the event that the 
biopsy itself may cause blood in the sputum. 
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tive, but also would strengthen the 
correctness of the assumption of con-
ditional independence of findings gi-
ven any disease hypothesis. Consider 
the example from the QMR-DT belief 
network of conditional independence 
depicted in Figure 4(a). Suppose that 
we condition on (assume) the pre-
sence of Laennec's cirrhosis - a dis-
ease with a wide spectrum of severity. 
The probability of decreased hepatic 
arterial vascularity is affected by the 
presence or absence of increased pro-
thrombin time, and vice versa, even 
given that we know Laennec's cir-
rhosis is present. That is, knowledge 
about one of the findings gives us 
information on the severity of the 
disease - more information than we 
gain by conditioning on simply the 
presence of the disease. Specifically, 
P(DECREASED HEPATIC ARTERIAL VASCU-
LARITY I only LAENNEC'S CIRRHOSIS) is 
less than P(DECREASED HEPATIC ARTE-
RIAL VASCULARITY I only LAENNEC'S 
CIRRHOSIS and INCREASED PROTHROMBIN 
TIME), since knowledge of increased 
prothrombin time shifts our belief to a 
more severe form of Laennec's cir-
rhosis, increasing the probability of 
decreased hepatic arterial vascularity. 

A more accurate representation of 
the conditional independence appears 
in Figure 4(b), in which we model 
Laennec's cirrhosis as being absent, 
mild, or severe. The assumption that 
P(DECREASED HEPATIC ARTERIAL VASCU-
LARITY I only SEVERE LAENNEC'S CIR-

(a) 

RHOSIS) is equal to P(DECREASED HEPA-
TIC ARTERIAL VASCULARITY I only SE-
VERE LAENNEC'S CIRRHOSIS and IN-
CREASED PROTHROMBIN TIME) is more 
accurate than the assumption that we 
make in the case of a binary disease 
modeling of Laennec's cirrhosis. Be-
cause we have already conditioned on 
the severity of disease, knowledge of a 
finding such as increased prothrombin 
time tells us little more about the 
severity of Laennec's cirrhosis, thus 
providing only a small update to our 
belief about decreased hepatic arterial 
vascularity. Although the model in 
Figure 4(b) is a more accurate rep-
resentation of the conditional inde-
pendence between the two findings, 
for simplicity, we currently model dis-
eases and findings in QMR-DT as 
binary variables as in Figure 4(a). 

2.1.4 Causal Independence 

We model the effects of multiple 
diseases on a single finding by assum-
ing that the effects of the diseases on 
the finding occur independently. This 
assumption, called causal independ-
ence, has been described by a number 
of researchers, including Good [27]. 
We use a noisy-OR gate to model 
causal independence [16]. Several re-
searchers have described the applica-
tion of the noisy-OR gate to modeling 
the effects of diseases on manifesta-
tions [19, 21-23]. In addition, the 
developers of INTERNIST-l implicit-

(b) 

Fig.4 Two belief networks that have different granularity of severity of disease. (a) 
Laennec's cirrhosis is modeled as a binary disease: It can either be present or absent (b) 
Laennec's cirrhosis is modeled with three states: absent, mild, or severe. In the QMR-DT KB, 
we currently model diseases and findings as binary variables, as in (a). 
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ly assumed a noisy-OR gate interac-
tion [28]. Under the assumption of a 
noisy-OR gate, we can avoid repre-
senting the full set of conditional prob-
abilities of the state of a finding given 
each possible state of the finding's 
parents. Consider a belief net with 
binary finding f, where f has binary 
parents db d2, ... ,dk • To construct the 
complete conditional probability table 
associated with the arcs from 
d1, d2 , ••. , dk to f, we need to acquire 2k 

conditional probabilities. If we assume 
causal independence, we need to ac-
quire only k conditional probabilities 
of the form per I only dt?, for 
1 :Sj -s,k. 

As its name implies, the causal-
independence assumption maintains 
that the mechanisms by which diseases 
cause a finding operate independently 
of one another and independently of 
any other events that may cause the 
finding to occur, such as the influence 
of other findings. Figure 5 shows a 
belief network for a noisy-OR influ-
ence of two diseases d 1 and d2 on a 
single finding f, as depicted by 
Heckerman in [21]. Assuming causal 
independence, we can model the influ-
ence of multiple diseases on a finding 
using the noisy-OR gate: 

P(f- I only di and di) = P(f- I only 
di) P (r I only d:J). (3) 

The intuition behind (3) is that the 
probability of finding f not occurring 
(given a hypothesis H) is just the 
probability that, of the two mechan-
isms that can cause f to occur, neither 
succeeds in causing f to occur. Be-
cause we have modeled the findings as 
binary variables, we can rewrite (3) as: 

per I only di and di) = 
1- [l-P(f+ I onlydi)][I-P(f+ lon-
ly di)]. (4) 

We distinguish per I only di) from 
P(f+ I df), where the former denotes the 
probability of the event that f occurs given 
that only disease d; occurs, and, for all j * i, dj 
are absent. By contrast, we use the notation p(r I df) to mean the probability of thc 
event that f occurs given that d; occurs and 
for all j * i, dj occur based on their prior 
probabilities. 
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In the more general case of a disease 
hypothesis H, we can compute the 
probability of the presence of f given 
Has: 

P(f+ I H) = 
= 1- IT [1-p(r lonlydt)],(5) 

diEH+nJr(fl 

where n:(f) are the parents of f - that 
is, the diseases corresponding to those 

Fig.5 A belief network depicting the caus-
al-independence assumption of the noisy-
OR gate. Consider a disease d, that causes 
finding fthrough some mechanism, and a 
disease d2 that causes fthrough some other 
mechanism. This network depicts the as-
sumption that d, and d2 cause fthrough 
intermediate mechanisms that are indepen-
dent of each other. If d, is. present, it mayor 
may not initiate a mechanism that causes f 
to be present. Our belief that d, initiates the 
mechanism "d, causes f" with probability 
P(r+ I only d:t) is represented by the arc 
from the node labeled "d," to the node 
labeled "d, causes f". The absence of an arc 
between the nodes labeled "d, causes f" 
and "d2 causes f" represents an assumption 
of causal independence. That is, the prob-
ability that the mechanism "d, causes f" is 
active is not affected by whether the 
mechanism "d2 causes f" is active. Also, the 
absence of the arc from the node "d2" to the 
node "d, causes f" represents the causal 
independence assumption that the probabil-
ity that the mechanism "d, causes f" is 
active is not affected by the presence or 
absence of d2 • The same causal independ-
ence assumptions apply to the mechanism 
by which d2 causes f. The node with the 
double boundary is a deterministic node, 
which represents the belief that, if either of 
the two intermediate mechanisms occurs 
(that is, d, or d2 succeeded in initiating the 
mechanisms by which it caused f), fwill be 
present with certainty. (Adapted with per-
mission from [21] Figure 2, page 165.) 
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nodes in the QMR-DT belief network 
that have arcs directed to f. The prob-
ability of the absence of f is given 
simply by 1 - p(r I H). 

An example found in the QMR-DT 
KB where the causal-independence 
assumption is accurate, is pictured in 
Figure 6. In this example, diver-
ticulitis may cause a severe mucosal 
inflammation in the diverticulum, 
which in turn causes mucosal break-
down and local hemorrhage, resulting 
in a positive guaiac test. Right colon 
cancer may cause a mucosal necrosis, 
which in turn causes mucosal break-
down and local hemorrhage, resulting 
in a positive guaiac test. Accordingly, 
in the example depicted in Figure 6, 
the variable orVERTICULITIS CAUSES EB 
GUAIAC TEST corresponds to the event 
that severe mucosal inflammation in 
the diverticulum is present or absent, 
and the variable RIGHT COLON CANCER 
CAUSES EB GUAIAC TEST refers to the 
event that mucosal necrosis is present 
or absent. In general, the probability 
that mucosal necrosis is present in the 
diverticulum is largely unaffected by 
either the presence of diverticulitis or 
the presence of mucosal inflammation 
in the diverticulum. Also, the proba-
bility that severe mucosal inflamma-
tion is present in the diverticulum is 
largely unaffected by either the pre-
sence of right colon cancer or the 
presence of mucosal necrosis. Because 
the mechanisms by which diverticulitis 

and right colon cancer cause a positive 
guaiac test operate largely indepen-
dently, we can justifiably apply the 
noisy-OR gate to model the influence 
of the two diseases on a positive 
guaiac test. 

The causal independence assump-
tion is less accurate in cases where 
diseases operate through a common 
pathway to cause a finding. Figure 7 
shows a belief network modeling the 
effects of plasma-cell myeloma and 
primary hyperparathyroidism on mus-
cle weakness. Note the common inter-
mediate state of increased serum cal-
cium. As a first approximation, the 
QMR-DT KB currently models this 
interaction with a noisy-OR-gate as in • 
Figure 5, where d1 = PLASMA CELL, 
MYELOMA, dz PRIMARY HYPER-
PARATHYROIDISM, and f = MUSCLE 
WEAKNESS. 

2.1.5 Findings as Manifestations of 
Disease 

There are various possible relation-
ships between a disease and a finding. 
However, findings are all modeled as 
manifestations of disease in the cur-
rent QMR-DT belief network. This 
assumption is generally not correct for 
historical findings. For example, 
neither a history of cigarette smoking 
nor a history of diabetes mellitus fol-
lows from acute myocardial infarction, 
as represented by the belief network • 

Fig.6 A belief net-
work representing 
the noisy-OR-gate 
interaction between 
diverticulitis, right 
colon cancer, and a 
positive guaiac test, 
as modeled in the 
current QMR-OT KB. 
This network mod-
els the belief that 
the mechanisms by 
which the two dis-
eases may cause the 
finding of a positive 
guaiac test operate 
independently. 
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in Figure 8(a). A more accurate mod-
el of the influence of these two find-
ings on acute myocardial infarction is 
pictured in Figure 8(b). 

When we model historical findings 
as manifestations of disease, we intro-
duce incorrect causal and conditional 
independences. For example, in such 
cases, causal independence is an inac-
curate assumption, because we would 
not necessarily expect a historical find-
ing to be absent when all the diseases 
associated with it fail to occur, since 
historical findings are not caused by 
disease. Conditional independence 
also is an inaccurate assumption, as 
demonstrated by the following exam-
ple: Suppose we have a patient about 
which we originally have no data. We 
have a certain prior belief about 
whether this patient has a history of 
cigarette smoking. Suppose we are 
told that the only disease that the 
patient has is myocardial infarction. 
The information that the patient has 
myocardial infarction increases our 
belief that the patient has a history of 
cigarette smoking; let us suppose our 
probability of smoking changed from 
probability P1 to probability P2 . Sup-
pose we are next told that the patient 
has a history of diabetes mellitus. This 
new information decreases our belief 
that the patient has a history of 
cigarette smoking, P2 , since the his-
tory of diabetes mellitus tends to ac-
count for the myocardial infarction, 
and smoking is less needed as an 
explanation. In the first version of the 
QMR-DT KB, which we describe in 
this paper, we model historical find-
ings as in Figure 8(a), although the 
relationship depicted in Figure 8(b) is 
more accurate. However, we model 
the historical findings age and gender 
not as in Figure 8(b), but rather as in 
8(a) by conditioning the prior prob-
abilities of diseases on age and gender. 
We describe the derivation of prior 
probabilities of diseases in Section 
2.2.1. 

Using the assumptions discussed in 
this Section, we can derive the connec-
tivity of the QMR-DT belief network 
from the QMR KB. In Section 2.2, we 
discuss knowledge acquisition that we 
performed to add probabilities to the 
belief network. 
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Fig.7 A belief-network representation of 
two diseases (plasma cell myeloma and 
primary hyperparathyroidism) that operate 
through a common intermediate state (in-
creased serum calcium) to cause a finding 
(muscle weakness). 

2.2 Probabilities Used in the Model 

Probabilities used in the QMR-DT 
model were derived both from the 
numbers contained in the QMR KB 
and from disease statistics. The neces-
sary probabilities for our two-level 
belief network include the prior prob-
abilities of diseases, and the condition-
al probabilities relating findings to 
disease. We describe the derivation of 
each of these in turn. 

(a) 

2.2.1 Prior Probabilities of Diseases 

Our probabilistic model requires 
that prior probabilities on diseases be 
made explicit. We derived prior prob-
abilities on diseases in the QMR-DT 
KB from data compiled by the Nation-
al Center for Health Statistics (NCHS) 
on approximately 192,000 inpatients 
discharged from short-stay nonfederal 
hospitals in 1984 [29]. The diseases in 
the NCHS statistics are classified by 
the International Classification of Dis-
eases, Ninth Revision, Clinical Mod-
ification (ICD-9-CM) [30] coding sys-
tem, but the INTERNIST-l disease 
names do not always correspond di-
rectly to an ICD-9-CM name; there-
fore, we developed an approximate 
mapping between INTERNIST-l 
names and ICD-9-CM codes. In about 
60 percent of the cases, there was a 
close match between an INTERNIST-l 
disease label and an ICD-9-CM dis-
ease label. When the INTERNIST-l 
disease name encompassed more than 
one ICD-9-CM code, we summed the 
discharges for the subsumed codes. 
Conversely, when the ICD-9-CM code 
was more general than the INTER-
NIST-I disease name, we denoted the 
discharges for the ICD-9-CM as an 
upper bound for the more specific 
INTERNIST-l name. We reviewed 
the mapping for gross outliers and 
modified the prior probabilities using 
subjective estimates based on our clin-
ical experience. The diseases with the 

(b) 

Fig.8 Belief networks representing the relationship between diseases and historical 
findings (a) The current QMR-OT model assumes that all findings are manifestations of 
disease. (b) A more accurate model depicts a history of cigarette smoking and a history of 
diabetes mellitus as findings that may predispose a patient to acute myocardial infarction. 
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highest prior probabilities are bron-
chial asthma, angina pectoris, and 
diabetes mellitus, each with a prior 
probability of 0.02. The disease with 
the lowest prior probability is ectopic 
ACTH syndrome, with a prior prob-
ability of 2 x 10-5 . 

The NCHS statistics provide dis-
charge data categorized by age and 
gender. We chose to condition the 
prior probabilities of diseases on age 
and gender in the current QMR-DT 
model because age and gender are 
predisposing factors to diseases rather 
than manifestations of diseases. The 
prior probability in which we are in-
terested for disease d; is P (dt I age, 
gender). The NCHS statistics do not 
provide us with these numbers, but 
rather provide data of the form 
P (dt I age) and P (dt I gender); there-
fore, we make the simplifying assump-
tions of both marginal independence 
of age and gender and conditional 
independence of age and gender given 
a disease. These assumptions are not 
essential to the QMR-DT model; we 
need only to acquire more specific 
statistics of the form P (dt I age, gen-
der). We recognize that the two as-
sumptions are not mutually consistent 
[31]; however, we use them as first 
approximations. Assuming condition-
al independence of age and gender 
given a disease, we can write: 

P(dt, age, gender) = P(age I dtJ 
P(gender I dt) P(dtJ. (6) 

By the definition of conditional 
probability and the assumption of 
marginal independence of age and 
gender, we have: 

P (dt I age, gender) = 
P (dt, age, gender) 
P(age) P(gender) 

(7) 

Substituting (6) into (7), we derive 
an expression for the prior probability 
of d; conditioned on both the age and 
the gender of the patient: 

P (dt I age, gender) = 
P(age I dtJ P(gender I dt) P(dtJ 

P(age) P(gender) 
(8) 

The NCHS data did not specify 
some of the age-specific or gender-
specific discharges, when the number 
of discharges was deemed negligible. 
In these cases, we inferred the value 
by subtracting the other discharges 
from the general discharges for d; and 
uniformly distributing the unac-
counted discharges to the negligible 
categories. For example, the number 
of discharges of males with primary 
biliary cirrhosis is listed as negligible, 
whereas the number of females dis-
charged with primary biliary cirrhosis 
is listed as 4,000. The total number of 
discharges of primary biliary cirrhosis 
is listed as 5,000. In this case, we 
calculated the value of discharges of 

Rg.9 A belief-net-
work representation 
of the leak event Lf 
as an event that may 
cause fin a noisy-
OR gate interaction 
with diseases d, and 
d2• The prior proba-
bility that Lf occurs 
is 1 (not shown), 
and the probability 
that Lf triggers the 
sequence of events 
that leads Lf to 
cause fis P(f+ I only 
Ld. If anyone of the 
three mechanisms 
are triggered (d, 
causes f, d2 causes f, 
or Lf causes f), then 
fwill be present. 

males with the disease, 5,000 - 4,000 = 
1,000. We also assumed a uniform 
distribution in each of the NCHS age 
categories, to distribute the age-
specific discharges into the QMR age 
categories that did not correspond 
exactly to the NCHS categories. For 
example, we assumed a uniform dis-
tribution in the NCHS age category of 
45 to 64 years to distribute the dis-
charges for that category into the 
QMR age categories of AGE 26 TO 
55 and AGE GTR THAN 55. That is, 
we allocated (55 - 45)/64 - 45) = 
0.53 of the discharges from the NCHS 
category of 45 to 64 years to the QMR 
category AGE 26 TO 55 and 0.47 of 
the discharges to the category AGE 
GTR THAN 55. 

In Part II of the paper, we investi-
gate the sensitivity of the QMR-DT 
belief-network model to prior prob-
abilities of diseases. Specifically, we 
compare the performance of the sys-
tem using the prior probabilities that 
we derived as discussed in this Section 
to the performance using uniform 
prior probabilities of diseases. 

2.2.2 Mapping of QMR Frequencies 
to Probabilities 

The developers of QMR define a 
frequency between a specific disease 
and finding as a measure of "how 
often patients with the disease have 
the finding" [1 (p.489)]. For each 
QMR frequency value of 1 to 5, we 
assessed an interval on the value of per I only di) from R. Miller, one of 
the primary developers of INTER-
NIsT-1 and QMR. We assumed a 
symmetrical distribution in each of the 
intervals to generate the mapping ap-
pearing in Table 1, where the values 
of per I only di) are the midpoints 
of the corresponding intervals. We use 
the probabilities in Table 1 in the 
noisy-OR gate described in Section 
2.1.4 to compute p(r I H) as in (5). 

2.2.3 Leak Probabilities 

The developers of QMR estimate 
that they will have to model approxi-
mately 750 diseases within the QMR 
KB "to cover the most important 
problems of internal medicine" [4]. 
The version of the QMR KB that we 
are using models 534 adult diseases. It 
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is possible for a finding in the QMR-
DT KB to occur as a manifestation of 
a disease that is not in the KB, or even 
to occur spontaneously in the absence 
of any disease whatsoever. (For exam-
ple, some findings may be false-posi-
tive laboratory-test results.) We call 
either of these events leak events. 

Consider a positive finding r. In 
the noisy-OR gate formulation of (5), 
P(f+ I H) becomesOwhen n(f) n H+ = 
0. Since we compute P(F+ I H) ac-
cording to (2), when there exists anf E 
F+ such thatp(r I H) isO, P(F+ I H) 
also becomes O. Thus, the behavior of 
the noisy-OR gate as it appears in (5) 
is not practical with the QMR-DT 
belief network, since there would arise 
many occasions when P (f+ I H) 
would be O. We augment the noisy-
OR gate model with the leak event, 
providing for the possibility that r 
may occur even if there does not exist 
a disease di E H+ that may cause it. 

Let Lf be the event that the leak is 
active, regardless of whether or not 
other diseases may be causing f to 
occur. For each finding f, we model 
the leak in the QMR-DT belief net-
work with a pseudo-disease node with 
prior probability P (Lf ) = 1 and link 
weight P(f+ I only Lf ), the probability 
that f occurs given that only the leak 
for f occurs. Figure 9 displays a belief 
network representing this model, in 
which the pseudo-disease node corres-
ponding to finding f is labeled Lf We 
assign a prior probability of 1 to this 
node to denote that the leak is present 
in every hypothesis H, so that 
P (f+ I H) is never 0 for any positive 
finding f. The leak Lf by itself causes f 
to occur with the probability 
P(f+ I only Lf )· Alternatively, we say 
that the leak activates the leak 
mechanism "Lf causes f" with proba-
bility P(f+ I only Lf )· 

With the addition of the leak to the 
noisy-OR model, we derive a leaky 
noisy-OR gate. The probability that a 
finding f is absent, given a disease 
hypothesis H, is just the probability 
that all of the parent diseases of f fail 
to cause f and the leak fails to cause f 
as well. Adding the leak to (5), we 
have: 

Meth. Inform. Med .. Vol. 30. No.4. 1991 

Table 1 A mapping between QMR frequen-
cies and probabilities. 

Frequency P(f+ I only cit) 
1 0.025 
2 0.20 
3 0.50 
4 0.80 
5 0.985 

P(f+ I H) = 1 - [l-P(f+ I only Lf )] 

II [l-p(r I only dn]. (9) 
d,EH+n"rn 

Thus, the leak is implicitly present 
in each disease hypothesis H3. 

We now explain how we derived 
the leak probabilities from the QMR 
KB. Recall that the import of a finding 
measures the "extent to which one is 
compelled to explain its presence in 
any patient" [1 (p.469)]. The scale of 
import values ranges from 1 to 5, 
where an import of 1 denotes that the 
finding "is usually unimportant, oc-
curs commonly in normal persons, and 
is easily disregarded", and an import 
of 5 denotes that the finding "must 
absolutely be explained by one of the 
final diagnoses" [10 (p.463)]. 

We define a significant disease as 
one of the approximately 750 that the 
developers of QMR have modeled or 
intend to model in the QMR KB. Let 
Df be the event that f is caused by a 
significant disease. Accordingly, let 
P(Df I f) be the probability that f is 
caused by a significant disease, given 
that f occurs. We wish to create a 
mapping between the import function 
and P(Df I f). To simplify this map-
ping, we assume that all significant 
diseases are contained in the QMR 
KB; the developers of QMR report 
that the import values for QMR find-
ings were assessed originally assuming 
that all significant diseases will appear 
eventually in the QMR KB [28]. 

To derive a mapping between the 
import function and P(Df I f), we per-
formed the following assessment. Ap-
proximately 10 findings of each import 
level were randomly selected to create 
a sample with a total of 44 findings. 

3 A proof that the leak term P(f+ I only L1) is 
inconsequential for negative findings appears 
in [32J. 

For each finding, one of us (BM) 
performed the following steps: 
1. List the most important significant 

diseases that can cause f, 
2. List the most important nonsignific-

ant diseases that can cause f, 
3. Assess the false-positive rate of J, 
4. Assess P(Df I f), the probability 

that f is caused by a significant 
disease, given that f occurs. 
We used simple linear-regression 

techniques to determine the best 
straight-line relationship between the 
import values and assessed prob-
abilities. The regression equation is 
able to explain a statistically signific-
ant amount of the variance in the 
assessed probabilities (?- = 0.41, P = 
0.001). Table 2 shows, for each level 
of import, the fitted P(Df I f) value. 
In the QMR-DT KB, we currently use 
the mapping of imports to fitted values 
of P(Df I f) shown in Table 2. 

In [32], we derive the following 
expression fo,r P (f+ I only Lf ): 

P(f+ I only Lf ) = P(Df ) 

1-P(Dr I f) 
P(Df I f) (10) 

where P(Df ) is also derived in [32]: 

P(Df ) = 
1 - II [l-p(rlonly di) P(dtJ]. 

d, E "(f) 

(11) 

We calculated the values of 
p(r I only Lf ) for each of the 4,040 
findings in the QMR-DT KB. To 
reduce the representational 
ments for the leak probabilities, we 
did not condition the term for the 
prior probability of disease P (dt) in 
(11) on either age or gender. The 
largest calculated P(f+ I only Lf ) val-
ue was for f = TACHYCARDIA, where 
p(r I only Lf ) = 0.153; the smallest 
value was P(f+ I only Lf ) = 5.8 X 10-8 

for a number of findings, which in-
cluded f = BLOOD CULTURE FRANCISEL-
LA TULARENSIS. 

In summary, the current QMR-DT 
model comprises a two-level belief 
network of findings and diseases. In 
this model, we assume marginal inde-
pendence of diseases, conditional in-
dependence of findings given any hy-
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pothesis of diseases, binary diseases 
and findings, and causal independence 
of diseases. We model a leak event as 
a pseudo-disease node, which may 
cause a finding with probability 
P(f+ I only Lt ), which we derived 
using a mapping from QMR import 
values. We incorporate the influence 
of the leak event and other disease 
nodes on a finding using the assump-
tion of causal independence in a leaky 
noisy-OR gate. We derived prob-
abilities of the form per I only dt) 
from a mapping of QMR frequencies. 
Finally, we used hospital-discharge 
statistics from the NCHS to compute 
prior probabilities of diseases. We 
refer collectively to the assumptions 
and probabilities summarized in this 
paragraph as the QMR-DT model. We 
distinguish the QMR-DT model from 
the algorithms that we use for infer-
ence on the model, which we discuss 
in the next section. 

3. Algorithms for Inference 

Given a set of positive and negative 
findings F and a model of the depen-
dencies between diseases and findings 
in internal medicine, our goal is to 
compute P(dt I F), the posterior mar-
ginal probability for each disease d;: 
1 ::::: i :::::n. Let fl be the assumption that 
diseases are mutually exclusive. We 
contrast P (dt I F) with the posterior 
probability of a single-disease hy-
pothesis, P(only dt I F, fl), where in 
the latter case we assume that the 
patient has exactly one disease. The 
assumption that diseases are mutually 
exclusive is clearly not applicable to 
the general problem of diagnosis in 
internal medicine, where patients of-
ten have several diseases simultane-
ously. The posterior marginal prob-
ability P (dt I F), on the other hand, 
implicitly allows for the possibility that 
one or more diseases may be present 
in a patient. In Section 3.1, we discuss 
the complexity of calculating both 
P(only dt I F, fl) and P(dt I F). 

3.1 Exact Algorithms 

Bayes' rule under the assumptions 
of mutually exclusive diseases and 

250 

conditional independence of findings 
given any disease is sometimes refer-
red to as tabular Bayes,4 rule: 

P(only dt I F, fl) = 
P(F I only dt) P(only dt) (12) 

P (F I only dt) P (only dt) 
k=! 

where there are n diseases and 
P(F I only dt) is given by (2) when 
only d; is present in H. Although the 
single-disease assumption is very re-
strictive, the tabular Bayes' formula-
tion is appealing because of its low 
degree of computational time com-
plexity - e (nm')5, where m' = iFl. In 
other words, the complexity is the 
product of the number of observed 
findings multiplied by the total 
number of diseases. Without a change 
in the order of computational time 
efficiency, we can augment the tabular 
Bayes' formulation by modeling the 
leak event, where we calculate 
P(F I dtJ using the terms per I H) 
and P (f- I H) given by (9) when d; is 
the only disease present in H. We will 
refer to the tabular Bayes' algorithm 
that includes the leak event as TB. 

Straightforward application of 
Bayes' rule - without the assumption 
of mutually exclusive diseases - to the 
QMR-DT two-level belief network 
yields: 

P(dt I F) = 

P(F I H) P(H) 
H:di E H+ (13) 

P(F I H) P(H) 
H 

4 The name tabular Bayes' rule is derived from 
the notion that we can compute P(only 
di I F, 11) as in (12) from a 11 x m table of 
probabilities of the form P(Jj I only df). 
where 1 SiS 11 and S j Sm. 
We denote by 8(11, m ') the set of functions of 
the form f(l1, /11 ') for which there exist 
positive constants CI, C2. no. m'[J, such that CI 
11 /11' S f(l1, /11 ') SC2 11 /11' for all 11 2: n[J and 
/11' 2: m·o. We say that the computational 
complexity of a procedure is 8(11 /11 ') if the 
inference time for any problem of size (11, /11') 
is equal to [(11, /11') for some [(11, m ') E 
8(11/11'). 

which has an inferential complexity of 
O(m' n2"/: 

Suppose that we wish to compute 
P (dt I F), given probabilities of the 
form per I only dt), P(j+ I only Lt), 
and P(dtJ. Assume that we compute 
the terms P(H) and P(F I H) using 
Equations (1), (2), and (9). To com-
pute P(F), the denominator of (13), 
we must compute 2" terms of the form 
P (F, H) in the summation, one for 
each possible hypothesis on n binary 
diseases. For each P(F, H) term, we 
must compute P (F I H) and P (H). To 
compute P(F I H), we need to com-
pute P (f+ I H) for each f E F+ and 
per I H) for eachf E F-, which is a 
total of m' terms. For each of the • 
terms p(r I H) or per I H), we 
need to perform at most n+ 1 multipli- • 
cations. To compute P(H), we require 
n multiplications. Thus, to compute 
P(F) we require O([m'(n+ 1)+n]2") = 
Oem' n2") multiplications. Since the 
number of additions required to calcu-
late P (F) is bounded above by the 
number of multiplications required, 
we require Oem' n2/l) operations, 
where an operation is either an addi-
tion or multiplication. We can com-
pute the numerator of (13) for each 
disease d; as we compute each term 
P (F, H) in the denominator, adding 
P (F, H) to a slot for each diJ whenever 

6 We denote by Oem' 112") the set of functions • 
of the form f(m' 112") for which there exist .: 
positive constants c. n[J, m·o. such that 
o S f(m' 112") Scm' 112" for all 11 2: no and 

m'o. 
7 Suppose that we were to perform inference 

using (13) on machinery that could support 
100 billion multiplications per second. By 
comparison, a Cray Y-MP/832 with eight 
processors has a limit of less than 3 billion 
floating-point operations per second [33]. 
Thus. our hypothetical machinery is over 30 
times faster than a Cray Y-MP/832. Consider 
the time it would take to compute only the 
terms P(H) in the summation of the de-
nominator of (13). Each P(H) term requires 
534 multiplications. Thus. we would need 
more than 2534 x 534 = 3 x 10163 multiplica-
tions to compute the denominator of (13). 
On our hypothetical machinery. it would take 
more than 10 144 years to complete the compu-
tation. Clearly. the brute-force application of 
Bayes' rule to inference on the QMR-OT 
belief network is intractable. Moreover. the 
problem of probabilistic inference on belief 
networks such as that of QMR-OT is known 
to be NP-hard [34J. 
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d; E H. This calculation requires n 
additions in the worst case. Thus, we 
require O([m' n+nJ2") = Oem' n2") 
operations to compute P (d; I F) for 
some d; using an exhaustive applica-
tion of Bayes' rule. 7 

We have sought to develop simula-
tion algorithms to perform efficient 
inference on the QMR-DT belief net-
work. Before describing simulation 
algorithms in Section 3.3, we briefly 
describe in Section 3.2 a heuristic 
algorithm that we have incorporated 
into a simulation algorithm. 

3.2 A Heuristic Algorithm 

We have developed a heuristic al-
gorithm, which we call the iterative 
tabular Bayes' (ITB) algorithm. The 
ITB algorithm is similar to the 
INTERNIST-l heuristic-reasoning 
scheme [1] in a number of ways, 
including ITB's use of disease-to-dis-
ease links to increase the score of 
diseases related to diseases that have 
been concluded previously. We cre-
ated these links by mapping the fre-
quencies of the QMR disease-to-dis-
ease links into probabilities of one 
disease given another, according to 
the scheme presented in Thble 1 for 
disease-to-finding links.8 

The heuristic ITB algorithm first 
uses TB to compute the posterior 
probability P(only d; I F, J.1) for all 

• .where F .is the of all the 
fmdmgs m the dIagnostic case. All GJ diseases with a posterior probability 
greater than a threshold we have set 
empirically at 0.05 are concluded; that 
is, they are added to the final list of 
diagnoses from ITB. The prior prob-
ability of any disease that is associated 
(by a QMR disease-to-disease link) 
with any of the concluded diseases is 
then set to the probability associated 
with that link, if the current prior 
probability of the disease is less than 
the strength of the link. Each positive 
finding (excluding age and gender, 
which are used in setting the prior 

H Although we use heuristically the QMR dis-
ease-to-disease links in the ITB algorithm. 
we do not eurrentl y represent the disease-to-
disease links as probabilistic dependencies in 
the QMR-OT belief-network model. 
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probabilities on diseases) that is as-
sociated with any of the concluded 
diseases is then removed from the set 
of findings. We call the steps of ITB 
just described a stage. We repeat ITB 
stages until there are no positive find-
ings remaining with an import of grea-
ter than or equal to 3. At this point, 
we have completed a round. Note that 
after positive findings are removed 
upon the completion of a stage, the 
posterior probabilities computed by 
TB based on the remaining findings 
will generally lead to an entirely new 
set of diseases with a posterior prob-
ability greater than 0.05, which are 
thus concluded. These concluded dis-
eases had posterior probabilities lower 
than 0.05 in previous stages, but be-
cause of the revised denominator of 
Bayes' rule in this particular stage, 
their posterior probabilities in this 
stage can exceed 0.05. Similarly, the 
algorithm may conclude different dis-
eases in subsequent rounds since the 
prior probabilities of diseases are up-
dated between rounds. 

At the start of each round, the full 
set of positive and negative findings is 
restored. Also, the prior probabilities 
of all concluded diseases are set to 0 
(for only the duration of the ITB 
algorithm). The algorithm repeats 
rounds until either it concludes a total 
of 20 or more diseases, or it completes 
10 rounds. The ITB algorithm thus 
provides us with a set of heuristically 
selected diseases, where the cardinali-
ty of the set is typically about 20. We 
call this set the heuristic-importance 
set. 

3.3 Simulation Algorithms 

Because the general problem of 
probabilistic inference on belief net-
works is NP-hard, we have focused on 
developing simulation algorithms for 
inference on the QMR-DT belief-net-
work model. In a stochastic simulation 
algorithm, the probability of an event 
of interest is estimated by the frequen-
cy with which the event occurs after a 
number of trials, where a trial consists 
of the instantiation of all nodes that 
have not been observed as evidence 
(unobserved nodes) to some value. 
Forward simulation is a type of 
stochastic simulation algorithm in 

which the order of the instantiation of 
the unobserved nodes is such that no 
node is instantiated before all of its 
parents are, and each node is instanti-
ated to a value based on the probabili-
ty of the different states of the node, 
given the states of its parents in the 
current trial [35]. The forward simula-
tion algorithm that we use is called 
likelihood-weighting. This algorithm 
has been described previously by Fung 
and Chang [36] and Shachter and Peot 
[37]. The likelihood-weighting al-
gorithm computes estimates of the 
posterior marginal probabilities of dis-
eases that converge in the limit to the 
posterior marginal probabilities of dis-
eases consistent with the QMR-DT 
model. (We will shall refer to the 
posterior marginal probabilities, given 
any evidence, consistent with a prob-
abilistic model M, such as the QMR-
DT model, as the posterior distribu-
tion implied by M.). In other words, 
the likelihood-weighting algorithm is 
guaranteed in the limit to compute the 
posterior distribution implied by the 
QMR-DT belief network, if allowed 
to run indefinitely. After a finite 
period of time, however, the estimates 
of the likelihood-weighting algorithm 
may deviate significantly from the 
probabilities implied by the model. 
(The reader is referred to Section 4 
for discussion on the fidelity of the 
estimates of likelihood-weighting 
simulation. ) 

Consider a two-level belief network 
as in Figure 1, where 'n = 3 and m = 4. 
Suppose that of the four findings 
nodes in this sample network, only 
one node is observed, such that It = 
present. We wish to compute 
P(d; lid for 1 :s i :s 3. We begin a 
trial of simulation by stochastically 
instantiating each of the three diseases 
in the network to present or absent 
according to the disease's prior proba-
bility P (dtJ. Suppose that the hy-
pothesis instantiated is H = {dt = 
present, d2 = present, d3 = absent}. 
We then compute the sample score 
P (N I H) and add this value to the 
variables for the present states of d l 
and d2 and to the variable for the 
absent state of d3 . The first trial is thus 
completed. After any number of 
trials, we can estimate P(d/" I II) by 
dividing the value of the variable for 
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the present state of d/ by the sum of 
the samples scores, computed for all 
of the trials completed thus far. 

More formally, in the· case of the 
two-level QMR-DT belief network 
described in Section 2, we estimate the 
marginal posterior probability of (13) 
by: 

p(dt I F) = 
t 

L Z(Hi I F) U(dj , Hi) 
i= 1 (14) 

L Z(Hi I F) 
i= 1 

where Hi is the state of all the diseases 
as instantiated in the ith trial, and 
U(dj , Hi) is 1 if dj E Ht and it is 0 
otherwise. The sample score is given 
by: 

Z(Hi I F) = P(F I H;) P(Hi) (15) 
P'(Hi ) , 

where P' is the sampling distribution. 
In the simplest case (as in the example 
with three diseases), we instantiate the 
disease nodes based on their prior 
probabilities; that is, P' = P, and thus 
Z(Hi I F) = P(F I H;). 

Alternatively, we can focus the 
likelihood-weighting simulation on 
certain instantiations of the network. 
Using this technique, called import-
ance sampling, the algorithm instan-
tiates the diseases not by their prior 
probabilities P (dt), but rather by any 
sampling distribution P' (dtJ [37]. The 
only restriction on P' is that P' (dt) >0 
whenever P(dtJ >0. [Conversely, 
when P (dt) < 1, it is necessary to 
make the restriction that P' (dtJ < 1.] 
The simulation's estimates of the post-
erior distribution will converge in the 
limit of infinity to the true posterior 
distribution as long as P' follows this 
restriction [38]. The estimates will 
converge most quickly when P'(dtJ is 
equal to the true posterior distribution 
P(dt I F) for each di , where 1 ::::; i::::; n 
[39]. Of course, if we knew the true 
posterior distribution, then we would 
not have to perform the simulation. 
We can attempt to approximate the 
true posterior distribution using any 
method of our choosing to improve 
the convergence of the simulation. For 
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Table 2 A mapping between QMR imports 
and the probability that one or more signifi-
cant disellses causes a finding f given that f 
is present: 

Fitteda Std. Error 
Import P{Ot I f) P{Ot If) 

1 0.39 0.071 
2 0.52 0.081 
3 0.65 0.101 
4 0.79 0.083 
5 0.92 0.106 

aThe fitted P{Ot I f) values were calculated 
by regressing the assessed values of 
P{Ot I f) on the import values of the respec-
tive finding. 

instance, we can update P' (dt) at any 
point by setting it equal to simulation's 
current estimates of the posterior dis-
tribution P' (dt I F). This technique is 
called self-importance sampling [37]. 

The self-importance updating func-
tion that we use is 

P'new(dtJ = 

P'o(dtJ + get) Pcurrenddt I N F) , (16) 
get) + 1 

where get) is a linear function of the 
number of trials and P'o is the original 
sampling distribution (see next para-
graph). We use P'o in the updating 
function so that very early in simula-
tion the update will not converge to 
extreme probabilities (that is, close to 
o or 1). 

We use the heuristic-importance set 
generated by ITB to derive the origi-
nal importance distribution P'o. We 
construct P'o such that the expected 
number of diseases instantiated from 
the heuristic-importance set is 1. That 
is, for all dj in the heuristic-importance 
set, Po (dt) = 1/ N, where N is the 
cardinality of the heuristic-importance 
set. We then set Po (dt) for all dj not in 
the heuristic-importance set to the 
greater of 10-3 or the prior probability 
on dj• We use the threshold of 10-3 so 
that we can expect each disease to be 
instantiated during simulation a 
number of times before the sampling 
distribution is updated based on the 
simulation's probability estimates. We 
update the sampling distribution after 
the first 6,000 trials of simulation. 
Thus, we expect each disease not in 
the heuristic-importance set to be in-

stantiated at least 6,000 x 10-3 = 6 
times. The expected number of instan-
tiated diseases not in the heuristic-
importance set is approximately 1, 
based on the prior probabilities of 
disease and the threshold of 10-3 that 
we use. Thus, the expected total 
number of diseases instantiated per 
trial is about 2. The self-importance 
update to the sampling distribution is 
given by (16) where get) = t/3,000. 
Thus, during the first update of the 
sampling distribution P', we weight 
be estimates of the simulation 
Pcurrent (dt I F) twice as much we weight 
the original sampling probability P' 0 

(dt). The simulation performs a total 
of 40,000 trials, updating the sampling 
distribution every 3,000 trials (after 
the first 6,000) with the same updating 
function. 

4. Discussion 

Although our approach to develop-
ing the QMR-DT model is to use as 
much of the QMR KB as possible, the 
current QMR-DT model does not use 
all of the information in the QMR KB. 
For instance, in the QMR-DT belief 
network, we do not use the QMR 
knowledge of evoking strengths, dis-
ease-to-disease relationships, and 
finding-to-finding relationships [10, 
40]. We plan eventually to explore the 
possibility of incorporating these and 
other features of theQMR KB in the 
QMR-DT model. Other noteworthy 
issues in the development of the prob-
abilistic model and inference al-
gorithms include (1) the derivation of 
the prior probabilities, (2) the deriva-
tion of the leak probabilities, and (3) 
the estimates of the simulation al-
gorithm. We address each of these 
issues in turn. 

We encountered problems in deriv-
ing the prior probabilities of diseases 
to use in the model. We could not 
derive a one-to-one mapping between 
ICD-9-CM terms and QMR diseases. 
We attempted to remedy this problem 
by using subjective estimates for prior 
probabilities of diseases where the 
mapping was inexact. In addition, the 
NCHS hospital-discharge statistics are 
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only an approximation of the prior 
probabilities of diseases. There may 
be biases in the process of recording 
the discharge diagnoses. We believe, 
however, that the NCHS discharge 
statistics provide a reasonable first 
approximation for our initial investi-
gation. 

The current QMR-DT model uses 
the fitted leak probabilities from an 
assessment of findings of various types 
(history, physical, and laboratory 
tests) among imports of the range 1 to 
5. We observe a substantial variation 
in the assessed P(D! I f) at certain 
import values (Table 2). We have yet 
to analyze this variation to determine 
whether it arises as a result of error in 
the assessment process, of variation in 
assessments across finding types, or 
for some other reason. It is possible 
that the leak probabilities will depend 
on the type of finding. Thus, in future 
research, we should perform a more 
detailed determination and sensitivity 
analysis of the leak probabilities used 
in the QMR-DT model. 

Several researchers have successful-
ly used belief networks to model medi-
cal domains for diagnostic inference. 
For example, researchers in the Path-
finder project use a belief network to 
model lymph-node pathology [11]. 
The primary difference between the 
QMR-DT belief-network model and 
the Pathfinder model is that the latter 
assumes that diseases are mutually 
exclusive. This assumption is accurate 
in lymph-node pathology, since dis-
eases that occur simultaneously typi-
cally occur in different lymph nodes or 
in different regions of a single lymph 
node. In internal medicine, however, 
a patient often may present with more 
than one disease. 

Researchers in the MUNIN project 
have built a belief network for model-
ing nerve disorders [41]. Like the 
QMR-DT belief-network model, the 
MUNIN model does not make the 
assumption of mutually exclusive dis-
orders. Although the MUNIN model 
contains over 1,000 nodes with ap-
proximately 2,500 dependencies 
among them, the connectivity of the 
network is such that exact inference 
algorithms based on those developed 
by Lauritzen and Spiegalhalter [42] 
can be used on the MUNIN network. 
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The QMR-DT belief network, how-
ever, is not amenable to these types of 
exact algorithms. 

Since it is not practical to use exact 
algorithms to compute posterior prob-
abilities of diseases from the QMR-
DT belief network given an arbitrary 
set of findings, we use a simulation 
algorithm. The algorithm that we de-
scribed in Section 3.3 produces es-
timates of the posterior marginal 
probabilities of diseases fy dt I F) that 
converge in the limit to the posterior 
marginal probabilities of diseases 
P(dt I F) implied by the QMR-DT 
belief-network model. We attempt to 
decrease the time of convergence by 
incorporating two heuristics into the 
simulation: importance sampling and 
self-importance sampling. We derived 
empirically many of the constants that 
we use in the simulation. Using the 
constants we report in Section 3.3, we 
find that separate executions of the 
simulation produce similar posterior 
distributions on test cases of a total of 
30 positive and negative findings. 

Note that although we use a simula-
tion algorithm, which itself uses 
heuristics, these heuristics are used to 
decrease the time of convergence, and 
they do not change the posterior prob-
abilities that are derived. We use 
simulation algorithms solely to com-
pute the posterior marginal prob-
abilities of diseases implied by the 
QMR-DT belief-network model, 
rather than to compute heuristic 
scores according to some other model. 

Ideally, to examine the conver-
gence properties of the simulation that 
we are using, we would like to know 
the posterior distribution implied by 
the QMR-DT belief-network model -
that is, a gold-standard distribution. 
For small test cases, we can use the 
quickscore algorithm developed by 
Heckerman [21] to compute the exact 
posterior marginal probabilities of dis-
eases. This algorithm, which has a 
computational time complexity that 
increases exponentially with the 
number of positive manifestations in a 
diagnostic case, can compute the post-
erior marginal probabilities for a case 
of approximately nine findings in 
about one minute on a Macintosh IIci. 
Because of quickscore's computation-
al requirements on cases with a large 

number of pOSItive manifestations, 
however, we can not use the algorithm 
for inference on many diagnostic cases 
that are useful for testing the QMR-
DT belief-network model. 

On smaller test cases, we compared 
the distributions produced by our 
simulation to those produced by 
quickscore. We are confident that the 
distributions produced by the simula-
tion are reasonably close to the dis-
tributions implied by the QMR-DT 
belief-network model because of (1) 
the similarity of the simulation's dis-
tributions to those of quickscore on 
smaller test cases, and (2) the repro-
ducibility of the simulation's estimates 
on separate executions of the simula-
tion on larger test cases. In Part II of 
this two-part series of papers, we 
analyze more formally the diagnostic 
performance of QMR-DT, using the 
simulation algorithm on several types 
of test cases. In addition, we analyze 
empirically the contribution of the 
importance sampling and self-import-
ance sampling components of the al-
gorithm. 

We intend to augment the current 
QMR-DT belief network model with 
additional relationships among find-
ings and among diseases. In addition, 
we intend to restructure the depen-
dencies in the model to more accurate-
ly depict historical findings. We also 
plan to add intermediate pathophy-
siologic states, where necessary, to 
more accurately depict conditional 
independencies. Our belief is that as 
we more accurately model the rela-
tionships among disease and findings 
in internal medicine, the diagnostic 
performance of the QMR-DT system 
will continue to improve. All of the 
assumptions that we make in the cur-
rent QMR-DT model are explicit. 
Based on empirical results, we can 
selectively address the particular as-
sumptions that we identify as being 
most crucial to accurate diagnostic 
performance. 
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Appendix: 
Notation and Abbreviations 

1. Algorithms 

TB Tabular Bayes' algorithm. A 
heuristic algorithm that uses 
Bayes' rule under the assump-
tions of 1) mutually exclusive 
disease hypotheses and 2) condi-
tional independence of findings 
given any disease 

ITB Iterative tabular Bayes' al-
gorithm. A heuristic algorithm 
that applies TB successively to 
various subsets of the set of 
findings. 

2. Knowledge base (KB) 

di A disease in the KB 
jj A finding in the KB 
m The number of diseases III the 

QMR-DT KB 
n The number of findings III the 

QMR-DT KB 
F A set of findings that are ob-

served 
I FI The number of elements of F. 

Also, m' = IFI 
F+ A set of positive findings that 

are observed 
F- A set of negative findings that 

are observed 
H A hypothesis of diseases, III 

which each disease is assigned a 
value of present or absent 

][(f) The set of diseases that are pa-
rents of finding f (that is, those 
diseases with an arc leading to f). 
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