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@ 1. Introduction

The INTERNIST-1 system was de-
veloped at the University of Pitts-
burgh as an experimental decision-
support tool in general internal
medicine [1-4]. When presented with
findings from a patient’s history, phys-
ical examination, and laboratory-test
results, INTERNIST-1 used a heuris-
tic reasoning method with a quasi-
probabilistic scoring scheme to suggest
likely disease candidates and to guide
the physician in the patient’s workup.

In 1985, an extension of the IN-
TERNIST-1 knowledge base (KB)
was incorporated into a successor to
INTERNIST-1, called Quick Medical
Reference (QMR®) 3, 5]. QMR uses

€® QMR is a registered trademark of the Uni-
versity of Pittsburgh.

Probabilistic Diagnosis Using

a Reformulation

of the INTERNIST-1/7QOMR
Knowledge Base

I. The Probabilistic Model and Inference Algorithms

Abstract: In Partl of this two-part series, we report the design of a
probabilistic reformulation of the Quick Medical Reference (OMR) diag-
nostic decision-support tool. We describe a two-level multiply connected
belief-network representation of the QMR knowledge base of internal
medicine. In the belief-network representation of the QMR knowledge
base, we use probabilities derived from the QMR disease profiles, from
QMR imports of findings, and from National Center for Health Statistics
hospital-discharge statistics.

We use a stochastic simulation algorithm for inference on the belief
network. This algorithm computes estimates of the posterior marginal
probabilities of diseases given a set of findings. In Part Il of the series, we
compare the performance of QMR to that of our probabilistic system on
cases abstracted from continuing medical education materials from
Scientific American Medicine. In addition, we analyze empirically several
components of the probabilistic model and simulation algorithm.

Key-Words: Expert Systems, Computer-aided Diagnosis, Probabilistic
Inference, Belief Networks

a new inference algorithm running on
an IBM-compatible personal compu-
ter. QMR provides a clinician with
many functions to access the QMR
knowledge base. The developers of
QMR classify the functions of the
system into three levels [6]. First, a
clinician can use QMR as an electronic
textbook of medicine to display the
findings associated with a disease, the
diseases associated with a finding, or
diseases related to a particular dis-
ease. Second, a clinician can use QMR
as a diagnostic spreadsheet to show
how particular groups of diseases and
findings may co-occur. Third, a clini-
cian can use QMR as an expert-con-
sultant program, to analyze a diagnos-
tic case. In this mode, QMR can
provide diagnostic hypotheses con-
taining multiple, pathophysiologically
related diseases, or critique a diagnos-

tic hypothesis that the clinician sug-
gests.

In developing a decision-theoretic
version of QMR, which we call Quick
Medical Reference, Decision Theoretic
(OMR-DT), we are currently most
interested in addressing the diagnostic
functions contained in the expert-con-
sultant mode of QMR. By a decision
theoretic system, we mean a system
that conforms to the principles of
decision theory. Decision theory uses
the axioms of probability theory and
utility theory to provide a framework
for choosing among alternative
courses of action. Probability theory is
a logic of degrees of belief, containing
a set of axioms for expressing degrees
of belief in propositions and for com-
bining beliefs to derive measures of
belief in related events. Utility theory
comprises a set of axioms for ascribing
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Fig.1 The two-level belief-network representation of the current QMR-DT KB. The disease
nodes are labeled d,,...,d, and the finding nodes are labeled fi,..., f,,. The probabilistic
dependencies between diseases and findings are specified with directed arcs between
nodes, where an arc points in the causal direction that we assume; that is, we assume that

diseases cause findings.

numerical values to outcomes of
events [7].

Our research to date has focused on
building the probabilistic component
of QMR-DT: a probabilistic model
and method of inference for diagnosis
in internal medicine. The initial goal
of the project is to evaluate the per-
formance of a probabilistic version of
OMR, investigating the computation-
al and representational tractability of
a probabilistic approach. We are de-
veloping incrementally the QMR-DT
system. More specifically, we build
the first probabilistic mode! using as
much of the QMR KB as possible, we
test the accuracy of the inferential
algorithms on this simple model, then
we refine the model and algorithms,
successively based on the performance
ot the system. Ultimately, we plan to
add a utility model to the probabilistic
component to make a complete deci-
sion-theoretic model.

We are currently using the INTER-
NIST-1 KB (circa 1986), rather than
the more recent QMR KB. These two
KBs are quite similar but the QMR
KB contains newer disease profiles
and updates of profiles from the IN-
TERNIST-1 KB. The methods in this
paper are applicable to transforming
the QMR KB as well. For simplicity,
where the distinction between the IN-
TERNIST-1 KB and QMR KB is
inconsequential, we will refer to the
INTERNIST-1 KB as the OMR KB.
The reader should note, however, that

our probabilistic reformulation is
based on the INTERNIST-1 KB.

We believe there are many reasons
for seeking probabilistic systems in
medicine. By using a probabilistic
model, we make explicit our assump-
tions — those used in building both the
KB and the algorithms for inference.
Moreover, such a KB is built on the
well-developed and widely understood
language of probability, providing re-
searchers with a theoretical basis for
creating diagnostic systems and a com-
mon vocabulary for [acilitating discus-
sion and collaboration. The use of a
common language also makes it poss-
ible to share independently developed
probabilistic inference algorithms and
KBs. We can, for example, incorpo-
rate statistics on the local prior proba-
bility of disease in various clinical
settings. For those diseases about
which we have sparse statistical data,
we can rely on expert subjective es-
timates of prior probability. We can
update these subjective probabilities
incrementally as local clinical data are
accumulated [8, 9].

The current output from QMR-DT
is a differential of leading diagnoses
with a posterior marginal probability
associated with cach disease. We be-
lieve that a probabilistic differential is
a more meaningful measure of belief
than is a differential with a heuristic
score. Furthermore, with the develop-
ment of a utility model, we can use
these probabilities for expected-utility

decision making, thus building a deci-
sion-theoretic system on top of our
probabilistic one. We plan eventually
to use the results of the expected-
utility component of the system for
cost-effective  test ordering and
therapeutic planning.

We chose QMR as the system to
reformulate into a decision-theoretic
version for several reasons. First, the
QMR KB is the culmination of over
20 person ~ years of work; Version
10.729 (dated 6/14/89) of the QMR
KB covers over 600 diseases and 4,000
findings [10]. Since the QMR KB is so
large, inference on a probabilistic ver-
sion of it presents a significant chal-
lenge. Second, the task of diagnosis in
internal medicine can be a formidable
one, since a patient often has more
than one disease. We cannot make the
simplifying assumption that only a
single disease is present, as has been
done in some other domains where
probabilistic inference has been ap-
plied successfully [11, 12]. Third, the
developers of INTERNIST-1 and
OMR have demonstrated that the sys-
tems perform well on difficult cases: in
a retrospective study, INTERNIST-1
performed comparably to hospital
clinicians on cases from clinicopatho-
logical conferences (CPCs) [1], and in
a prospective study, QMR performed
better than the ward team on diagnos-
tically chalienging cases [13]. These

results give us reason to believe that a @

probabilistic reformulation of QMR
also might perform well as a diagnostic
decision-support system, since they
indicate that the relationships in the
QMR knowledge base can support
accurate diagnostic inference. Our re-
search hypothesis is that a probabilis-
tic reformulation of QMR will also
provide accurate diagnostic perform-
ance relative to QMR.

In this paper, we build on the work
of many researchers in probabilistic
inference, probabilistic inference in
medicine, and probabilistic inference
in medicine using belicf networks (see
[14-16] for a review of probabilistic
inference on belief networks). In Sec-
tion 2, we describe how we built the
QMR-DT model. Section 3 presents
the algorithms used for inference on
the model. In Section 4, we discuss
limitations of the model and directions
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for future research. The Appendix
contains a summary of the notation
used in this paper. In Part II of this
series we discuss our laboratory evalu-
ation of the probabilistic reformula-
tion of QMR relative to QMR.

2. The QMR-DT Model

The QMR-DT model is built on a
belief-network representation. A be-
lief network is a graphical representa-
tion of probabilistic dependencies
among variables [17]. Belief networks
are also known as Bayesian belief
networks and causal probabilistic net-
works. More specifically, a belief net-
work is a directed acyclic graph in
which each node represents a random
variable or uncertain quantity [16].
The arcs in the graph often denote
direct causal influences between var-
iables, where the strength of the influ-
ence is specified by tables of condi-
tional probabilities. Conversely, the
absence of an arc between two nodes
denotes an assertion of independence
between the corresponding random
variables. Many researchers have dis-
cussed the promise of using belief
networks as an efficient, expressive
knowledge representation for expert
systems that reason under uncertainty
[11, 15, 16, 18-20].

We have reformulated the associa-
tions between diseases and findings of
the QMR disease profiles (1]} into a
belief-network representation. This
reformulation is also described in [21,
22]. The QMR-DT KB consists of a
two-level belief network of n diseases
and m findings, as shown in Figure 1.
Other work on inference using two-
level networks appears in [23-25].
Each of the n diseases {d,...d,} may
be present or absent in a patient, and
each of the m findings {fi...f,,} may
be unobserved or observed to be pre-
sent or absent. We refer to a disease
hypothesis A as an assignment of
presence or absence to each disease in
{d1 e d,,}:

H = {d; = present | d; € H*}
U {d; = absent | d; e H™}

where H* is the set of all diseases
asserted to be present and A~ is the

set of all diseases asserted to be ab-
sent. Note that | HY | + | H™ | = n.

An arc of probabilistic dependency
between nodes representing a disease
d and finding f exists in the QMR-DT
KB if and only if there exists a link
between 4 and f in the INTERNIST-1
disecase profile of d. The QMR-DT
KB thus contains n = 534 adult dis-
eases and m = 4,040 findings, with
40,740 arcs depicting dependencies
between diseases and findings. Recall
the OMR-DT KB is based on the
INTERNIST-1 KB, which also con-
tains 534 adult diseases and 4,040
findings. We define the QMR-DT
model as the combination of the two-
level QMR-DT belief network de-
picted in Figure 1 and the assumptions
that we describe in Section 2.1. Thus,
we distinguish the QMR-DT model
from the probabilistic inference al-
gorithms that we apply to the model.

2.1 Assumptions in the Model

To reduce the representational and
computational complexity of the cur-
rent version of QMR-DT, we made
several simplifying assumptions. In
this section, we describe specific ex-
amples where these assumptions are
not accurate. Although we know that
the assumptions are inaccurate in such
cases, we are taking an incremental
approach in developing the QMR-DT
model: we examine the performance
of the system with these assumptions
with the intention of eventually mod-
ifying those that appear most critical
to accurate diagnostic performance.

Assumptions evident from Figure 1
include marginal independence of dis-
eases and conditional independence of
findings given any hypothesis of dis-
eases. We model both findings and
diseases as binary variables. Also, we
model the influence of multiple dis-
eases on a finding assuming causal
independence. We discuss causal inde-
pendence in detail in Section 2.1.4.
Many of these assumptions have been
used in previous probabilistic diagnos-
tic systems [26]. The major assump-
tion found in many of these systems,
which we do not make in QMR-DT, is
that the patient has at most one dis-

ease. In fact, we allow for the possibil-
ity that the patient may have any
number of diseases. In the remainder
of Section 2.1, we address the
strengths and weaknesses of the as-
sumptions that we make in the current
QMR-DT model.

2.1.1 Marginal Independence
of Diseases

The absence of arcs among disease
nodes in the belief network of Fi-
gure 1 denotes the assumption that
diseases are marginally independent.
Under this assumption, we can com-
pute the probability of a disease hy-
pothesis H from the prior probabilities
of the states of the diseases in H:

P(H)=dH+P(d,~+) II P;), ()

where d is the event that disease d; is
present, and d; is the event that
disease d; is absent. We have no
reason to question the assumption of
marginal independence between appa-
rently unrelated diseases in the QMR-
DT KB such as myocardial infarction
and primary hyperparathyroidism. On
the other hand, some disease combi-
nations in the QMR-DT KB are clear-
ly dependent. For example, the prob-
ability of congestive heart failure is
greatly increased in a patient with
significant aortic stenosis.

Although the QMR KB represents
relationships among diseases, we have
chosen initially to simplify QMR-DT
by not including these relationships in
the belief-network model. As we dis-
cuss in Section 3.2, however, we do
use the relationships among diseases
in one of our heuristic scoring func-
tions to help improve the speed of
inference.

2.1.2 Conditional Independence
of Findings

The absence of arcs among finding
nodes in Figure 1 denotes the assump-
tion that findings are conditionally
independent given any disease hy-
pothesis. Let F be a set of findings that
are observed for a particular patient,
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where m’ = | F|, F* is the set of
findings observed to be present, and
F~ is the set of findings observed to be
absent. Note that many findings may
be unobserved and thus appear in
neither F* nor F~.

The assumption of conditional in-
dependence of findings given any hy-
pothesis allows us to compute the
conditional probability of a set of
findings F given a disease hypothesis
H as follows:

P(F|H) = P(F* | H) P(F~ |H) =
fgf(ﬁ (B TP 1) @)

An example of a belief network in
which this conditional-independence
assumption is valid appears in Fi-
gure 2. This example depicts a condi-
tional-independence assumption in
the QMR-DT belief network. Sup-
pose that we know that the only dis-
ease present in a particular patient is
bronchial adenocarcinoma. Then, we
have a certain belief (probability) that
the patient has blood-streaked
sputum. Suppose we are then told that
the patient’s endobronchial biopsy
suggests adenocarcinoma. Since this
new information does not change our
belief that the patient has blood-

Fig.2 A belief net-
work representing
conditional inde-
pendence of the
findings adenocar-
cinoma on endob-
ronchial biopsy and
blood-streaked
sputum given that
bronchial adenocar-

cinoma is present.

(a)

PRIMARY
HYPERPARA-
THYROIDISM
CONSTIPA-
TION
®)

Fig.3 Belief networks modeling conditional independence of findings given a disease. (a)
The network displays the belief that muscle weakness and constipation are conditionally
independent given the intermediate pathophysiologic state of increased serum calcium. (b)
The network reflects the belief that muscle weakness and constipation are conditionally
independent given primary hyperparathyroidism. Although the model in {a) is a more
accurate depiction of the dependencies among variables, we currently use the model in (b}

as an approximation.

streaked sputum’, given that the dis-
ease state is bronchial adenocarcino-
ma only, we can compute P(BRON-

CHOSCOPY  ENDOBRONCHIAL  BIOPSY
ADENOCARCINOMA, SPUTUM  BLOOD
STREAKED | only BRONCHIAL ADENO-

CARCINOMA) by multiplying the two
component probabilities P (BRONCHO-
SCOPY ENDOBRONCHIAL BIOPSY ADENO-
CARCINOMA | only BRONCHIAL ADENO-
carciNoMa) and P(SPUTUM BLOOD
STREAKED | only BRONCHIAL ADENO-
CARCINOMA).

Figure 3(a) shows a belief network
representing an example in which
there exists an intermediate pathophy-
siologic state between a disease and
that disease’s manifestations. Note
that the assumption of conditional
independence is accurate for muscle
weakness and constipation, given in-
creased serum calcium as depicted in
Figure 3(a). On the other hand, mus-
cle weakness and constipation are not
conditionally independent given prim-
ary hyperparathyroidism, as depicted
in Figure 3(b) and as represented cur-
rently in the QMR-DT KB. The inde-
pendence relationship depicted in 3(b)
is less accurate because of the exist-
ence of the intermediate state of in-
creased serum calcium: Knowledge of
constipation increases the belief in
muscle weakness because it increases
the belief in increased serum calcium,
even when we are given that primary
hyperparathyroidism is present. Al-
though the model in Figure 3(a) is a
more accurate representation of the
dependencies among the variables, we
currently use the model in 3(b) as an
approximation.

2.1.3 Binary Diseases and Findings

We assume each finding and dis-
ease to be binary: diseases are either
present or absent, and observed find-
ings are either present or absent. This
assumption simplifies the probabilistic
transformation of the QMR KB,
which likewise contains binary find-
ings and diseases. Finer gradations in
the representation of findings and dis-
eases not only would be more intui-

' In this example, we ignore the event that the

biopsy itself may cause blood in the sputum.
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tive, but also would strengthen the
correctness of the assumption of con-
ditional independence of findings- gi-
ven any disease hypothesis. Consider
the example from the QMR-DT belief
network of conditional independence
depicted in Figure 4(a). Suppose that
we condition on (assume) the pre-
sence of La&nnec’s cirrhosis — a dis-
ease with a wide spectrum of severity.
The probability of decreased hepatic
arterial vascularity is affected by the
presence or absence of increased pro-
thrombin time, and vice versa, even
given that we know La&nnec’s cir-
rhosis is present. That is, knowledge
about one of the findings gives us
information on the severity of the
disease — more information than we
gain by conditioning on simply the
presence of the disease. Specifically,
P (DECREASED HEPATIC ARTERIAL VASCU-
LARITY | only LAENNEC’S CIRRHOSIS) iS
less than P(DECREASED HEPATIC ARTE-
RIAL VASCULARITY | only LAENNEC’S
CIRRHOSIS and INCREASED PROTHROMBIN
TIME), since knowledge of increased
prothrombin time shifts our belief to a
more severe form of Laénnec’s cir-
rhosis, increasing the probability of
decreased hepatic arterial vascularity.

A more accurate representation of
the conditional independence appears
in Figure 4(b), in which we model
Laénnec’s cirrhosis as being absent,
mild, or severe. The assumption that
P (DECREASED HEPATIC ARTERIAL VASCU-
LARITY | only SEVERE LAENNEC’S CIR-

RHOSIS) is equal to P (DECREASED HEPA-
TIC ARTERIAL VASCULARITY | only SE-
VERE LAENNEC’S CIRRHOSIS and IN-
CREASED PROTHROMBIN TIME) is more
accurate than the assumption that we
make in the case of a binary disease
modeling of Laénnec’s cirrhosis. Be-
cause we have already conditioned on
the severity of disease, knowledge of a
finding such as increased prothrombin
time tells us little more about the
severity of Laénnec’s cirrhosis, thus
providing only a small update to our
belief about decreased hepatic arterial
vascularity. Although the model in
Figure 4(b) is a more accurate rep-
resentation of the conditional inde-
pendence between the two findings,
for simplicity, we currently model dis-
eases and findings in QMR-DT as
binary variables as in Figure 4(a).

2.1.4 Causal Independence

We model the effects of multiple
diseases on a single finding by assum-
ing that the effects of the diseases on
the finding occur independently. This
assumption, called causal independ-
ence, has been described by a number
of researchers, including Good [27].
We use a noisy-OR gate to model
causal independence [16]. Several re-
searchers have described the applica-
tion of the noisy-OR gate to modeling
the effects of diseases on manifesta-
tions [19, 21-23]. In addition, the
developers of INTERNIST-1 implicit-

LAENNECS
CIRRHOSIS:

ABSENT,
PRESENT

(@

(®)

Fig.4 Two belief networks that have different granularity of severity of disease. {(a)
Laénnec's cirrhosis is modeled as a binary disease: It can either be present or absent (b)
Laénnec’s cirrhosis is modeled with three states: absent, mild, or severe. In the QMR-DT KB,
we currently model diseases and findings as binary variables, as in (a).

ly assumed a noisy-OR gate interac-
tion [28]. Under the assumption of a
noisy-OR gate, we can avoid repre-
senting the full set of conditional prob-
abilities of the state of a finding given
each possible state of the finding’s
parents. Consider a belief net with
binary finding f, where f has binary
parents dy, dy, . . .,d. To construct the
complete conditional probability table
associated with the arcs from
dy,d,,...,d;tof, we need to acquire 2¢
conditional probabilities. If we assume
causal independence, we need to ac-
quire only k conditional probabilities
of the form P(f* |only di)?, for
1 =i <k.

As its name implies, the causal-
independence assumption maintains
that the mechanisms by which diseases
cause a finding operate independently
of one another and independently of
any other events that may cause the
finding to occur, such as the influence
of other findings. Figure 5 shows a
belief network for a noisy-OR influ-
ence of two diseases d; and d, on a
single finding f, as depicted by
Heckerman in [21]. Assuming causal
independence, we can model the influ-
ence of multiple diseases on a finding
using the noisy-OR gate:

P(f~ | onlydi and d5) = P(f~ | only
di’) P(f™ | only d7). 3)

The intuition behind (3) is that the
probability of finding f not occurring
(given a hypothesis H) is just the
probability that, of the two mechan-
isms that can cause f to occur, neither
succeeds in causing f to occur. Be-
cause we have modeled the findings as
binary variables, we can rewrite (3) as:

P(f* | only d{ and d5") =
1—[1=P(f* | onlyd{)][1-P(f* | on-
ly d5")]. 4)

% We distinguish P(f* |only d) from
P(f* | di"), where the former denotes the
probability of the event that f occurs given
that only disease d; occurs, and. for all j # i, d;
are absent. By contrast, we use the notation
P(f* | d) to mean the probability of the
event that f occurs given that d; occurs and
for all j # i, d; occur based on their prior
probabilities.
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In the more general case of a disease
hypothesis H, we can compute the
probability of the presence of f given
H as:

P(f* | H) =
=1- I [1-P(f*|onlyd!)],(5)
e HY (Y x(f)

where 7(f) are the parents of f — that
is, the diseases corresponding to those

P(f*lonly d;) P(f* | only d3)

OR

Fig.5 A belief network depicting the caus-
al-independence assumption of the noisy-
OR gate. Consider a disease d; that causes
finding fthrough some mechanism, and a
disease d, that causes fthrough some other
mechanism. This network depicts the as-
sumption that d; and d, cause fthrough
intermediate mechanisms that are indepen-
dent of each other. If d, is.present, it may or
may not initiate a mechanism that causes f
to be present. Our belief that d, initiates the
mechanism “d; causes f” with probability
P(f* | only d7) is represented by the arc
from the node labeled “d;"” to the node
labeled “d, causes . The absence of an arc
between the nodes labeled “d; causes "
and “d, causes f” represents an assumption
of causal independence. That is, the prob-
ability that the mechanism “d, causes " is
active is not affected by whether the
mechanism “d, causes f" is active. Also, the
absence of the arc from the node “d," to the
node “d; causes " represents the causal
independence assumption that the probabil-
ity that the mechanism “d, causes f" is
active is not affected by the presence or
absence of d,. The same causal independ-
ence assumptions apply to the mechanism
by which d, causes f. The node with the
double boundary is a deterministic node,
which represents the belief that, if either of
the two intermediate mechanisms occurs
(that is, dq or d, succeeded in initiating the
mechanisms by which it caused f), fwill be
present with certainty. (Adapted with per-
mission from [21] Figure 2, page 165.)

nodes in the QMR-DT belief network
that have arcs directed to f. The prob-
ability ‘of the absence of f is given
simply by 1 — P(f* | H).

An example found in the QMR-DT
KB where the causal-independence
assumption is accurate, is pictured in
Figure 6. In this example, diver-
ticulitis may cause a severe mucosal
inflammation in the diverticulum,
which in turn causes mucosal break-
down and local hemorrhage, resulting
in a positive guaiac test. Right colon
cancer may cause a mucosal necrosis,
which in turn causes mucosal break-
down and local hemorrhage, resulting
in a positive guaiac test. Accordingly,
in the example depicted in Figure 6,
the variable DIVERTICULITIS CAUSES &
GUAIAC TEST corresponds to the event
that severe mucosal inflammation in
the diverticulum is present or absent,
and the variable RIGHT COLON CANCER
CAUSES @ GuAIAC TEST refers to the
event that mucosal necrosis is present
or absent. In general, the probability
that mucosal necrosis is present in the
diverticulum is largely unaffected by
either the presence of diverticulitis or
the presence of mucosal inflammation
in the diverticulum. Also, the proba-
bility that severe mucosal inflamma-
tion is present in the diverticulum is
largely unaffected by either the pre-
sence of right colon cancer or the
presence of mucosal necrosis. Because
the mechanisms by which diverticulitis

and right colon cancer cause a positive
guaiac test operate largely indepen-
dently, we can justifiably apply the
noisy-OR gate to model the influence
of the two diseases on a positive
guaiac test.

The causal independence assump-
tion is less accurate in cases where
diseases operate through a common
pathway to cause a finding. Figure 7
shows a belief network modeling the
effects of plasma-cell myeloma and
primary hyperparathyroidism on mus-
cle weakness. Note the common inter-
mediate state of increased serum cal-
cium. As a first approximation, the
QMR-DT KB currently models this
interaction with a noisy-OR-gate as in
Figure 5, where d; = PLASMA CELL

MYELOMA, d; = PRIMARY HYPER-
PARATHYROIDISM, and f = MUSCLE
WEAKNESS.

2.1.5 Findings as Manifestations of
Disease

There are various possible relation-
ships between a disease and a finding.
However, findings are all modeled as
manifestations of disease in the cur-
rent QMR-DT belief network. This
assumption is generally not correct for
historical findings. For example,
neither a history of cigarette smoking
nor a history of diabetes mellitus fol-
lows from acute myocardial infarction,
as represented by the belief network

RIGHT COLON
CANCER CAUSES
@ GUATAC TEST

Fig.6 A belief net-
work representing
the noisy-OR-gate
interaction between
diverticulitis, right
colon cancer, and a
positive guaiac test,
as modeled in the
current QMR-DT KB.
This network mad-
els the belief that
the mechanisms by
which the two dis-
eases may cause the
finding of a positive
guaiac test operate
independently.
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in Figure 8(a). A more accurate mod-
el of the influence of these two find-
ings on acute myocardial infarction is
pictured in Figure 8(b).

When we model historical findings
as manifestations of disease, we intro-
duce incorrect causal and conditional
independences. For example, in such
cases, causal independence is an inac-
curate assumption, because we would
not necessarily expect a historical find-
ing to be absent when all the diseases
associated with it fail to occur, since
historical findings are not caused by
disease. Conditional independence
also is an inaccurate assumption, as
demonstrated by the following exam-
ple: Suppose we have a patient about
which we originally have no data. We
have a certain prior belief about
whether this patient has a history of
cigarette smoking. Suppose we are
told that the only disease that the
patient has is myocardial infarction.
The information that the patient has
myocardial infarction increases our
belief that the patient has a history of
cigarette smoking; let us suppose our
probability of smoking changed from
probability P; to probability P>. Sup-
pose we are next told that the patient
has a history of diabetes mellitus. This
new information decreases our belief
that the patient has a history of
cigarette smoking, P,, since the his-
tory of diabetes mellitus teads to ac-
count for the myocardial infarction,
and smoking is less needed as an
explanation. In the first version of the
OMR-DT KB, which we describe in
this paper, we model historical find-
ings as in Figure 8(a), although the
relationship depicted in Figure 8(b) is
more accurate. However, we model
the historical findings age and gender
not as in Figure 8(b), but rather as in
8(a) by conditioning the prior prob-
abilities of diseases on age and gender.
We describe the derivation of prior
probabilities of diseases in Section
2.2.1.

Using the assumptions discussed in
this Section, we can derive the connec-
tivity of the QMR-DT belief network
from the QMR KB. In Section 2.2, we
discuss knowledge acquisition that we
performed to add probabilities to the
belief network.

Fig.7 A belief-network representation of
two diseases (plasma cell myeloma and
primary hyperparathyroidism) that operate
through a common intermediate state {in-
creased serum calcium} to cause a finding
{muscle weakness).

2.2 Probabilities Used in the Model

Probabilities used in the QMR-DT
model were derived both from the
numbers contained in the QMR KB
and from disease statistics. The neces-
sary probabilities for our two-level
belief network include the prior prob-
abilities of diseases, and the condition-
al probabilities relating findings to
disease. We describe the derivation of
each of these in turn.

2.2.1 Prior Probabilities of Diseases

Our probabilistic model requires
that prior probabilities on diseases be
made explicit. We derived prior p