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Abstract 

The Pittsburgh Center of Excellence in Public Health Informatics has developed a probabilistic, 

decision-theoretic system for disease surveillance and control for use in Allegheny County, PA and 

later in Tarrant County, TX.  This paper describes the software components of the system and its 

knowledge bases.  The paper uses influenza surveillance to illustrate how the software components 

transform data collected by the healthcare system into population level analyses and decision 

analyses of potential outbreak-control measures.  

 

1 Introduction 

 

The Center for Advanced Study of Informatics in Public Health (CASIPH) is developing and 

integrating software to create a probabilistic, decision-theoretic system for disease surveillance and 

control and is translating this system into practice at the Allegheny County Health Department 

(ACHD). 

This work represents a new paradigm for disease surveillance, based on probability and decision 

theory.  The approach integrates Bayesian diagnosis of individual patients with Bayesian “diagnosis” 

of a population.  It is capable of estimating the current incidence of influenza in a population from data 

in electronic medical records (EMRs).  It is also able to estimate the set of parameters required to 

initialize a SEIR epidemic model.  It is thus possible to initialize an epidemic model so as to match the 

current disease status of a population.  The epidemic model is then used in a decision model of 

available control measures.  This unique capability will enable decision makers to use epidemic 

models more effectively when selecting control measures for influenza and other outbreaks. 
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Figure 1 shows the software components (blue rectangles) of the probabilistic, decision-theoretic 

system and how they combine to form an end-to-end disease surveillance system.  This paper describes 

each software component, how information flows in the system, and the level of integration of the 

components that we have achieved to date. 

Figure 1. Information flow in the probabilistic, decision-theoretic disease surveillance system.  

 

Legend: light blue rectangles, software components:  CDS, Case Detection System; ODS, Outbreak 

Detection and characterization System; hexagons, knowledge bases; rounded rectangles, data and 

analyses; thin arrows, user interfaces; large arrows indicate that the components exchange data 

electronically in the direction indicated; dotted arrow indicates a future connection sending case data 

collected by nurse investigators from Trisano
®
 to CDS.   

 

2 Software Components 

This section describes the software components depicted in Figure 1. 

2.1 Phoenix  

The role of Phoenix is to receive patient data from an EMR and respond to queries from the case 

detection system for patient data in standard form.  Phoenix receives EMR data as HL7 messages.  It 

then parses the messages, standardizes the extracted information, and stores it in a database.   

Phoenix comprises: 

 A database: The database uses multiple entity-attribute-value tables, a representation that we 

found necessary to meet the real-time processing requirement of the project.  Our initial 

implementation of the database used OpenMRS, which we extended with our own relational 

database schema.  However, OpenMRS was unable to keep up with the volume of patient data 

from the UPMC health system even after we modified it to run on the Oracle database 
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management system to take advantage of Oracle’s scalability and database optimizations.  Even 

with Oracle’s optimizations and scalability, a relational table design was too slow, necessitating 

the entity-attribute-value representation that we use currently.  

 HL7 parsers, for microbiology, chemistry, dictation, ADT, and radiology HL-7 feeds 

 A data viewer, which gives a clinical episode (e.g., emergency room visit) view of the data for 

internal development purposes and serves as a prototype for future end-user interface for a 

health department.  

 A data standardization program, which converts local UPMC Health System terminology to 

standard codes (UMLS, SNOMED-CT, LOINC).  

Phoenix is not a primary focus of our work; it can be understood as necessary scaffolding that we had 

to construct to access EMR data and allow for the use of standard terminology in the rest of the 

components.  We intend to discard it when EMRs are capable of providing Phoenix’s functionality to 

public health applications.   

2.2 Bayesian Case Detection System (CDS)  

The role of CDS is to infer a patient’s medical diagnosis from data in an EMR.  In particular, CDS 

computes a probabilistic differential diagnosis for each disease in a set of monitored diseases for every 

patient visit to a monitored facility.  A probabilistic differential diagnosis is a list of diseases with their 

posterior probabilities, given the available data.  At present, CDS processes all emergency department 

(ED) visits in monitored hospitals in Allegheny County, PA.  It computes both a posterior probability 

of influenza and a likelihood, P(patient data|influenza) for each visit.  It uses information extracted 

from ED dictations by a natural language processing algorithm as patient data for this inference.  CDS 

also computes a posterior probability for the majority of notifiable diseases in Allegheny County from 

the laboratory test results of ED patients. 

CDS uses Bayesian networks to compute a patient’s differential diagnosis.  A Bayesian network is a 

directed graph in which the nodes represent variables and probabilities distributions for the variables, 

given its parents (indicated by the directed arcs in the network).  A Bayesian network is a compact 

factorization of the joint probability distribution over the variables.  A Bayesian inference algorithm 

can compute any marginal or conditional probability from this factorization.  In particular, it can 

compute the probability that a patient has influenza, given that the patient has fever, but not cough. 

The influenza Bayesian network in CDS comprises a node that represents the diagnosis influenza and a 

set of nodes that represent the symptoms, signs, and laboratory results that may contribute to a 

diagnosis of influenza. There is a single diagnosis node and 367 finding nodes in the influenza 

Bayesian network.  The diagnosis node takes one of two values: true and false, where false means that 

the patient has an illness other than influenza.  The finding nodes take one of three values: present, 

absent, and unknown, where unknown means that the natural language processing cannot determine a 

value for the finding from the patient data.  

The notifiable-disease Bayesian networks represent only laboratory tests, at present.  Collectively, the 

set of “lab-only” Bayesian networks functions as a probabilistic Electronic Laboratory Reporting 

(ELR) system, which has equivalent functionality to the existing ELR paradigm when its probabilistic 

thresholds for reporting are set close to 1.0.  Ultimately, we intend for CDS to contain diagnostic 

models similar to the influenza Bayesian network for all notifiable conditions, syndromes of interest, 

and emerging diseases. 

The CDS runs once per day, at present, although it can process ED visits in real time.  In its current 

configuration, CDS obtains patient data from Phoenix for all patient ED visits that occurred in the 
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previous 24 hours. CDS then computes both the disease likelihood and the posterior probability of 

influenza and for the monitored notifiable diseases for each patient visit.  Only the disease likelihoods 

for influenza, P(findings | influenza), are sent to the Outbreak Detection and Characterization System 

(ODS) described in Section 2.4.  The data sent to ODS for each visit also include the date of visit, 

home zip code, patient age in deciles, and patient gender, although they are not used by ODS at 

present. 

CDS has been in production operation in Allegheny County since 2009.  It sends a daily report by 

email to the health department.  The report plots the CDS estimate of the number of influenza cases 

seen in the monitored EDs.  To generate the estimated number of influenza cases for a day, CDS sums 

the posterior probabilities of every patient seen in the EDs on that day to form an expected number of 

cases for the day.   

Tsui et al. describe CDS in detail in an accompanying paper in this issue of OJPHI. 

2.3 TriSano
®
 

TriSano
®
 Community Edition (CE) is open source “NEDSS” software used by the Utah Department of 

Health (http://www.trisano.com/). TriSano
®

 is representative of case investigation software in use by 

other health departments.  We are extending Trisano
®
 to support bidirectional communication with 

CDS, as depicted in Figure 1.   

In the CDS-to-Trisano
®

 “reporting” direction, we have implemented the capability for CDS to transmit 

cases to TriSano
®
 and for a TriSano

®
 end-user to set a disease-specific reporting threshold, Td, for a 

given disease d, within that application.  When P(d = present | patient data) > Td, the case appears in 

the TriSano
®
 inbox.    

In a future Trisano
®
-to-CDS connection, TriSano

®
 will send case data recorded by nurse investigators 

to CDS so that CDS can recompute the patient’s probabilistic differential diagnosis and in turn update 

ODS.  We also expect that the additional information and updated diagnosis may be of value in the 

clinical care of patients.  

2.4 ODS 

The function of the Bayesian Outbreak Detection and Characterization System (ODS) is to detect 

outbreaks and to estimate outbreak characteristics, such as infectious period, latent period, and Ro 

(reproductive rate). 

ODS integrates tightly with CDS.  As was stated earlier, for each patient who visits a monitored ED, 

CDS determines how likely that patient's findings match each of a set of modeled outbreak diseases 

(e.g., influenza).  Such a match is expressed as the probability of the findings given a disease, namely, 

patient disease likelihoods.  ODS takes as input these likelihoods, plus the prior probability distribution 

over the various types of outbreak diseases being modeled.  It then samples from distributions 

representing the input parameters to an epidemic model for a given disease type.  When using a SEIR 

epidemic model of influenza, for example, ODS samples from distributions that are characteristic of 

influenza for the infectious period, latent period, Ro, initial number infected, and start date.  It then 

derives the posterior probability of each sampled model.   

More formally, let M
Pop

 denote an epidemic model of the entire population in a region that is being 

monitored for an outbreak of disease. In our current application, M
Pop

 is a SEIR model. We would like 

to infer a distribution over such models given evidence about patients who seek care at emergency 

departments in the region. Let M
ED

 denote the disease states of all the ED patients during the 
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monitoring period. Let E designate the clinical evidence that is available about the ED patients during 

the monitoring period.  

 At a high level, ODS is based on the following equation, which is an instance of Bayes’ theorem: 

 

 (     |       
∑  (  |       (    |         

  (    )

∫ ∑  (  |       (    |         
  (    )    

      

 

 

The sum is taken over all possible disease states of all the ED patients being monitored. The number of 

terms in the sum is therefore very large; however, we are able to take advantage of some basic 

mathematical techniques, such as the application of the binomial distribution, to compute the sum 

efficiently. ODS approximates the integral in the equation by sampling M
Pop

, which leads to the 

integral becoming a sum. The terms P(M
ED

 | M
Pop

) and P(E | M
ED

) represent key modeling components 

of ODS. The term P(M
Pop

) represents a prior probability distribution over the parameters in a SEIR 

model of the population. The independence assumption in the equation is that P(E | M
ED

, M
Pop

) = P(E | 

M
ED

), which expresses that in predicting ED patient data, knowledge of the disease status of the 

population at large is irrelevant, once we have knowledge of the disease status of the ED patients. 

Figure 2 shows the most probable models computed by ODS using ED EMR data from the UPMC 

Health System in Allegheny County (AC) through September 7, 2009 (retrospective analysis).  On 

September 7, 2009, the influenza surveillance data were beginning to show influenza activity in AC. 

Figure 3 shows posterior distributions over three SEIR model parameters—Ro, infectious period, and 

latent period (bottom three graphs). These histograms show the parameters of the 269 most likely 

epidemic models on September 8, 2009.  The set of 269 most likely epidemic models were those 

whose cumulative posterior probability summed to an arbitrary threshold p > 0.99995. Figure 3 also 

shows distributions for peak date, incidence on peak day, and total number infected for the set of 269 

most likely epidemic models (top three graphs).   

For the H1N1 outbreak, the most probable ODS model predicted that the number of infected 

individuals in AC would peak on November 11, 2009.  Based on laboratory measurements of influenza 

reported in (1), the H1N1 epidemic is believed to have peaked in AC between October 24th and 

November 7th.  Thus, based on ED patient data that was available about seven weeks prior to the 

actual peak, the most probable model predicted the actual peak quite accurately.  Based also on 

laboratory measurements, by approximately November 23, 2009 the percentage of people in AC who 

had been infected with H1N1 was estimated to be about 21% (1). Again, using data only up through 

September 8, 2009, the most probable model predicted that about 19% of the AC population would be 

infected by November 23rd, which is close to the actual percentage. 

This case study, which involved real data and an actual influenza outbreak, provides support that the 

basic approach outlined above is promising. However, it is only one influenza outbreak, and thus, 

additional study of the approach is clearly needed. 

The above approach could be applied to other diseases and it can be generalized to use other types of 

epidemic models, including segmented compartment models and agent-based models. 

ODS also provides CDS with dynamically updated ED priors for influenza.  These priors can be 

combined with the likelihoods computed by CDS to obtain a posterior probability of influenza for each 
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ED patient, based on a real-time estimate of influenza prevalence in the ED; in turn, these posteriors 

can be used to support clinical decision making for individual patients (e.g., decisions about testing and 

treating for influenza). 

 

 

Figure 2: ODS, most probable models. 
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This screen shows the three most probable SEIR influenza models given the likelihoods of influenza 

from CDS for all Allegheny County patients seen in monitored UPMC EDs from May through 

September 7, 2009.  On the daily incidence curves, day zero is September 8, 2009. 

 

 
 

Figure 3. Distributions of total infected, peak date, incidence on peak day, and posterior 

distributions for Ro, latent period, and infectious period. ODS used uniform prior probabillity 

distributions for SEIR model parameters in this analysis.  For example, the prior distribution for Ro 

was uniform over the range 1.1 to 1.9. 

 

Prior work using Bayesian algorithms for disease surveillance has had an emphasis on detection rather 

than characterization. Examples of temporal methods include (28), who extended Kulldorff’s spatial scan 

statistic to produce posterior probabilities of influenza in geographical sub-regions. A multivariate 

generalization was developed in (14). Spatio-temporal approaches include the WSARE 3.0 algorithm 

(15), the PANDA algorithm for detecting anthrax outbreaks (16), the PCTS algorithm for detecting 

outbreaks of all CDC Category A diseases that are of special concern for biosurveillance (17), and a 

Bayesian hierarchical model to detect anomalously high levels of influenza (18). In previous research, we 
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developed Bayesian algorithms (16, 17) that employed a data likelihood approach, similar to the method 

we describe here. However, they were based only on chief complaints as evidence. 

Our approach to outbreak detection and characterization (OD&C) has important features not present in 

previous work. First, instead of analyzing counts of data to estimate an epidemic curve (19, 20), we use a 

flexible and more general approach that models probabilistically the available evidence, such as the rich 

set of patient findings in ED reports. The approach reflects the intrinsic synergy between individual 

patient diagnosis and population OD&C. In particular, OD&C is derived based on past probabilistic 

patient diagnoses. In turn, the diagnosis of a newly arriving patient is based on prior probabilities that are 

derived from probabilistic inference over current OD&C models. To our knowledge, no prior research 

(either Bayesian or non-Bayesian) has taken such an integrated approach to patient diagnosis and 

population OD&C.  

Second, our approach represents a general Bayesian framework for modeling OD&C. It can be applied 

with many different types of disease outbreak models including SEIR (Susceptible, Exposed, Infectious, 

and Recovered) model (21), agent-based, and outdoor-substance-release (OSR) models (22).  

2.5 BioEcon   

BioEcon is a tool for epidemiologists facing decision about control measures.  It automatically 

generates decision models of control strategies, which can then be compared interactively by a user. 

We are developing BioEcon under funding from the National Library of Medicine.  

BioEcon generates a decision model from a set of control measures, an epidemic model, and a utility 

function (Figure 4).  The square in the decision tree in Figure 4 represents a decision among three 

control measures.  The three arcs from the decision node represent the three control measures.  The 

deterministic nodes (double lined yellow circles with the letter ‘E’) represent three SEIR models for 

influenza, and the triangles represent the utility function. 

In Figure 4, the three epidemic models use the same Ro, infectious period, and incubation period. 

However, the differential effects of the control measures can result in different initializations of the 

compartments and transition probabilities in the epidemic models.  For example, the vaccination 

control measure adds direct transitions from the susceptible compartment to the recovered 

compartment.  

BioEcon obtains the information needed to initialize the epidemic model either from ODS or an end 

user.  When used with ODS, BioEcon computes the expected utility of each control measure (or 

sequence/combination of control measures) by model averaging over the set of SEIR models produced 

by ODS.  Note that Figure 4 shows the expected utilities for a single ODS model.   
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Figure 4. BioEcon 

.   

An automatically generated decision model for influenza, Allegheny County, Sept 8, 2009 

(retrospective analysis). The upper panel, left, shows the generated decision tree.  Beneath it is a 

tabular display of the expected utilities (labelled ‘Expected Values’) of the decision alternatives.  The 

utility function is: v(-$11) + s(-$7811.41),  where v is number of people vaccinated, -$11 is the cost of 

vaccination, s is number sick, and -$7811.41 is the average cost per sick person, which equals the cost 

of illness and the loss of productivity.  

2.6 Apollo Web Service  

We developed the Apollo Web Service to enable BioEcon to connect to epidemic simulators developed 

by ourselves and others (Figure 5) and to also make out epidemic simulators available to other 

applications.  At present, BioEcon can access four epidemic simulators through Apollo: a SEIR 

compartment model capable of modeling vaccination control measures; an influenza agent-based 

model capable of modeling vaccination and school closure interventions (among others); an aerosol 
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release compartment model capable of modeling antibiotic prophylaxis control measures; and the 

BARD aerosol release simulator. 

A simple end-user application that demonstrates the basic functionality of the Apollo Web Service can 

be found at http://research.rods.pitt.edu/apollo/.  

 

Figure 5. Apollo Web Service 

 

End-user applications like BioEcon submit configuration objects to an epidemic simulator and receive 

output objects containing the results of the simulation (e.g., an epidemic curve). 

 

3 Knowledge Bases 

 

CDS, ODS, and BioEcon are knowledge-based systems.  A knowledge base is a component in a 

decision-support system that contains information that an expert might use to solve a problem in 

computer-interpretable format.  It is standard practice to separate this knowledge from the other parts 

of a system, such as the inference algorithm that operates on the knowledge, to make this information 

more easy to maintain and verify (23).   

The knowledge bases for CDS, ODS, and BioEcon are depicted in Figure 1 as hexagons labeled 

“Disease models,” “Epidemic models,” and “Control measures and costs.”  

Disease models, as previously discussed, use Bayesian networks to represent medical diagnostic 

knowledge— the symptoms, signs, and laboratory tests that a physician would use to diagnose a 

http://research.rods.pitt.edu/apollo/
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disease.  The disease models represent the same kind of information that one finds in public health case 

definitions.  A key difference is that these disease models are computer-readable and also include the 

sensitivity and specificity of each diagnostic finding for its disease.  The disease models are also 

discussed in the accompanying paper in this issue of OJPHI. 

Epidemic models represent expert knowledge about outbreaks.  For example, a SEIR model represents 

influenza dynamics using a state transition network whose compartments represent disease states (e.g., 

susceptible and infectious) and whose parameters (e.g., infectious period, latent period) specify the 

rates at which transitions between disease states states over time.  

Control measures and costs:  BioEcon represents knowledge that expert epidemiologist use when 

making decisions about control measures. BioEcon represents this knowledge using objects, which are 

nested structures that can inherit characteristics from more general parent classes.  The object 

representing a vaccination control measure, for example, has the following attributes:  jurisdiction 

(e.g., Allegheny County), supply schedule, vaccine administration capacity, efficacy, and lists of other 

control measures that it can run concurrent with, follow, or precede.  BioEcon can acquire and store 

this information for multiple jurisdictions, each of which can have different capacities.   

BioEcon also requires cost information, including cost of illness, lost productivity, which is knowledge 

on which rationale decision-making is based.  We have not developed extensive representations of cost 

information within BioEcon to date; instead, we use Excel spreadsheets and other tools to develop 

detailed economic models, and represent the rolled up costs in BioEcon as components of its utility 

functions. 

4 An Example of Information Flow and Transformation 

 

This section shows the flow of information through the components of the probabilistic, decision-

theoretic disease surveillance and control system using influenza as an example.  In particular, it shows 

the information that is passed in the rounded boxes in Figure 1 labeled Coded visit data, Differential 

diagnosis, Population analyses, and Decision analyses. We assume the reader is familiar with the 

patient data stored in electronic form in EMRs; therefore, we begin with the input to CDS, which are 

patient findings in standard format. 

Coded visit data.  The following table shows the coded patient findings obtained by CDS from 

Phoenix for three ED visits on September 1, 2009.  Approximately 600 patients were seen that day in 

monitored EDs. 

Patient 

visit 

UMLS Concept 

ID 

Name of 

finding Value 

A 

C0000729 

Abdominal 

pain Absent 

C0015967 Fever Absent 

C0018681 Headache Present 

C0027497 Nausea Present 

C0043144 Wheezing Absent 

C0085593 Chills Absent 

C1883552 Weakness Absent 

B C0015967 Fever Absent 

C0085593 Chills Absent 
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C1883552 Weakness Absent 

C C0015672 Fatigue Absent 

C0015967 Fever Absent 

C0085593 Chills Absent 

C1883552 Weakness Absent 

 

Differential diagnosis of patients.  The following table shows the output sent by CDS to ODS for three 

patient visits on September 1, 2009 in monitored EDs.  They are not the same patients visits as in the 

previous table. 

Patient P(evidence of patient | 

influenza) 

P(evidence of patient | not influenza) 

1 0.015759230220164264 0.0040469980953649898 

2 1.3756216427857736e-008 1.754268236767679e-005 

3 0.00047169035934720448 0.020177483460983615 

 

Population analyses.  The following information represents the output sent by ODS to BioEcon for 

Sept 1, 2009.  We are showing numerical output, however, the results are amenable to graphical 

display as well.  We can plot the posterior probability of an influenza outbreak, epidemic curves, and 

other quantities of interest. 

start monitoring date:   May 28, 2009 

current date:   September 1, 2009 

prior probability that an ED patient has influenza on the current day:    0.007 

number of [SEIR] models searched:  50,000 

total run time:  737.3 seconds 

 

// Outbreak Detection // 

posterior probability of an influenza outbreak:  0.549  [The number relevant to outbreak detection] 

 

//Outbreak Characterization// 

[the following output is for one of 50,000 SEIR models searched—the full output from ODS 

contains all 50,000] 

model_posterior_probability: 0.000113  

S: 1215434 (number of individuals in susceptible compartment on September 1, 2009) 

E: 601 (exposed) 

I: 903 (infectious) 

R: 1652 (recovered) 

latent_period: 2.6 days 

infectious_period: 5.9 days 

Ro: 1.855 

Outbreak start day: 64 days after the start of monitoring on May 28, 2009 

Initial number infected: 96 

Decision analysis.  Figure 4 shows the output of a decision analysis, which is a base case analysis with 

sensitivity analyses (not shown). For expository purposes, the following table shows the mathematical 

result of a decision model, which is the set of expected utilities computed for the decision alternatives 
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analyzed by the model. The control measure recommended by the decision model in this example is 

vaccination, with aggressive and routine administration differing by less than 1%. 

 

Decision alternative (control measure) Expected utility 

Vaccinate 14-day policy, without 

prioritization 

-$1.11B 

Vaccinate without prioritization (routine 

vaccination) 

-$1.12B 

No vaccination -$2.12B 

 

5 Significance 

 

In 1959, Ledley and Lusted identified probability and decision theory as the mathematical foundations 

of medical diagnosis (24). This insight has had significant impact on the fields of clinical medicine, 

medical decision-making, and computerized medical decision support.   

In 2001, we observed that probability and decision theory were also the mathematical foundations of 

disease surveillance and control (25).  Further, the methods developed for probabilistic medical 

diagnosis could be applied, without modification, to case detection for disease surveillance.  We 

observed that probability and decision-theory were an ideal basis for representation and inference at 

the population level, and that the domains of medical diagnosis and population diagnosis could be 

bridged by these formalisms.  

But despite the potential of a probabilistic decision-theoretic approach, the practice of disease 

surveillance still rests on a Boolean foundation: For analytic purposes, a population is represented by 

1’s and 0’s, where 1 denotes that an individual has a disease of interest, and 0 indicates that the disease 

status of the individual is unknown. This limitation applies not only to conventional disease reporting, 

but also to electronic laboratory reporting and syndromic surveillance. 

A fundamental problem with a Boolean foundation for disease surveillance is that a yes–no 

classification of a patient into disease or no disease is an information-losing first step in a process that 

requires maximum use of information as it becomes available (26). It cannot represent the level of 

uncertainty about a patient’s diagnosis except by ad hoc extensions such as the diagnoses “suspected 

SARS” and “probable SARS.”  It cannot integrate data from syndromic surveillance, ELR, and other 

disease surveillance paradigms to form a more confident assessment of a patients disease state.  The 

net effect is case and outbreak detection and characterization are less sensitive, specific, and timely 

than they could be. 

Effectively integrating Bayesian medical diagnosis and population diagnosis will address critical 

barriers to progress in both fields, and can open up major avenues for new research and real-world 

applications in clinical medicine and public health. 

In clinical medicine, for example, the answer to the often-voiced criticism, “Where do you get the 

priors?” will be: “From real-time population level analysis.”  This problem is particularly nagging for 

outbreak diseases, where the prior probability may change quickly.  A solution to this problem will 

make case detection more timely, sensitive, and specific for outbreak diseases, with practical benefits 

for hospital infection control, quality assurance, and case detection for disease surveillance.  



Probabilistic, Decision-theoretic Disease Surveillance and Control 

14 
Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * Vol.3, No. 3, 2011 

In public health, the biggest advantage of the probabilistic, decision-theoretic approach is that it is a 

well-organized and formally sound method for integrating multiple weak signals, with medical 

knowledge, and with epidemiological knowledge, to provide for early and reliable detection at low 

false alarm rates.  Also significant, is our approach to the problem of how to synchronize epidemic 

models with an actual population, which will make epidemic models more useful during outbreaks.   

Integrating probabilistic disease surveillance and medical diagnosis is a paradigm shift for public 

health.  Bayesian diagnosis of individual patients is not yet a component in future envisioned 

architectures such as the Public Health Information Network (27), nor is it factored into CMMS 

“meaningful use,” which is incentivizing the healthcare system to modify their information systems in 

other ways.  The architectures, message types, and data standards currently under development will not 

be able to support this paradigm, unless they are designed with its requirements in mind.   

The limitations of the current Boolean paradigm will become increasingly problematic as disease 

surveillance takes fuller advantage of data stored in EMRs. 

 

6 Future Work 

 

At present, the probabilistic, decision-theoretic system monitors influenza in Allegheny County.  The 

CDS component is located in a machine room in the UPMC health system.  ODS, BioEcon, and three 

epidemic models are running on servers in our laboratory as Web Services. We consider the current 

implementation an operational prototype. 

Our future work will measure the performance of CDS and ODS for influenza and test hypotheses 

about the performance synergies achieved as a result of their integration.  We also plan to expand the 

number of diseases being modeled. 
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