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Objective: This study evaluates the effectiveness of the long period, or the domain expert happens to know that the
stationarity assumption in predicting the mortality of process to be modeled is stationary. Many times, however,
intensive care unit (ICU) patients at the ICU discharge. the analysis of the data does not yield any conclusive
Design: This is a comparative study. A stationary temporal evidence about the stationarity of the process, and the
Bayesian network learned from data was compared to a designer has to make a design assumption about
set of (33) nonstationary temporal Bayesian networks stati 2
learned from data. A process observed as a sequence of Oi11t).
events is stationary if its stochastic properties stay the In this study, we induce a stationary and 33
same when the sequence is shifted in a positive or negative nonstationary temporal models from the same medical
direction by a constant time parameter. The temporal data, and we compare the differences in predictive
Bayesian networks forecast mortalities ofpatients, where performance between the models. Our goal is to determine
each patient has one record per day. The predictive the merits and drawbacks of the stationary and
performance of the stationary model is compared with nonstationary modeling approaches for predicting
nonstationary models using the area under the receiver mortality in the ICU, and to evaluate conditions under
operating characteristics (ROC) curves.- otltmthIC,adoevutecntosudroperatingchracterbtics ROC) curves.which the stationary or nonstationary models are relativelyResults: The stationary model usually performed best. more effective.
However, one nonstationary model using large data sets
performed significantly better than the stationary model.
Conclusion: Results suggest that using a combination of BACKGROUND
stationary and nonstationary models may predict better We used a database of demographic, physiologic and
than using either alone.W usdadtbsofdmgphcpyilgcanthan using either alone. outcome variables collected on 1,449 patients admitted to

40 different ICUs in May 1995. The database contains
INTRODUCTION 11,418 records. Each record contains one day of data on

Temporal modeling is important in numerous clinical one patient; i.e., the temporal granularity of variables is
domains, including chronic diseases at one extreme and fixed at one day, except for those variables that are

rapidly-progressing acute problems at the other. For these atemporal. The data were originally collected for a
classes of medical problems, we need a robust prospective study to evaluate a newly established
methodology for providing consistent and reliable Sequential Organ Failure Assessment (SOFA) score that
temporal decision support to contribute to improved was intended to assess the incidence and severity of organ
quality of care. dysfunction or failure ofICU patients.3

This paper analyzes a key question in temporal process Each record contains the following eight atemporal
modeling: When should we assume stationarity? Before fields: (1) center number (1-40), (2) the day in the ICU (1-
formally defining stationarity in the next section, we 33; data were collected up to 33 days), (3) 'age (12-95
provide an informal definition of stationarity: A process years of age), (4) sex (M/F), (5) type of problem
observed as a sequence of events is stationary if itselective surgery emergency
stochastic properties stay the same when the sequence is surgery, trauma, medical, and cardiac), (6) the ongin of the
shifted in a positive or negative direction by a constant admission (1-5; emergency room, floor, operating room,
time parameter; i.e., its course in a given period is other acute care hospital, and other origin), (7) whether or
independent of its starting time point, not it was a readmission to the ICU (Y/N), and (8) the

independent ~~~~~~~~~~status on discharge from the ICU (deceased/survived).Sometimes it is possible to detect stationarity in the
process by investigating the character of the longitudinal The database contains the following 23 temporal fields:
data.' This is usually possible when data are collected for a (1) oxygenation index, (2) mechanical ventilation (Y/N),

(3) platelet count, (4) bilirubin, (5) mean arterial pressure,
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doses of (6) dopamine, (7) dobutamine, (8) epinephrine, networks considered, one can select a network that best fits
and (9) norepinephrine, (10) Glasgow Coma Scale, (11) the data.4
blood urea nitrogen, (12) serum creatinine, (13) urine Techniques used for leaming atemporal Bayesian
output, (14) white blood cell count, (15) lowest and highest networks are applicable to learning temporal Bayesian
heart rates, (16) lowest and highest temperature, (17) networks as well. The variable space in temporal Bayesian
current state of infection (Y/N), SOFA system scores for networks is increased by the factor of time parameters TI,
the (18) respiratory, (19) cardiovascular, (20)
hematological, (21) neurological, and (22) hepatic systems where te T. Such an increase generally leads to a sparse
(each between 0-4, where 0 is normal and 4 is data set. This problem is known as the curse of
pathologically worst), and (23) total SOFA score (linear dimensionality.
addition of the former six SOFA system scores). One frequently applied remedy to this problem is to

Patient variables are continuous unless stated otherwise assume stationarity in parts of the stochastic process,
above. We discretized the continuous variables based on which leads to partitioning the duration of the process into
medical knowledge and their statistical variances observed smaller periods, [t, ...,t], which may be called windows.
in the sample population. In our study, we excluded some The subprocess in each window is assumed to be a
other variables contained in the original data set to ensure representative recurrent unit of the entire process;
fairness in forecasting; e.g., the binary (Y/N) variable "do therefore, properties of the stochastic process are assumed
not resuscitate order" can boost model prediction to stay the same when the event sequence
performance significantly, since it may inherently imply a (X.(0,...,X(Q) is shifted in a positive or negative
grim prognosis and a non-aggressive therapeutic course.
Among important forecasting problems facing ~ direction by a constant time parameter t (see Eq.(1)).Among 'umportant forecasting problems facing ICU

physicians is the. probability of patient survival at the Table 1: White Blood Cell Counts (WBCs) of a Patient
discharge from the ICU. We formulated the problem as a
stochastic process: Given a sequence of temporal patient ay WBC
data up through day d, what is the probability the patient 1 high
will die (or its complement, will survive) on day d+ 1. 2 high

This is a multivariate stochastic problem. In this study, a 3 jnnormal __
multivariate stochastic process is defined as a set of 4 normal _
measurable event sequences, where each sequence is

Consider a patient with four records shown in Table 1,comprised of a set of random variables X = {X} where only one field, WBC, of each record is shown. A
associated with time points ij , t2,.... e T defined on thie -nonstationary model would associate each record with an
temporal space T. absolute day, on which the measurement was made; thus,
A multivariate stochastic process can be modeled as a the nonstationary model would consist of four days, and

temporal Bayesian network. A temporal Bayesian network use a single data point per temporal variable (see Table 2).
can be defined in terms of a structure M= (V,A) and a Table 2: Four Days of Records Used as a Single Event
probability space. The structure is comprised of a directed -in a Nonstationary Model
acyclic graph, where nodes V ={X(t)} represent temporal r WBC, | WBC. |
random variables, and arcs A={(X,(t,),X1(t1))} high high normal normal |
represent pairwise interactions between variables, where On the other hand, a stationary model with two time-slices
t; < tj if Xi w Xj; otherwise t; < ti . A temporal Bayesian would associate measurements with both stationary
network is strictly stationary, if for every t12,t ,... e T variables sequentially (see Table 3).

,X)= P(X,(t, +t),.. ,X"(t, +t)) (1) Table 3: Four Days of Records Used as Four Events in

Bayesian networks can be manually construted by an a Stationary Model With Two Time-slices
expert by identifying problem variables and interactions WBC, _ _ ..
between variables, and by assigning prior probabilities to unknown hi
the event set. In the present research report, we used a high high ...
machine learning approach to construct Bayesian networks _
from data automatically. By evaluating the probability hig normal ...
distributions in the database, this method can assign a normal normal ...
probability score to each possible Bayesian network model
encountered during the model search. Among all Bayesian
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As seen in Table 2 and Table 3, the nonstationary model The last step of preprocessing involved forming proper
treats two WBCs on each day as being unique, whereas the test data for the stationary and nonstationary experiments.
stationary model groups sequential pairs ofWBC values. For the -nonstationary experiments, preprocessing of the

test data did not differ from that done for the training data.

METHODS For the stationary experiment, the temporal data during the
last five days of ICU stay of each patient were collected

The methods used in this study can be described in three along with the atemporal data. For the patients who stayed
parts: (1) preprocessing the data, (2) learning models from in the ICU for ddays, where d < 4, values of the temporal
the data, and (3) testing and evaluating the models. variables between day 1 and day 4-d were set to
The first data preprocessing step was variable selection. unknown.

We include only those variables described above. The Data preprocessing was followed by model learning
second data preprocessing step was the discretization of from the training data. For the stationary experiments,
the continuous variables. Each variable distribution was there was only one set of data; consequentl, one
analyzed separately. Variables were discretized manually stationary model was constructed based on that data set.
based on the range of normal values and prior known For the nonstationary experments, however, there were 33
relationships of variables to mortality; e.g., very low and distinct data sets; thus, 33 nonstationary models were
very high white blood cell counts are both associated with leared.
higher mortality, so this variable was discretized in three Finding a Bayesian 'network that fits the data is a modelcategories. Missing values were labeled with the category

*. t . ~~~selection problem. Because the number of all possibleunknown and processed along with other categorical s probemBeause the number of al ible
values. models grows exponentially with the number of varables,Thes third step of the data preprocessingwasdetem ing

the common approach for finding a "good" model is
The third step of the data preprocessing was determining heuristic search, which does not guarantee finding the best

training and test sets. The 1,449 patient cases were model. The model scoring metric used in this study is
randomly split into two disjoint sets: one with 949 patients based on the fbllowing Bayesian score: 4,S
for the training, and the other with 500 patients for the test.
The test data set was not used in any part of the model in T(() ____+NM,_P(MID)ocHf (a' Hu r(ag+N (2)
learning process. P(crU+N) kF(a=)
For inducing the nonstationary models, the training data Here, D is the database oftraing cases; n is the number

set was partitioned into 33 subsets, where the length of *of nodes (variables) in the Bayesian network model M; r
ICU stay was the same for all patients within each subset. tgm *i t

The length ofstay of patients in the varied~ iS the gamafimction; qi iS the number of joint states ofThe length of stay of patients in the database varied
between 1 and 33 days with the followig exception: four the parents of node i (oq =1 if node i has no parents);rr is
of nine patients who stayed longer than 33 days died after the number of states of node i;Nka is the number of cases
the 34h day; nonetheless, we treated them -as if they stayed in Dthat node i has value k and then parents of node i have
only 33 days, and died on day 34. We treated the other five the state denoted by j; adenotes a Dirichlet prior
patients as ifthey were discharged on day 33. parameter. We assume uniform priors for variables,
The criteria used in preprocessing the data for inducing namely auk = for all i, j, k. a = t' aYk and

the- stationary model were as follows. The outcome
variable (i.e., ICU mortality) belongs tothe time-slice n for Nu= Nk. Eq.(2) is not an equality, but rather a
a patient case with n-I records. The preprocessing proportionality, where a uniform prior P(M) is assumed
method should take into account that the patient was alive
prior to day n; therefore, in all stationary event sequences, modealng methoolgyca be. foundtionsother in4h5
except in the last one if the patient died, the mortality modeling methodologcan be found in other reports.
variable should be instantiated as alive. In this experiment, The intended use of the model M is forecasting the
we set the stationarity wandow with five time-slices, where mortality R of a patient given data D, i.e., P(R D,M) .
the fifth time-slice contains only the mortality variable The inference requires only a subset of variables in D that
model. is the set ofparent nodes ofthe mortality variable. Let R be

the mortality variable and xf(R) be parent variables of R,First, the temporal variables (e.g., white blood cell then the probability of interest is P(R D, r(R)) . In other
count), atemporal variables (e.g., sex), and the outcome words, the model search task can be simplified to the
variable were partitioned into different sets. For each identification of a set ofparents ofR. Since the structure of
patient, a set of training records was created whose fields model M consists of R and u(R) only, P(M D) in
consisted of (1) values, of the atemporal variables, (2) Eq.(2) can also be denoted as P(x(R) ID). The search
values of the temporal variables corresponding to every algorith given below assumes that the class of interest is
four consecutive -ICU days, and (3) the value of the the nth node; i.e., x(R) =x(n)
classification variable on the fifth consecutive day.
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2. scoreM - P)r(n), ID) en, ativInI - * cu ative 1-33-
2. score vP(ir(n) D) k 4tX A\_i'1 !'
3.for i: I n- Iand i0or(n)and Ifr(n) < n-I1

a. push ito r(n)
b. if P(r(n) D) > score - 8

then score - P(Qr(n) D) ,flag +-up, i 0.6
candidate +-pop r(n)

else pop x(n)
4. ifflag up 03 X 0.83,0.79,0.7,0.54
then push candidate to 7r(n) ,flag +-down, goto 3 -:' '
else return r(n) t- *, * ,

°X e 9{ yAa}'IF t-43CThis search algorithm retums a model that maximizes 0____________.__._____________
the Bayesian score for the model structure given the A j
database. As this is a stepwise-forward, greedy algorithm, it x4 0.9_
the global maximum is not guaranteed; i.e., the result is a vs.'.'.
local mnaximum.

Figure 1: ROC curves for stationary and
The resulting models were applied to the test data in nonstationary models. Areas under the ROC

both stationary and nonstationary cases. For each test case curves for the stationary model and for all
C, the probability of patient mortality was computed as nonstationary models were 0.83 and 0.74,

respectively. Combined predictions of
P(R = d C) = n(R=d,7c(R))+0.22 nonstationary models 1 to 9 and 10 to 33 have

n(R = d,;c (R)) + n(R = s,xc (R)) + 1 ROC areas of 0.79 and 0.54, respectively.
where d and s stand for deceased and survived,
respectively; n(.) denotes the frequency count of the nonstationary models between three and nine days had the

same predictive variable, which was the mechanical
instantiated variables in the training data set. r(R), the ventilation on the last dayprior to discharge.
parents of the mortality variable, are found via the search According to these results, for patients staying a single
described above. xc(R) denotes the parents of R, with day ia the ICU, the presence of hypotension (or its
values determined by the vanrable values of the test case C complement) is highly prognostic of outcome. Similarly,
during inference. We assumed that the prior probability of the prognosis of a patient who stays in the ICU for more
ICU mortality can be assessed from an independent data than two days depends on the presence or absence of
set. In inference, we set the priors for deceased as 0.22, mechanical ventilation.
which is the frequency ofmortality in the training sample.
The forecasting results were evaluated using an ROC Over all nonstationary models, there were 11 models

metric. with the variable, mechanical ventilation, and 6 models
with hypotension related variables (2 dopamine, 1

RESULTS dobutamine, 1 norepinephrine, 1 SOFA cardiac, and 1mean arterialpressure measure).
The stationary model that locally maximizes Eq.(2) was a
Bayesian network with two nodes; namely, the SOFA total Compared to the test set of the stationary expenment,
score on the last day prior to dischargefrom the ICU. The nonstationary data sets were rather sparse. In certain
ROC curve of the stationary model is the top curve in nonstationary test sets, no patients survived, whereas in
Figure 1. The area under the ROC curve is 0.83, where 1.0 some others, no patients died. The ROC metric is relatively
indicates the entire area. uninformative in those situations, and we therefore
Twenty-four of 33 nonstationary models have single excluded those sets from analysis. Figure 2(a) shows ROC

areas plotted for the nonstationary models.predictors of mortality. There are no other predictors of The fluctuation observed in Figure 2(a) is due to themortality, presumably due to small sample sizes for model small numbers of test cases for some nonstationary
induction. For the first nonstationary model, which is the models. The reliability of ROC scores improves when the
model of patients who stayed only one day in the ICU, the number of data points in both test and training sets
predictive variable was the dose of administered increases.
dopamine. For the second nonstationary model, the total In Figure 1, the curve labeled as "cumulative 1-33"
SOFA score on the second day was identified as the delineates the ROC points for all nonstationary models, 1
predictive variable, as in the stationary case. The to 33; i.e., predictions of all nonstationary models are
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Figure 2: (a) Each point denotes the area under the
ROC curve for a nonstationary model. (b) Number
of cases (data points) per nonstationary model.

evaluated with a single ROC curve. The curves plotted
with dashed lines are cumulative ROC curves for the
nonstationary models 1 to 9 (the second curve from the
top) and 10 to 33 (the curve at the bottom), where the area
under the ROC curve decreases from 0.79 to 0.54. This
decay is due to the small number of both training and test
cases. When the number of training cases is small, the
constructed structure and its parameterization are
suboptimal, whereas when the number of test cases is
small, the results are statistically not meaningfi4; therefore,
in Figure 2, (a) and (b) are plotted next to each other.
While the model size gets larger, the number of data

points decreases; therefore, the predictive performance of
nonstationary models decays significantly while the model
size grows, as seen in Figure 1 and Figure 2(b).
Computations were executed on a SUN workstation.

Each nonstationary model was constructed in a few
seconds (on average in nine seconds), whereas the
stationary model was constructed in approximately two
minutes. The time required for inference was one second
per five test cases using the stationary model, whereas it
took only three seconds for all 500 test cases using
nonstationary models.

CONCLUSIONS
The results of this study are consistent with clinical
experience.6'7 The total SOFA score, reflecting the
collective burden of-organ system dysfunction, was -found
to be predictive in the second nonstationary model and in
the stationary model. One explanation for this outcome is
that the number of nonstationary training cases for model
two is high enough to identify the total SOFA score as a
highly predictive parent variable. In the nonstationary
model on day 2, predictive performance is far better than
that of the stationary model; areas under the ROC curves
were 1.0 vs. 0.83, respectively. Because of the large

number of test cases in both experiments, it is unlikely that
this difference in performance is incidental.

This result indicates that nonstationary models may
perform as well as or better than stationary models when
there are a large number of training cases. The stationarity
assumption increases the number of effective data points
by reducing the model dimensions; however, due to the
limitations of the assumption, parameterization of the
Bayesian networks are suboptimal, which negatively
influences predictive performance.
We plan to investigate methods that use a hybrid

stationary and nonstationary modeling methodology. The
goal is to take advantage of any predictors that are
approximately stationary, yet also model other predictors
that are nonstationary.
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