
International Journal of Approximate Reasoning 51 (2010) 224–239
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier .com/locate / i jar
A Bayesian network model for spatial event surveillance

Xia Jiang a,*, Daniel B. Neill b, Gregory F. Cooper a

a Department of Biomedical Informatics, University of Pittsburgh, Parkvale Building M183, 200 Meyran Ave., Pittsburgh, PA 15260, United States
b H.J. Heinz III College, School of Public Policy and Management, Carnegie Mellon University, Pittsburgh, PA 15213, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 March 2008
Received in revised form 8 August 2008
Accepted 5 January 2009
Available online 13 January 2009

Keywords:
Bayesian network
Spatial cluster detection
Event surveillance
Spatial event surveillance
Outbreak detection
0888-613X/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.ijar.2009.01.001

* Corresponding author.
E-mail addresses: xjiang@cbmi.pitt.edu (X. Jiang)
Methods for spatial cluster detection attempt to locate spatial subregions of some larger
region where the count of some occurrences is higher than expected. Event surveillance
consists of monitoring a region in order to detect emerging patterns that are indicative
of some event of interest. In spatial event surveillance, we search for emerging patterns
in spatial subregions.

A well-known method for spatial cluster detection is Kulldorff’s [M. Kulldorff, A spatial
scan statistic, Communications in Statistics: Theory and Methods 26 (6) (1997)] spatial
scan statistic, which directly analyzes the counts of occurrences in the subregions. Neill
et al. [D.B. Neill, A.W. Moore, G.F. Cooper, A Bayesian spatial scan statistic, Advances in
Neural Information Processing Systems (NIPS) 18 (2005)] developed a Bayesian spatial scan
statistic called BSS, which also directly analyzes the counts.

We developed a new Bayesian-network-based spatial scan statistic, called BNetScan,
which models the relationships among the events of interest and the observable events
using a Bayesian network. BNetScan is an entity-based Bayesian network that models
the underlying state and observable variables for each individual in a population.

We compared the performance of BNetScan to Kulldorff’s spatial scan statistic and BSS
using simulated outbreaks of influenza and cryptosporidiosis injected into real Emergency
Department data from Allegheny County, Pennsylvania. It is an open question whether we
can obtain acceptable results using a Bayesian network if the probability distributions in
the network do not closely reflect reality, and thus, we examined the robustness of BNet-
Scan relative to the probability distributions used to generate the data in the experiments.
Our results indicate that BNetScan outperforms the other methods and its performance is
robust relative to the probability distribution that is used to generate the data.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Methods for spatial cluster detection attempt to locate spatial subregions of some larger region where the count of some
occurrences is higher than expected. As an example, we may look for clusters of certain kinds of trees in a forest; other appli-
cations of spatial cluster detection include mining astronomical data, medical imaging, and military surveillance [1]. Event
surveillance consists of monitoring a region in order to detect emerging patterns that are indicative of some event of interest.
As examples, we may look for emerging patterns that are indicative of a disaster that is in its early stages of development.
Examples of such disasters include hurricanes, terrorist attacks, and outbreaks of diseases. In spatial event surveillance, we
search for emerging patterns in spatial subregions. Spatial cluster detection is one statistical technique used for spatial event
surveillance.
. All rights reserved.
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A well-known method for spatial cluster detection is Kulldorff’s [1] spatial scan statistic, which has been implemented as
freeware in the SaTScanTM software package [2]. This method directly analyzes the counts of occurrences in the various sub-
regions. Neill et al. [3] developed a Bayesian spatial scan statistic called BSS, which also directly analyzes the counts. When
the clusters of interest are clusters of the events we observe, then directly analyzing the counts is likely to be best. However,
in event surveillance, and disease-outbreak detection in particular, we ordinarily observe events that are related to the occur-
rences of interest. As an example, when we are interested in whether there is an outbreak of a certain disease, we observe
individuals with various symptoms of the disease rather than the disease infections themselves. Instead of using a summary
statistic, we develop a Bayesian-network-based spatial scan statistic, called BNetScan, which models the relationships
among the events of interest and the observable events using a Bayesian network. This network is then used to determine
the posterior probability of each subregion containing a cluster. A strength of this method is that it can model multiple
causes of the clusters. For example, in disease-outbreak detection it can model any number of possible disease outbreaks
using a single Bayesian network.

An important question is whether we can obtain acceptable results using a Bayesian network if the probability distribu-
tions in the network, which are often obtained from limited data and/or subjective judgment, do not closely reflect reality.
We describe the results of experiments that test the robustness of BNetScan relative to changes in the probability distribu-
tions used to generate the experimental data. In particular, we examine the ability of BNetScan to detect outbreaks of influ-
enza and cryptosporidiosis using simulated cases injected into real Emergency Department data from Allegheny County,
Pennsylvania. As a point of comparison, we included SaTScanTM and BSS in the study, and we evaluated these systems both
when they took advantage of the probabilistic information in BNetScan (i.e., which chief complaints are most commonly
associated with each outbreak type) and when they did not. In this way, we could learn whether it is simply the use of prob-
abilistic information that accounts for a certain performance level, or whether that performance may be due to the use of a
Bayesian network model.

In the remainder of this section, we provide background on spatial cluster detection. Section 2 describes the two methods,
SaTScanTM and BSS, which we compare to BNetScan. In Section 3 we develop our new Bayesian-network-based spatial scan
statistic method, BNetScan. Section 4 presents our experiments and their results. Finally, Section 5 provides a discussion of
the results.

1.1. Spatial cluster detection

In spatial cluster detection, the goal is to identify the location, shape, and size of possible clusters, and to determine how
likely it is that a cluster is due to the event with which we are concerned (e.g., a disease outbreak) versus how likely it is that
the cluster is merely a chance occurrence. When doing spatial cluster detection, we first enumerate the subregions of some
geographical region G. For example, Kulldorff [1] places a circular window over the region and lets the center of the circle
move over the region. For each center, the radius of the circle is varied. Neill et al. [3] represent the entire region by a grid
and search over rectangular subregions of the grid. Inherent in these methods is that we assume that the entire region G is
composed of cells. For example, if we cover G with an m � n grid, each grid element is a cell. A subregion of G is the union of
any number of cells. Since the number of such subregions is exponentially large, Neill et al. [3] search only over subregions
which are axis-aligned rectangles. We take this same approach in this paper.

Classical methods for spatial cluster detection detect clusters based solely on counts of occurrences in the various sub-
regions. Kulldorff [1,4]) developed the well-known frequentist method called the spatial scan statistic. The scan statistic
was first proposed by Naus [5] as a solution to the multiple hypothesis testing problem. Scan statistics have been used to
find clusters of chronic diseases such as breast cancer [6] and leukemia [7]. They have also been used to detect clusters
of work-related hazards [8] and West Nile virus [9]. As mentioned earlier, Kulldorff implemented the spatial scan statistic
in his SaTScanTM software [2]. Jung et al. [10] develop a version of the spatial scan statistic that considers multinomial vari-
ables whose values are ordinal. Neill et al. [3] developed a Bayesian spatial scan statistic, and Neill et al. [11] developed a
multivariate version of the Bayesian spatial scan statistic.

The methods discussed so far are non-temporal. That is, if we are looking for patterns that emerge with time, they look
only at data from the most recent time period. A temporal method would detect a cluster based not only on data from the
most recent time period, but also on data from previous time periods. Kulldorff et al. [12] developed a temporal version of
the spatial scan statistic that looks at three-dimensional cylinders, while Neill et al. [13] developed a temporal version of the
spatial scan statistic that can detect emerging clusters with incidence rates that increase over time.

In general, spatial cluster detection does not necessarily entail the notion of time. In some applications we many want to
determine whether there is currently a cluster without concern for whether the counts are changing with time. For example,
we may want to investigate whether there is a cluster of a particular type of star in space. Next we discuss spatial event sur-
veillance, which does concern counts changing with time.

1.2. Spatial event surveillance

In event surveillance we try to detect emerging patterns that are indicative of some forthcoming event or an event that is
in its early stages. A classical example is disease-outbreak detection. A disease outbreak detection system monitors a region
each day to see if some pattern has emerged that is indicative of a disease outbreak. For example, a Cryptosporidium infection
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can cause diarrhea. So the count of over-the-counter (OTC) sales of antidiarrheal medications typically increases during a
Cryptosporidium outbreak. We can therefore analyze emerging patterns of antidiarrheal medications to try to learn whether
a Cryptosporidium outbreak has started. In spatial event surveillance we look for emerging patterns in spatial subregions. In
this way we may detect an emerging pattern earlier than if we analyzed a region globally. For example, in the case of a Cryp-
tosporidium outbreak, the outbreak may start near the location of a contaminated drinking water supply. We may detect an
emerging pattern in a small subregion containing the water supply before we could detect an emerging pattern in the entire
city or county.
2. Previous methods for spatial cluster detection

Next we describe the two spatial cluster detection statistics which were compared to BNetScan in our experiments.

2.1. Kulldorff’s spatial scan statistic

Kulldorff [1] assumes the entire region G is composed of cells ci. For example, if we cover G with an m � n grid, each grid
element is a cell. A subregion s of G is the union of any number of cells. We are interested in whether some subregion s of G
contains a cluster. The null hypothesis H0 is that there are no clusters, and the alternative hypothesis Hs is that subregion s
contains a cluster. Kulldorff [1] developed two different scan statistic models, the Bernoulli model and the Poisson model.
The statements of the hypotheses are different in the two models. We discuss each in turn.

In the Bernoulli model, every cell ci # G contains a discrete number of entities. Each entity either does or does not have
some property X. For example, the entities could be people, and the property could be that a person visited the Emergency
Department with a cough. We would then be interested if there is a cluster of such entities in some subregion of a particular
city or county, for instance. As another example, the entities could be stars, and the property could be that the star is of a
particular type. We may be interested in whether there is a cluster of this particular type in some subregion of space.

The statements of the hypotheses for the Bernoulli model are as follows:

H0: For an entity in the entire region G, the probability of the entity having property X is q. The event of any one entity
having the property is independent of another entity having it.
Hs: For an entity in subregion s, the probability of the entity having property X is p. For an entity in subregion G � s, the
probability of the entity having property X is q, where p > q. The event of any one entity having the property is indepen-
dent of another entity having it.

We define the following variables:

B: the total number of entities in G,
BðsÞin : the total number of entities in s,
BðsÞout : the total number of entities in G � s,
C: the total number of entities in G with property X,
CðsÞin : the total number of entities in s with property X,
CðsÞout : the total number of entities in G � s with property X.

Kulldorff [1] shows that the most significant spatial cluster is the subregion s that maximizes the following likelihood
ratio statistic:
LðsÞ ¼
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LðsÞ ¼ 1:
If subregion s* has the highest value of the test statistic among all the subregions being tested, we only know that s* is the
most likely subregion to contain a cluster. We determine the statistical significance of this subregion using Monte Carlo sim-
ulation. The technique was originally proposed in [14], and it was first used in the context of a scan statistic in [15]. In this
technique, we obtain a large number N of replications of the data set, each of which is generated under the null hypothesis.
The p-value of Hs is then equal to
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Nbeat þ 1
N þ 1

;

where Nbeat is the number of replications in which the subregion with the highest value of the test statistic has a higher value
than L(s*). For example, with 999 such replications, the test is significant at the 0.05 level if L(s*) is among the 50 highest
values obtained from the replications.

In the Poisson spatial scan model, every cell ci # G contains a variable number of points (entities), which we count. For
example, the count may be the number of entities with some property. It is assumed that counts are being generated accord-
ing to an inhomogeneous Poisson process. The statements of the hypotheses are as follows:

H0: For every cell ci, the counts are distributed as follows:
Ci � PoissonDistðqbiÞ;
where bi is a baseline count associated with cell ci. Kulldorff [1] uses the underlying population of each cell as its baseline,
while Neill et al. [3] use an expected count estimated from time series analysis of historical data.

Hs: For cells ci � s, the counts are distributed as follows:
Ci � PoissonDistðpbiÞ
and for cells ci 6 # s, the counts are distributed as follows:
Ci � PoissonDistðqbiÞ;
where p > q.

Define the following variables:
B ¼
P
ci

bi;

BðsÞin ¼
P
ci�s

bi;

BðsÞout ¼
P

ci � s
bi;

C ¼
P
ci

Ci;

CðsÞin ¼
P
ci�s

Ci;

CðsÞout ¼
P

ci � s
Ci:
Kulldorff [1] shows that the most significant subregion s is the one that maximizes the following Poisson spatial scan
statistic:
FðsÞ ¼
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;

otherwise
FðsÞ ¼ 1:
As is the case for the Bernoulli spatial scan statistic, we determine the statistical significance of our finding by using
Monte Carlo simulation.

2.2. The Bayesian spatial scan statistic

The Bayesian spatial scan statistic (BSS) [3] is a Bayesian method for spatial cluster detection, which allows us to incor-
porate prior information and to calculate the posterior probability of each spatial subregion. Specifically, this method places
a prior gamma probability distribution on the values of q, and a mixture of gamma distributions on p, all of which have
means greater than the mean of the gamma distribution on q. It then places Poisson distributions on the counts conditional
on these values of p and q. Furthermore, it places a prior probability on the event that there is a cluster in each subregion.
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Finally, it computes the posterior probability of an outbreak in each subregion based on the data. Since it determines pos-
terior probabilities, there is no need to create replications of the data set and to determine significance, which greatly de-
creases its time complexity relative to the frequentist spatial scan statistic.

3. The Bayesian network spatial scan statistic (BNetScan)

When the clusters of interest are clusters of the events that we directly observe, then directly analyzing the counts is
likely to be best. However, in event surveillance, and disease-outbreak detection in particular, we ordinarily observe events
that are related to the events of interest. As an example, an individual with Cryptosporidium infection may demonstrate cer-
tain Emergency Department (ED) symptoms or purchase certain over-the-counter (OTC) medications. Such an individual
might visit the ED with diarrhea or purchase antidiarrheal medication. We observe the ED symptoms and medication pur-
chases, but we do not observe the Cryptosporidiuminfection, which is the occurrence of interest. We could try to detect a
Cryptosporidium outbreak by using the spatial scan statistic to analyze the counts of ED visits or OTC sales. However, another
approach is to model the probabilistic relationships among a Cryptosporidium outbreak, individuals being infected with Cryp-
tosporidium, individuals presenting in the ED with indicators of Cryptosporidium, and individuals purchasing OTC medica-
tions related to a Cryptosporidium infection. Our data then consists of the values of the observed variables for all
individuals in the population, and we compute the posterior probability of an outbreak given these data. This is a generative,
multi-entity, model-based approach to spatial cluster detection, since we model the underlying state and observed variables
for each entity or individual in the population. A strength of this method is that it can model multiple causes of the clusters.
For instance, it could model a Cryptosporidium outbreak, an influenza (influenza) outbreak, and other disease outbreaks using
a single Bayesian network.

We first describe a very simple version of the method to illustrate the basic concepts. Then we present the general meth-
od, which we call the Bayesian network spatial scan statistic (BNetScan). We then describe how we used that method to de-
velop a specific disease-outbreak detection system. Section 4 presents an evaluation of the system.

3.1. A simple formulation of the model

Fig. 1 shows a Bayesian network representing a simple multi-entity spatial cluster detection system. As a concrete exam-
ple, consider a network designed to detect influenza outbreaks. The variable E has value ‘‘yes” if there is currently an out-
break of influenza and value ‘‘no” otherwise. The variable S has value sj if there is an outbreak in subregion sj and has
value ‘‘none” if there is no outbreak in any subregion. Recall that a subregion is any subset of cells. In our applications,
we cover the entire region with an m � n grid, where each grid element is a cell, and we only consider subregions which
are rectangles. We must specify the following spatial prior probability: P(S = sj|E = yes) = aj, where

P
jaj ¼ 1. The values of

aj could all be the same, or they could be based, for example, on the size and regularity of the subregions.
There is a variable Ir for each individual r in region G. The possible values of Ir are our possible observations ok for each

individual. In this example, they are the chief complaints with which the individual might present in the Emergency Depart-
ment, where one value is ‘‘noED”, which means the individual did not visit the Emergency Department. We see from Fig. 1
that if there is an outbreak in subregion sj, individuals in sj have probability pk of having chief complaint ok, while individuals
not in sj have probability qk of having chief complaint ok. If there is no outbreak in any subregion, all individuals have
Fig. 1. A Bayesian network for a multi-entity spatial cluster detection system. The shaded variables are the ones we observe.
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probability qk of having chief complaint ok. Note that for each assignment of values to E and S, the Bayesian network in Fig. 1
is a naive Bayesian network.

Our Data consists of the values of Ir for all individuals r in G. These nodes are shaded to indicate that they represent mea-
sured variables. Since there could be thousands, or even millions, of individuals in G, we would not explicitly construct the
Bayesian network in Fig. 1, and instantiate Ir for all r. Rather we can compute the likelihood of the data as follows:
PðDatajS ¼ sjÞ ¼
Q
k
ðpkÞ

CðjÞ
k ðqkÞ

Nk�CðjÞ
k

PðDatajE ¼ yesÞ ¼
P

j
PðDatajS ¼ sjÞaj

PðDatajE ¼ noÞ ¼
Q
k
ðqkÞ

Nk ;
where CðjÞk is the number of individuals in sj with the kth chief complaint, and Nk is the number of individuals in G with the kth
chief complaint. We then use Bayes’ rule to compute posterior probabilities as follows:
PðE ¼ yesjDataÞ ¼ PðDatajE¼yesÞPðE¼yesÞ
PðDatajE¼yesÞPðE¼yesÞþPðDatajE¼noÞPðE¼noÞ

PðS ¼ sjjDataÞ ¼ PðDatajS¼sjÞPðS¼sjÞP
i
PðDatajS¼siÞPðS¼siÞ

;

where one value of si is ‘‘none”.

3.2. The general formulation of the model

Fig. 2 depicts the general structure of a multi-entity spatial cluster detection Bayesian network. There is a node E whose
values are the possible events that could be occurring. There is a node S whose values are the possible subregions in which an
event could be occurring. There are one or more observable nodes for each individual r in the region. We show one node
labeled Ir, but in general Ir represents an entire Bayesian subnetwork for individual r. There can be any number of other nodes
(represented abstractly in Fig. 2 as Intermediate Nodes) that convey the relationships among the observable nodes and S and
E. In the next subsection, we describe a model that concretely illustrates intermediate nodes.

3.3. An example of the general model

This section describes a multi-entity spatial cluster detection system that is based on the PANDA-CDCA Bayesian network.
PANDA-CDCA [16] is a non-spatial disease-outbreak detection system. It monitors an entire region globally in an effort to
detect an outbreak of disease. PANDA-CDCA models the CDC Category A diseases, namely, anthrax, plague, smallpox, tula-
remia, botulism and hemorrhagic fever, and also certain diseases that may be confused with them, namely influenza, Cryp-
tosporidium, and hepatitis. It includes variables for each individual in a population.

Fig. 3 shows the Bayesian network in PANDA-CDCA modified to handle spatial cluster detection. We call this Bayesian
network BNetScan-PC. The probability distributions in the network are relative to the most recent time period, which con-
sists of the past 24 h. The value of the variable E is the type of outbreak that is occurring if there is an outbreak. It is assumed
that at most one type of outbreak will be occurring at any given time. There are 13 possible values of E. One of the values is
‘‘none”, which means there is no outbreak. The remaining 12 values are the outbreak diseases, with plague, anthrax, and
Fig. 2. The general structure of a multi-entity spatial cluster detection Bayesian network.
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hemorrhagic fever each occurring twice, once in an early stage and once in a late stage (since the early-stage and late-stage
symptoms of these diseases are very different).

The value of the variable S is the spatial subregion sj in which the outbreak is occurring, if there is an outbreak. Its value is
‘‘none” if there is no outbreak.

There are variables Dr and Ir for each individual r in region G. The value of the variable Dr is the disease state of the rth
individual if the individual visited the ED and is ‘‘noED” otherwise. There are 14 possible disease states including every out-
break disease, asthma, and other. Variable Dr is an unmeasured (hidden) variable in the sense that we can only infer its value
under uncertainty. The value ‘‘other” for Dr means the individual visited the ED with something other than an outbreak dis-
ease. For example, the individual may have visited the ED with a broken arm. The value of the variable Ir is the rth individ-
ual’s chief complaint in the ED if the individual visited the ED, and is ‘‘noED” if the individual did not visit the ED.

Variable Ir has 54 possible values. Fifty-two of the values represent specific chief complaints (e.g., ‘‘cough”). Another value
of Ir is ‘‘other”, which denotes all other chief complaints. The final value of Ir is ‘‘noED”, which indicates individuals who did
not visit the ED recently.

The value of the variable F represents the extent of the outbreak, if one is occurring. For example,
PðDr ¼ influenzajE ¼ influenza; F ¼ 0:0000118; S ¼ sj; r 2 sjÞ ¼ 0:0000118;
PðDr ¼ influenzajE ¼ influenza; F ¼ 0:0000236; S ¼ sj; r 2 sjÞ ¼ 0:0000236:
So if the extent of an influenza outbreak in subregion sj is F = 0.0000118, an individual in sj has probability 0.0000118 of
arriving in the ED with influenza, whereas if the extent is F = 0.0000236, an individual in sj has probability 0.0000236 of
arriving in the ED with influenza.

Our Data consists of the values of Ir for all individuals r in G. As in Section 3.1, we need not actually construct the Bayesian
network in Fig. 3, and instantiate Ir for all r. Rather we can compute the likelihood of the data in the way we show next. Ow-
ing to the conditional independencies entailed by the network, we have that
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PðDatajE; F; S ¼ sjÞ ¼
Y
r2sj

X
Dr

PðIr jDrÞPðDrjE; F; S ¼ sj; rÞ
Y

r2G�sj

X
Dr

PðIrjDrÞPðDr jE; F; S ¼ sj; rÞ:
Let D be a random variable whose possible values are the disease states, and I be a random variable whose possible values
are the chief complaints. That is, D and I have the same spaces as Dr and Ir, respectively, but they do not refer to any particular
individual. For each of the 54 possible values of I, we need only compute two values of

P
DPðIjDÞPðDjE; F; S ¼ sj; rÞ, one for an

individual in sj and one for an individual outside sj. To that end, let
pk ¼
P
D

PðI ¼ okjDÞPðDjE; F; S ¼ sj; r 2 sjÞ;

qk ¼
P
D

PðI ¼ okjDÞPðDjE; F; S ¼ sj; r 2 G� sjÞ;
where ok is the kth chief complaint. Note that pk and qk do not depend on sj, but they do depend on E and F, which we leave
implicit for notational simplicity. We then have
PðDatajE; F; S ¼ sjÞ ¼
Y54

k¼1

ðpkÞ
CðjÞ

k ðqkÞ
Nk�CðjÞ

k ;
where CðjÞk is the number of individuals in sj with the kth chief complaint, and Nk is the number of individuals in G with the kth
chief complaint. We have next that
PðDatajS ¼ sjÞ ¼
X

E–none

X
F

PðDatajE; F; S ¼ sjÞPðFÞPðEjS ¼ sjÞ
and
PðDatajEÞ ¼
X

sj

X
F

PðDatajE; F; S ¼ sjÞPðFÞPðS ¼ sjjEÞ:
Once we have these probabilities, we proceed to apply Bayes’ rule in the same way as shown at the end of Section
3.1.
4. Experiments

This section describes experiments that compare the detection power of SaTScanTM, the Bayesian spatial scan statistic
(BSS) method, and BNetScan-PC method. An important question is whether we can obtain good results using a Bayesian net-
work model even if its conditional probability distributions are significantly different from the true generative distributions
in the domain being modeled. We tested the robustness of the Bayesian network approach regarding the probability distri-
butions used to generate the outbreak data. In these experiments, we used the SaTScanTM software package, which is available
for free at http://www.satscan.org/, in order to implement the spatial scan statistic. We used an implementation of BSS that
was developed by Daniel Neill. We used our own implementation of BNetScan-PC. SaTScanTM searched over circular subre-
gions, while BSS and BNetScan-PC searched over rectangular subregions.

4.1. Method

We modeled Allegheny County, Pennsylvania, which covers 730 square miles, using a 16 � 16 grid. Each grid element is
one cell. We considered a zip code to be entirely within a cell if the zip code’s centroid was in the cell. We simulated both
influenza and Cryptosporidium outbreaks in rectangular subregions of the county. Next we discuss the outbreaks. This dis-
cussion pertains to both the influenza and Cryptosporidium outbreaks.

First, we describe properties of the outbreaks.

(1) Outbreak Severity: For each cell, we determined the mean and standard deviation rcell of the number of ED visits during
a 1-year background period when it was assumed no outbreak was occurring. The period chosen was the entire cal-
endar year 2004. The data for each outbreak consisted of new injected ED visits plus the ED data in the background
period. So our data is semi-synthetic because the background data is real and the overlaid outbreak data is synthetic.
We modeled moderate outbreaks by making the average daily number of injected ED visits in each cell equal to 2rcell.
For an outbreak with duration dur, we then let totcell = 2rcell � dur be the total number of injected ED visits in a given
cell during the entire outbreak.

(2) Daily increase: We assumed half of the injected ED visits occurred during the first half of the outbreak, and that D of
them occurred on day one of the outbreak, 2D occurred on day two, and so on. Therefore, to determine the value of D
we solved
Dþ 2Dþ � � � þ dur
2

D ¼ totcell

2
:

http://www.satscan.org/
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(3) We then injected D new outbreak cases into the background data on day one of the outbreak, 2D on day two, and so
on.

(4) Chief Complaints: To determine the chief complaint of each injected case, we generated the chief complaint according
to probability distribution P of the chief complaints given the outbreak disease (influenza or Cryptosporidium). Recall
BNetScan-PC contains a probability distribution P0 of the chief complaints given the outbreak disease. To test the
robustness of BNetScan-PC, we let P vary significantly from P0. Later, we describe the variation and how many different
probability distributions we used. Presently, we show how each distribution was created.To obtain a conditional prob-
ability distribution P, we let the conditional probabilities of the chief complaints in BNetScan-PC be the means of
Dirichlet distributions. For example, suppose we are simulating an influenza outbreak; if p1, p2, . . . , and p54 are the con-
ditional probabilities in BNetScan-PC of each of the chief complaints given influenza, and N is our subjective prior sam-
ple size, we set
ai ¼ piN

to obtain parameters for a Dirichlet distribution. Once we have such a Dirichlet distribution, we randomly generate a
probability distribution P according to this distribution. This P is then used for one entire set of experiments. As N in-
creases, the likelihood of P being similar to the conditional probability distribution in BNetScan-PC increases.
(5) Outbreak subregions: We considered outbreaks that occur in rectangles that are 2 cells by 1 cell, 2 cells by 2
cells, and 3 cells by 2 cells. The 2 by 1 rectangles and 3 by 2 rectangles could go either north–south or
east–west. Not all cells had sufficient background ED visits to qualify for containing an outbreak. We eliminated
all those cells that had rcell < 1. We generated each 2 by 1 rectangle, for example, by randomly choosing two
contiguous cells. If either cell had rcell < 1, we would randomly generate a new rectangle. We did this until
we obtained a 2 by 1 rectangle that did not have rcell < 1 in either cell. In this manner, we determined four sub-
regions of each type.

For each type of outbreak (influenza and Cryptosporidium), we developed the number of outbreaks described by the table
that follows. Recall that N is our subjective prior sample size. By N =1, we mean that we used the probability distributions in
BNetScan-PC. The table also shows the average value of the Kullback–Leibler distances of each generated probability
distribution relative to the probability distribution in BNetScan-PC.
N
 # Distributions
generated
# Outbreaks per
distribution
Average KL-Dist.
(influenza)
Average KL-Dist.
(Cryptosporidium)
1
 1
 240
 0
 0

30
 10
 60
 0.24
 1.85

5
 10
 60
 1.54
 5.86

1
 10
 60
 10.97
 22.88
For N =1, the properties of the 240 outbreaks were determined as follows:
Variable
 Values
 # Occurrences of each value
 Total # of occurrences
Duration
 30, 40, 50, 60
 60
 240

Month
 1–12
 20
 240

Day
 1–30
 8
 240

Subregion
 4 of type 2 by 1, 4 of type 2, 4 of type 3 by 2
 20
 240
The Month and Day variables determined the starting date for the outbreak. For example, if Month = 3 and Day = 5, we
injected the outbreak data starting on March 5th of the 1-year background period. For each variable, a list of the 240 occur-
rences was created. To develop an outbreak, an item was sampled at random from each list. The sampled items were re-
moved from the lists before the next outbreak was developed.

For N = 1, 5, and 30, the properties of the 60 outbreaks for each probability distribution were determined as follows:
Variable
 Values
 # Occurrences of each value
 Total # of occurrences
Duration
 30, 40, 50, 60
 15
 60

Month
 1–12
 5
 60

Day
 1–30
 2
 60

Subregion
 4 of type 2 by 1, 4 of type 2 by 2, 4 of type 3 by 2
 5
 60
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4.2. Results

We evaluated five methods, namely BNetScan, two ways of using BSS, and two ways of using SaTScanTM. The two ways we
used the latter two systems are as follows. The first way looks for a cluster of individuals presenting in the ED with one of the
chief complaints that the outbreak disease could cause according to the probability distribution in BNetScan-PC. For exam-
ple, in the case of influenza, if an individual presented in the ED with any one of the chief complaints that could be caused by
influenza, one is added to the count. There are 12 such chief complaints for Cryptosporidium and 20 such chief complaints for
influenza. In the second way, we used the probability distribution in BNetScan-PC to determine the three chief complaints
which are the best indicator of the outbreak disease. The systems then only look for clusters of individuals presenting with
one of these chief complaints. Specifically, in the case of influenza for example, we first assigned a score of 0 to all chief com-
plaints CC such that P(CC—influenza) < 0.002. In this way we did not include chief complaints that were very unlikely given
influenza. Each remaining chief complaint CC was assigned a score as follows:
scoreðCCÞ ¼ PðCCjDr ¼ influenzaÞ
PðCCjDr ¼ otherÞ :
Recall that the value ‘‘other” means the individual visited the ED with something other than an outbreak disease. We
then ranked the chief complaints by their scores, and chose the top three chief complaints. In this way, these systems are
able to take advantage of the assessed probability distributions in BNetScan-PC despite only being able to incorporate
univariate count data. The following tables summarize our results for the top three chief complaints for each outbreak
disease:
CC
 P(CC|Dr = influenza)
 P(CC|Dr = other)
 P(CC|Dr = influenza) � P(CC|Dr = other)
Cough
 0.3356
 0.0248
 13.53

Fever/chills
 0.4122
 0.0322
 12.80

Myalgia
 0.0095
 0.0013
 7.31
CC
 P(CC|Dr = Crypto.)
 P(CC|Dr = other)
 P(CC|Dr = Crypto.) � P(CC|Dr = other)
Bloody stools
 0.03
 0.00005
 600

Sweats
 0.1375
 0.0003
 458.33

Diarrhea
 0.2643
 0.0072
 36.71
This table summarizes the inputs to the methods:
Method
 Input
BNetScan-PC
 The chief complaint of every individual who visited the ED

BSS Method 1
 Count of individuals presenting with any chief complaint caused by injected outbreak disease

BSS Method 2
 Count of individuals presenting with one of the top three chief complaints

SaTScanTM Method 1
 Count of individuals presenting with any chief complaint caused by injected outbreak disease

SaTScanTM Method 2
 Count of individuals presenting with one of the top three chief complaints
4.2.1. Outbreak detection
We used AMOC curves [17] to evaluate the ability of the methods to detect the outbreaks. In such curves, the false alarm

rate, which is the number of false alarms per year, is plotted on the x-axis and the mean number of days to detection is plot-
ted on the y-axis. If an outbreak was detected on the first day of the outbreak, we considered the days to detection to be 0; if
it was detected on the second day of the outbreak, we considered days to detection to be 1, and so on. If an outbreak was not
detected by the mid-point of the outbreak, we set the days to detection to the mid-point. We considered the mid-point of an
outbreak to be the last day at which outbreak detection would be useful.

We developed separate AMOC curves for N =1, N = 1, N = 5, and N = 30. Recall that for the latter three values of N, we
generated 10 probability distributions, and developed 60 outbreaks using each distribution. To obtain a y-value on the AMOC
curve, we took the mean days to detection over all 600 outbreaks.

To obtain points for the AMOC curves, we proceeded as follows. Suppose we were producing an AMOC curve showing
how well BNetScan-PC detected whether an influenza outbreak was present. We first ran BNetScan-PC for every day in
the 1-year background period, computed P(E = influenza|Data) on each of those days, where Data depends on the day, and
then ordered those posterior probabilities in decreasing order. Let threshold0, threshold1, . . . , threshold365 be that ordered list.
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For a given outbreak, let Datai be the data obtained on the ith day of the outbreak. For a given false positive rate r, let ir be the
smallest value of i such that
PðE ¼ influenzajDataiÞ > thresholdr :
Then for that outbreak, the days to detection was set equal to ir � 1 at a false alarm rate of r. To obtain the mean days to
detection at false alarm rate of r, we took the average of the days-to-detection over all the simulated outbreaks. In order to
plot the system’s ability to detect an outbreak in general, we follow the same procedure except we use P(E – none|Datai) in-
stead of P(E = influenza|Datai).

To create the AMOC curves for SaTScanTM, the likelihood ratio (Eq. (1)) of the most likely subregion was used instead of a
posterior probability.

Figs. 4 and 5 show AMOC curves comparing the performance of the five methods. We can see from these AMOC curves
that BNetScan-PC, BSS Method 2, and SaTScanTM Method 2 all typically performed much better than BSS Method 1 and SaT-
ScanTM Method 1. These results support the usefulness of modeling probabilistic relationships in performing outbreak detec-
tion. Further, the AMOC curves show that in the case of Cryptosporidium outbreaks, BNetScan-PC has better performance than
the other methods, and this is particularly true when the number of false alarms per year is fewer than 3. Indeed, BNetScan-
PC’s performance hardly degrades as we approach a false alarm rate of 0. In the case of influenza outbreaks, the performance
of SaTScanTM Method 2 exceeds that of BNetScan-PC, but not by as much as BNetScan-PC’s performance exceeds that of SaT-
ScanTM Method 2 in the case of Cryptosporidium outbreaks.

Another notable result is that the performance of each of the methods does not degrade very much as the probability dis-
tribution used to generate the data increasingly deviates from the distribution defined by the BNetScan-PC model. As ex-
pected, the performances of BSS Method 1 and SaTScanTM Method 1 would not degrade, since these methods do not use
probabilistic information from BNetScan-PC. However, even when N = 1 the mean day at which BNetScan-PC detects a Cryp-
tosporidium outbreak is 4.63 when the annual false positive rate is 0, whereas for N =1 it is 3.56. The corresponding values
for influenza outbreak are 10.81 and 8.11, respectively. These results are encouraging, and are consistent with the findings in
[18], which indicated that diagnosis using Bayesian networks is often insensitive to imprecision in probabilities. In the case
of outbreak detection, we suspect that, as long as we identify some of the most likely chief complaints given an outbreak
disease, we can obtain good detection performance even if imprecision is high.
Fig. 4. AMOC curves for Cryptosporidium outbreaks.



Fig. 5. AMOC curves for influenza outbreaks.
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Recall that BNetScan-PC is designed to detect 12 different types of outbreaks. So it not only reports the posterior prob-
ability of an influenza or a Cryptosporidium outbreak, but also the overall probability of any outbreak being present. Fig. 6
contains AMOC curves showing BNetScan-PC’s performance regarding the detection of any outbreak. In that figure, we com-
pare general outbreak detection performance to performance in detecting the disease-specific outbreak. For example, we
used P(E = influenza|Data) to produce the AMOC curve in Fig. 6c, and we used P(E – none|Data) to produce the AMOC curve
in Fig. 6d. In the case of Cryptosporidium outbreaks, the system can detect any outbreak almost as well as it can specifically
detect a Cryptosporidium outbreak. In the case of influenza outbreaks, for most values of N the performance when detecting
any outbreak is about the same as that when detecting an influenza outbreak, and when N = 1 BNetScan-PC actually detects
any outbreak much better than it specifically detects an influenza outbreak. The result for N = 5, 30, and1may be due to the
fact that influenza outbreaks are be fairly difficult to detect. They are difficult to detect because influenza has symptoms such
as cough and fever/chills, which are not uncommon when no outbreak is occurring. Since influenza outbreaks are difficult to
detect, it seems reasonable that it would be no easier to detect an influenza outbreak than a non-specific outbreak. The result
for N = 1 seems reasonable for the same reason. That is, perhaps, when the conditional probability distributions of the chief
complaints given influenza in the detection model are significantly different from the conditional probability distributions
used to generate the outbreak data, it may be quite difficult to detect an influenza outbreak. However, since there is still a
substantial increase in ED visits during the outbreak, it may not be that difficult to detect a non-specific outbreak. Note that
Cryptosporidium, on the other hand, has very distinct symptoms.

Notice from Figs. 4 and 5 that SaTScanTM Method 2 tended to outperform BSS Method 2. This may be due to the following
factor. SaTScanTM searches over circular regions, while BSS searches over rectangles. This difference gives SaTScanTM an advan-
tage in these particular experiments because all of the outbreak subregions were highly compact (near-circular). However,
BSS may outperform SaTScanTM if the subregions were highly elongated, which we did not test here.

4.2.2. Subregion detection
We considered the subregion sj that maximized P(Data|S = sj) to be the subregion detected by BNetScan-PC and BSS. Note

that this is the same subregion with maximum posterior probability if we assume that all subregions have the same prior
probability. We considered the subregion that maximized the Poisson spatial scan statistic to be the subregion detected
by SaTScanTM. To measure the accuracy of the detections, we used the overlap coefficient of the detected subregion with
the injected (actual) subregion. That overlap coefficient is defined as follows:



Fig. 6. AMOC curves comparing BNetScan-PC’s ability to detect any outbreak (non-disease specific) to its ability to detect the specifically simulated
outbreak disease.
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overlapðs1; s2Þ ¼
#ðs1 \ s2Þ
#ðs1 [ s2Þ

;

where # returns the number of cells in a region. This coefficient is 0 if and only if the two subregions do not intersect, while it
is 1 if and only if they are the same subregion.

Figs. 7 and 8 show the average values of the overlap coefficients on each day of the outbreaks. In all cases the performance
of BNetScan-PC was significantly better than of the other methods. In the case of Cryptosporidium outbreaks, BNetScan-PC
performed substantially better than SaTScanTM Method 2 at both outbreak detection and subregion detection. However, in
the case of influenza outbreaks, BNetScan-PC performed worse than SaTScanTM Method 2 at outbreak detection, but it sub-
stantially outperformed SaTScanTM Method 2 at subregion detection. One reason for this enigmatic result can be understood
by looking at Fig. 6c and d. BNetScan-PC was substantially better at detecting any outbreak than it was at specifically detect-
ing an influenza outbreak. SaTScanTM Method 2 does not report which type of outbreak it detects; it only looks for a cluster of
the top three chief complaints. If we had compared BNetScan-PC’s ability to detect any outbreak to the performance of SaT-
ScanTM Method 2, BNetScan-PC would have performed better than SaTScanTM Method 2 at outbreak detection. This is consis-
tent with its superior subregion detection performance, which is not sensitive to which particular disease is driving the high
probability of an outbreak.

BNetScan-PC’s performance did not degrade as the probability distribution used to generate the data increasingly devi-
ated from the one in the BNetScan-PC model (i.e., as N went from1 to 1). These results are understandable in that the num-
ber of cases injected into the outbreak subregion does not depend on N. That is, if we changed the type of chief complaints
injected but not their number, we may detect a different outbreak, but we would not change the subregion most likely to
contain the outbreak. In the same way, the performance of Methods 1 of SaTScanTM and BSS should not deteriorate as we de-
crease N. However, Figs. 7 and 8 show that the performance of the Method 2 versions of BSS and SaTScan do deteriorate
somewhat, which can be explained by the fact that they only consider a subset of chief complaints that are consistent with



Fig. 7. The average value of the overlap coefficient for Cryptosporidium outbreaks.
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the simulated outbreak disease; thus, that set may become less informative about the presence of an outbreak as N decreases
from 1 to 1.

Another noteworthy result is that the spatial-localization performance of Method 1 for SaTScanTM and BSS is sometimes
better than the performance of Method 2. This is particularly true when the variable Day is large, which means the number of
outbreak cases becomes large. The explanation for this result can be appreciated by considering SaTScanTM. When we are only
determining the most likely subregion, we are comparing each subregion to each other subregion. We are not concerned
with how the likelihood of the most likely subregion compares to the likelihoods obtained during the background period.
Consider the Poisson spatial scan statistic (Eq. (1)). Method 1 counts more chief complaints than Method 2, and therefore
in the outbreak subregion S the value of CðsÞin will be larger for Method 1 than for Method 2. This should often increase the
value of the statistic more for the outbreak subregion S than for the other subregions, especially when the additional counts
due to the additional chief complaints is large. On the other hand, when we are merely detecting an outbreak (and not char-
acterizing its location), we are concerned with how the likelihood compares to likelihoods computed during the background
period.

5. Summary

We compared the performance of three spatial cluster detection methods in the context of disease-outbreak surveillance.
They are a frequentist spatial scan statistic (we used the SaTScanTM software implementation of this method), a Bayesian spa-
tial scan statistic (BSS), and a novel Bayesian-network-based spatial scan statistic (BNetScan), which was introduced in this
paper. In the majority of cases, BNetScan outperformed the other two methods both in terms of outbreak detection and sub-
region detection. This was the case even when SaTScanTM and BSS were able to take advantage of the probabilistic informa-
tion in BNetScan. These results lend support to the conjecture that, in the case of spatial event surveillance, we may be able
to obtain better results by modeling the relationships among the events of interest and the observable events using a Bayes-
ian network rather than using a summary statistic.

We also found that the performance of BNetScan was robust relative to the probability distribution generating the data.
Thus, the results support that in the domain of disease-outbreak detection we may expect to be able to achieve good detec-
tion performance even when the assumed and actual probability distributions are quite different.



Fig. 8. The average value of the overlap coefficient for influenza outbreaks.
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Finally, we found that BNetScan can detect the presence of any outbreak almost as well as (indeed, sometimes better) it
detects a specific outbreak. It will be useful to investigate this matter further by performing experiments in which all 12
types of outbreaks represented in BNetScan-PC are simulated.
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