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Abstract
Learning probabilistic predictive models that are well cali-
brated is critical for many prediction and decision-making
tasks in artificial intelligence. In this paper we present a new
non-parametric calibration method called Bayesian Binning
into Quantiles (BBQ) which addresses key limitations of ex-
isting calibration methods. The method post processes the
output of a binary classification algorithm; thus, it can be
readily combined with many existing classification algo-
rithms. The method is computationally tractable, and em-
pirically accurate, as evidenced by the set of experiments
reported here on both real and simulated datasets.

Introduction
A rational problem solving agent aims to maximize its util-
ity subject to the existing constraints (Russell and Norvig
1995). To be able to maximize the utility function for many
practical prediction and decision-making tasks, it is cru-
cial to develop an accurate probabilistic prediction model
from data. Unfortunately, many existing machine learning
and data mining models and algorithms are not optimized
for obtaining accurate probabilities and the predictions they
produce may be miscalibrated. Generally, a set of predic-
tions of a binary outcome is well calibrated if the outcomes
predicted to occur with probability p do occur about p frac-
tion of the time, for each probability p that is predicted.
This concept can be readily generalized to outcomes with
more than two values. Figure 1 shows a hypothetical ex-
ample of a reliability curve (DeGroot and Fienberg 1983;
Niculescu-Mizil and Caruana 2005), which displays the cal-
ibration performance of a prediction method. The curve
shows, for example, that when the method predicts Z = 1
to have probability 0.5, the outcome Z = 1 occurs in about
0.57 fraction of the instances (cases). The curve indicates
that the method is fairly well calibrated, but it tends to assign
probabilities that are too low. In general, perfect calibration
corresponds to a straight line from (0, 0) to (1, 1). The closer
a calibration curve is to this line, the better calibrated is the
associated prediction method.

Producing well-calibrated probabilistic predictions is crit-
ical in many areas of science (e.g., determining which exper-
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iments to perform), medicine (e.g., deciding which therapy
to give a patient), business (e.g., making investment deci-
sions), and others. However, model calibration and the learn-
ing of well-calibrated probabilistic models have not been
studied in the machine learning literature as extensively as
for example discriminative machine learning models that
are built to achieve the best possible discrimination among
classes of objects. One way to achieve a high level of model
calibration is to develop methods for learning probabilistic
models that are well-calibrated, ab initio. However, this ap-
proach would require one to modify the objective function
used for learning the model and it may increase the com-
putational cost of the associated optimization task. An al-
ternative approach is to construct well-calibrated models by
relying on the existing machine learning methods and by
modifying their outputs in a post-processing step to obtain
the desired model. This approach is often preferred because
of its generality, flexibility, and the fact that it frees the de-
signer of the machine learning model from the need to add
additional calibration measures into the objective function
used to learn the model. The existing approaches developed
for this purpose include histogram binning, Platt scaling, or
isotonic regression (Platt 1999; Zadrozny and Elkan 2001;
2002). In all these the post-processing step can be seen as
a function that maps the output of a prediction model to
probabilities that are intended to be well-calibrated. Figure
1 shows an example of such a mapping.

Existing post-processing calibration methods can be di-
vided into two groups: parametric and nonparametric meth-
ods. An example of a parametric method is Platt’s method
that applies a sigmoidal transformation that maps the output
of a predictive model (Platt 1999) to a calibrated probabil-
ity output. The parameters of the sigmoidal transformation
function are learned using a maximum likelihood estima-
tion framework. The key limitation of the approach is the
(sigmoidal) form of the transformation function, which only
rarely fits the true distribution of predictions. The most com-
mon non-parametric methods are based either on binning
(Zadrozny and Elkan 2001) or isotonic regression (Zadrozny
and Elkan 2002). In the histogram binning approach, also
known as quantile binning, the raw predictions of a binary
classifier are sorted first, and then they are partitioned into
B subsets of equal size, called bins. Given a prediction y,
the method finds the bin containing that prediction and re-



Figure 1: The solid line shows a calibration (reliability)
curve for predicting Z = 1. The dotted line is the ideal cali-
bration curve.

turns as ŷ the fraction of positive outcomes (Z = 1) in the
bin. Histogram binning has several limitations, including the
need to define the number of bins and the fact that the bins
and their associated boundaries remain fixed over all predic-
tions (Zadrozny and Elkan 2002).

The other non-parametric calibration method is based on
isotonic regression (Zadrozny and Elkan 2002). This method
only requires that the mapping function be isotonic (mono-
tonically increasing) (Niculescu-Mizil and Caruana 2005).
A commonly used method for computing the isotonic re-
gression is pool adjacent violators (PAV) algorithm (Bar-
low et al. 1972). The isotonic calibration method based on
the (PAV) algorithm can be viewed as a binning algorithm
where the position of boundaries and the size of bins are
selected according to how well the classifier ranks the ex-
amples in the training data (Zadrozny and Elkan 2002).
Recently a variation of the isotonic-regression-based cali-
bration method for predicting accurate probabilities with a
ranking loss was proposed (Menon et al. 2012). Although
isotonic regression based calibration yields good perfor-
mance in many real data applications, the violation of iso-
tonicity assumption in practice is quite frequent, so the re-
laxation of the isotonicity constraints may be appropriate.

This paper presents a new binary classifier calibration
method called Bayesian Binning into Quantiles (BBQ) that
is applied as a post-processing step1. The approach can be
viewed as a refinement of the histogram-binning calibration
method in that it considers multiple different binnings and
their combination to yield more robust calibrated predic-
tions. Briefly, by considering only one fixed bin discretiza-
tion, one may not be able to guess correctly the optimal bin
width. In addition, the data may not be distributed equally
across the output space after applying the discriminative pro-
jection learned in the first step, and various biases in the dis-
tribution may occur. Both of these problems can be resolved
by considering multiple different binnings and their com-
bination. The experimental results presented below indicate
that the proposed method works well in practice.

1An implementation of BBQ method can be found at the fol-
lowing address: https://github.com/pakdaman/calibration.git

Methods
BBQ extends the simple histogram-binning calibration
method (Zadrozny and Elkan 2001) by considering multiple
binning models and their combination. The main challenge
here is to decide on how to pick the models and how to com-
bine them. BBQ considers multiple equal-frequency bin-
ning models that distribute the data-points in the training set
equally across all bins. The different binning models differ
in the number of bins they have. We combine them using a
Bayesian score derived from the BDeu (Heckerman, Geiger,
and Chickering 1995) score used for learning Bayesian net-
work structures. Let yi and zi define respectively an uncal-
ibrated classifier prediction and the true class of the i’th in-
stance. Also, let D define the set of all training instances
(yi, zi) and let S be the sorted set of all uncalibrated clas-
sifier predictions {y1, y2 . . . , yN}, where N is total number
of training data. In addition, let Pa denote a partitioning of
S into B equal frequency bins. A binning model M induced
by the training set is defined as M ≡ {B,Pa,Θ}. Where,
B is the number of bins over the set S and Θ is the set of all
the calibration model parameters Θ = {θ1, . . . , θB}, which
are defined as follows. For a bin b the distribution of the
class variable P (Z = 1|B = b) is modeled as a binomial
distribution with parameter θb. Thus, Θ specifies all the bi-
nomial distributions for all the existing bins in Pa. We score
a binning model M as follows:

Score(M) = P (M) · P (D|M) (1)

The marginal likelihood P (D|M) in Equation 1 has
a closed form solution under the following assumptions
(Heckerman, Geiger, and Chickering 1995): (1) All samples
are i.i.d and the class distribution P (Z|B = b), which is
class distribution for instances located in bin number b, is
modeled using a binomial distribution with parameter θb, (2)
the distributions of the class variable over two different bins
are independent of each other, and (3) the prior distribution
over binning model parameters θs are modeled using aBeta
distribution. We also assume that the parameters of theBeta
distribution associated with θb are αb and βb. We set them
to be equal to αb = N ′

B pb and βb = N ′

B (1 − pb), where N ′
is the equivalent sample size expressing the strength of our
belief in the prior distribution2 and pb is the midpoint of the
interval defining the b’th bin in the binning model M . Given
the above assumptions, the marginal likelihood can be ex-
pressed as (Heckerman, Geiger, and Chickering 1995):

P (D|M) =

B∏
b=1

Γ(N
′

B )

Γ(Nb + N ′

B )

Γ(mb + αb)

Γ(αb)

Γ(nb + βb)

Γ(βb)
,

where Γ is the gamma function and Nb is the total num-
ber of training instances located in the b’th bin. Also, nb
and mb are respectively the number of class zero and class
one instances among all Nb training instances in bin b. The
term P (M) in Equation 1 specifies the prior probability of
the binning model M . In our experiments we use a uniform
prior for modeling P (M). BBQ uses the above Bayesian

2We set N ′ = 2 in our experiments.



score to perform model averaging over the space of all pos-
sible equal frequency binnings. We could have also used
the above Bayesian score to perform the model selection,
which in our case would yield a single binning model. How-
ever, model averaging is typically superior to model selec-
tion (Hoeting et al. 1999). Hence a calibrated prediction in
our BBQ framework is defined as:

P (z = 1|y) =

T∑
i=1

Score(Mi)∑T
j=1 Score(Mj)

P (z = 1|y,Mi),

where T is the total number of binning models consid-
ered and P (z = 1|y,Mi) is the probability estimate3 ob-
tained using the binning model Mi, for the (uncalibrated)
classifier output y. To choose models Mi we choose a re-
stricted range of binning models, each defined by a differ-
ent number of bins. We define the range of possible val-
ues of the number of bins as B ∈ {

3√
N
C , . . . , C 3

√
N},

where C is a constant that controls the number of bin-
ning models (C = 10 in our experiments). The choice of
the above range is due to some previous results (Klemela
2009; Scott and Nowak 2003) that show that the fixed bin
size histogram binning classifier is a mini-max rate clas-
sifier for Lipschitz Bayes decision boundaries when we
set number of bins to θ( 3

√
N), where θ(.) is asymptoti-

cally tight bound notation defined as θ(g(n)) = {h(n) :
∃ positive constants c1, c2, n0 such that 0 ≤ c1g(n) ≤
h(n) ≤ c2g(n),∀n ≥ n0}. Although the results are valid
for histogram classifiers with fixed bin size, our experi-
ments show that both fixed bin size and fixed frequency his-
togram classifiers behave quite similarly. We conjecture that
a histogram classifier with equal frequency binning is also a
mini-max rate classifier; this is an interesting open problem
that we intend to study in the future.

We may further restrict the number of binning models
used in averaging in the application stage. That is, we may
start by calculating the Bayesian score for all models in the
above range, and select a subset of those that yield a higher
Bayesian score afterwards. The number of resulting models
can be determined by a priori fixing the number of mod-
els to be used in averaging or by checking for the sharp
drops in the Bayesian scores over all such models. Assume
S1, S2, . . . , SN are the sorted Bayesian scores of histogram
models in a decreasing order. We fix a small number α > 0
(α = 0.001 in our experiments) and pick the first kα asso-
ciated binning models as the refined set of models, where
kα = min{k : Sk−Sk+1

σ2 ≤ α} and σ2 is the empirical vari-
ance of the Bayesian scores.

Calibration Measures
In order to evaluate the calibration capability of a classi-
fier, we use two intuitive statistics that measure calibration
relative to the ideal reliability diagram (DeGroot and Fien-
berg 1983; Niculescu-Mizil and Caruana 2005) (Figure 1
shows an example of a reliability diagram). These measures
are called Expected Calibration Error (ECE), and Maximum

3We actually use smoothing of the counts in the binning models,
which is consistent with the Bayesian priors in the scoring function

Calibration Error (MCE). In computing these measures, the
predictions are sorted and partitioned into K fixed number
of bins (K = 10 in our experiments). The predicted value of
each test instance falls into one of the bins. The ECE cal-
culates Expected Calibration Error over the bins, and MCE
calculates the Maximum Calibration Error among the bins,
using empirical estimates as follows:

ECE =

K∑
i=1

P (i) · |oi − ei| , MCE =
K

max
i=1

(|oi − ei|) ,

where oi is the true fraction of positive instances in bin i,
ei is the mean of the post-calibrated probabilities for the in-
stances in bin i, and P (i) is the empirical probability (frac-
tion) of all instances that fall into bin i. The lower the values
of ECE and MCE, the better is the calibration of a model.

Empirical Results
This section describes the set of experiments that we per-
formed to evaluate the performance of the proposed calibra-
tion method in comparison to other commonly used calibra-
tion methods: histogram binning, Platt’s method, and iso-
tonic regression. To evaluate the calibration performance of
each method, we ran experiments on both simulated and on
real data. For the evaluation of the calibration methods, we
used 5 different measures. The first two measures are Ac-
curacy (Acc) and the Area Under the ROC Curve (AUC),
which measure discrimination. The three other measures
are the root mean square error (RMSE), the expected cal-
ibration error (ECE), and the maximum calibration error
(MCE), which measure calibration.

Simulated Data
For the simulated data experiments, we used a binary clas-
sification dataset in which the outcomes were not linearly
separable. The scatter plot of the simulated dataset is shown
in Figure 2. The data were divided into 1000 instances for
training and calibrating the prediction model, and 1000 in-
stances for testing the models.

To conduct the experiments on simulated datasets, we
used two extreme classifiers: support vector machines
(SVM) with linear and quadratic kernels. The choice of
SVM with a linear kernel allows us to see how the calibra-
tion methods perform when the classification model makes
over simplifying (linear) assumptions. Also, to achieve
good discrimination on the data in Figure 2, SVM with a
quadratic kernel is an ideal choice. So, the experiment using
a quadratic kernel SVM allows us to see how well different
calibration methods perform when we use an ideal learner
for the classification problem in terms of discrimination.

As seen in Tables 1, BBQ outperforms Platt’s method
and isotonic regression on the simulation dataset, especially
when the linear SVM method is used as the base learner.
The poor performance of Platt’s method is not surprising
given its simplicity, which consists of a parametric model
with only two parameters. However, isotonic regression is
a non-parametric model that only makes a monotonicity as-
sumption over the output of the base classifier. When we



SVM Hist Platt IsoReg BBQ

AUC 0.50 0.84 0.50 0.65 0.85
ACC 0.48 0.78 0.52 0.64 0.78
RMSE 0.50 0.39 0.50 0.46 0.38
ECE 0.28 0.07 0.28 0.35 0.03
MCE 0.52 0.19 0.54 0.58 0.09

(a) SVM Linear

SVM Hist Platt IsoReg BBQ

AUC 1.00 1.00 1.00 1.00 1.00
ACC 0.99 0.99 0.99 0.99 0.99
RMSE 0.21 0.09 0.19 0.08 0.08
ECE 0.14 0.01 0.15 0.00 0.00
MCE 0.35 0.04 0.32 0.03 0.03

(b) SVM Quadratic Kernel

Table 1: Experimental Results on Simulated dataset

use a linear kernel SVM, this assumption is violated be-
cause of the non-linearity of data. As a result, isotonic re-
gression performs relatively poorly, in terms of improving
the discrimination and calibration capability of the base clas-
sifier. The violation of this assumption can happen in real
data as well. In order to mitigate this pitfall, Menon et. al
(Menon et al. 2012) proposed a new isotonic based cali-
bration method using a combination of optimizing AUC as
a ranking loss measure, plus isotonic regression for build-
ing an accurate ranking model. However, this is counter to
our goal of developing post-processing methods that can be
used with any existing classification models. As shown in
Table 1b, even if we use an ideal SVM classifier for our lin-
early non-separable dataset, the proposed method performs
as well as an isotonic regression based calibration.

As can be seen in Table 1b, although the SVM based
learner performs very well in terms of discrimination based
on AUC and ACC measures, it performs poorly in terms
of calibration, as measured by RMSE, MCE, and ECE.
Moreover, while improving calibration, all of the calibra-
tion methods retain the same discrimination performance
that was obtained prior to post-processing.

Real Data
In terms of real data, we used 30 different real world binary
classification data sets from the UCI and LibSVM reposi-
tory 4 (Bache and Lichman 2013; Chang and Lin 2011). We
used three common classifiers, namely, Logistic Regression
(LR), Support Vector Machines (SVM), and Naive Bayes
(NB) to evaluate the performance of the proposed calibration
method. To evaluate the performance of calibration mod-
els, we use the recommended statistical test procedure by

4The datasets used were as follows: spect, breast, adult, page-
blocks, pendigits, ad, mamography, satimage, australian, code rna,
colon cancer, covtype, letter unbalanced, letter balanced, dia-
betes, duke, fourclass, german numer, gisette scale, heart, ijcnn1,
ionosphere scale, liver disorders, mushrooms, sonar scale, splice,
svmguide1, svmguide3, coil2000, balance .

Figure 2: Scatter plot of non-linear separable simulated data

(a) AUC Results on LR

(b) AUC results on SVM

(c) AUC results on NB

Figure 3: Performance of each method in terms of average rank of
AUC on the real datasets. All the methods which are not connected
to BBQ by the horizontal bar are significantly different from BBQ
(using Friedman test followed by Holm’s step-down procedure at a
0.05 significance level).

Janez Demsar (Demšar 2006). More specifically, we use the
Freidman nonparametric hypothesis testing method (Fried-
man 1937) followed by Holm’s step-down procedure (Holm
1979) to evaluate the performance of BBQ in comparison
to the other calibration methods across the 30 real data sets.
Next, we briefly describe the test procedure; more detailed
information can be found in (Demšar 2006).

Friedman test with Holm’s post-hoc procedure The
Friedman test (Friedman 1937) is a non-parametric version
of the ANOVA test. For more concrete description of how
the test performs, assume we aim to compare the perfor-
mance of the calibration methods in terms of RMSE and
our base classifier isLR. The Friedman test ranks the RMSE
of LR in addition to the RMSE of the calibration methods
(Hist, Platt, IsoReg, BBQ) for each dataset separately, with
the best performing method getting the rank of 1, the second
best the rank of 2, and so on. In case of ties, average ranks



(a) ACC Results on LR

(b) ACC results on SVM

(c) ACC results on NB

Figure 4: Performance of each method in terms of average rank of
ACC on the real datasets. There is no statistically significant dif-
ference between the performance of the methods in terms of ACC
(using the Friedman test at a 0.05 significance level).

are assigned to the corresponding methods. Let ri,j be the
rank of i’th of the 5 methods (LR, Hist, Platt, Isoreg, BBQ)
at the j’th of the 30 datasets. The Friedman test computes
the average rank of each method Ri = 1

30

∑30
j=1 ri,j . The

null hypothesis states that all the methods are statistically
equivalent and so their associated rank Ri should be equal.
Under the null-hypothesis, the Friedman statistic

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
is distributed according to χ2

F with k−1 degrees of freedom,
where N is the number of datasets (30 in our case) and k is
the number of methods (5 in our case). However, it is known
that the Friedman statistic is often unnecessarily conserva-
tive; thus, we use a more accurate FF statistic (Iman and
Davenport 1980) defined as follows:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

Under the null hypothesis the FF statistic is distributed ac-
cording to the F distribution with k− 1 and (k− 1)(N − 1)
degrees of freedom. If the null hypothesis is rejected, we
proceed with Holm’s step-down post-hoc test (Holm 1979)
to compare the RMSE of our targeted method (BBQ in our
case) to the RMSE of the other methods. In order to use
Holm’s method, we define the zi statistics as:

zi =
(Ri −RBBQ)√

k(k+1)
6N

,

(a) RMSE Results on LR

(b) RMSE results on SVM

(c) RMSE results on NB

Figure 5: Performance of each method in terms of average rank
of RMSE on the real datasets. All the methods which are not con-
nected to BBQ by the horizontal bar are significantly different from
BBQ (using the Friedman test followed by Holm’s step-down pro-
cedure at a 0.05 significance level).

where RBBQ is the average rank of the target method
(BBQ),Ri is the average rank of i’th method, k is the number
of methods, and N is number of datasets. In Holm’s method
of testing, the zi statistic is used to find the corresponding
pi value from the table of the normal distribution, which is
compared with an adjusted α values as follows. First, the
p values are sorted so that pπ1 ≤ pπ2 . . . ≤ pπk−1

. Then
each pi is compared to α

k−i sequentially. So the most signif-
icant p value, p1, is compared with α

k−1 . If p1 is below α
k−1 ,

the corresponding hypothesis is rejected and we continue to
compare p2 with α

k−2 , and so on. As soon as a certain null
hypothesis cannot be rejected, all the remaining hypothe-
ses are retained as well. So, if pj is the first p value that is
greater than α

k−j , then we conclude that the rank of our tar-
get method BBQ is significantly different from the methods
π1, .., πj−1, and it is statistically equivalent to the rest of the
methods.

Results on real data sets The results on real datasets are
shown in the Figures 3, 4, 5, 6, and 7. In these graphs, we
indicate the average rank of each method (1 is best) and
we connect the methods that are statistically equivalent with
our target method BBQ using a horizontal bar (e.g in Fig-
ure 5a the average rank of BBQ is 2.156, it is perform-
ing statistically equivalent to IsoReg ; however, its perfor-
mance in terms of RMSE is statistically superior to Hist,
Platt’s method, and the base classifier LR). Figure 3 shows
the result of comparing the AUC of BBQ with other meth-
ods. As shown, BBQ performs significantly better than his-
togram binning in terms of AUC at a confidence level of



(a) ECE Results on LR

(b) ECE results on SVM

(c) ECE results on NB

Figure 6: Performance of each method in terms of average rank
of ECE on the benchmark datasets. BBQ is statistically superior
to all the compared methods (using the Friedman test followed by
Holm’s step-down procedure at a 0.05 significance level).

α = 0.05. Also, its performance in terms of AUC is always
statistically equivalent to the base classifier (LR, SVM, NB)
and isotonic regression. Note that we did not include Platt’s
method in our statistical test for AUC, since the AUC of the
Platt’s method would be the same as the AUC of the base
classifier; this pattern occurs because Platt’s method always
uses a monotonic mapping of the base classifier output as
the calibrated scores.

Figure 4 shows the result of comparing ACC of the BBQ
with the other methods. As shown, the performance of BBQ
is statistically equivalent to the rest of the calibration meth-
ods as well as the base classifier in our experiments over
30 real datasets. Figure 5 shows the results of our exper-
iments on comparing the performance of BBQ with other
calibration methods in terms of RMSE. As it shows, BBQ
always outperforms the base classifier, histogram binning,
and Platt’s method. However, its performance is statistically
equivalent to isotonic regression, whether the base classifier
is LR, SVM, or NB.

Figures 6 and 7 show the results of comparing BBQ per-
formance with the others in terms of ECE and MCE, respec-
tively. They show that BBQ performs statistically better than
all other calibration methods and the base classifier, in terms
of ECE and MCE.

Overall, in terms of discrimination measured by AUC and
ACC, the results show that the proposed Bayesian calibra-
tion method either outperforms the other calibration meth-
ods or has a performance that is not statistically significantly
different from the other methods and the base classifier. In
terms of calibration performance, BBQ is statistically supe-
rior to all other methods measured by ECE and MCE. Fur-

(a) MCE Results on LR

(b) MCE results on SVM

(c) MCE results on NB

Figure 7: Performance of each method in terms of average rank
of MCE on the benchmark datasets. BBQ is statistically superior
to all the compared methods (using the Friedman test followed by
Holm’s step-down procedure at a 0.05 significance level).

thermore, the results show that BBQ and isotonic regression
are not statistically significantly different in terms of RMSE;
however, it is still statistically superior to other calibration
methods and the base classifier in terms of RMSE.

Conclusion
In this paper, we presented a Bayesian approach for Bin-
ning into Quantiles (BBQ) as a new nonparametric binary
classifier calibration method. We also performed a set of ex-
periments on simulated and real data sets to compare the
discrimination and calibration performance of the method to
that of other commonly applied post-processing calibration
methods. The results provide support that the BBQ method
performs competitively with other methods in terms of dis-
crimination and often performs better in terms of calibration.
Thus, we recommend that researchers consider using BBQ
when the post-processing of binary predictions is likely to
be useful.

In future work, we plan to investigate the theoretical prop-
erties of BBQ. In particular, we plan to investigate the con-
jecture that BBQ is expected to improve the calibration of a
classifier (measured in terms of MCE and ECE) without
sacrificing its discrimination capability (measured in terms
of AUC). Another direction for future research is to ex-
tend BBQ to work for multi-class and multi-label calibration
problems.
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