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This paper investigates Bayesian modeling of known and unknown causes of events in the

context of disease-outbreak detection. We  introduce a multivariate Bayesian approach that

models multiple evidential features of every person in the population. This approach models

and  detects (1) known diseases (e.g., influenza and anthrax) by using informative prior prob-

abilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has

never been seen before) by using relatively non-informative prior probabilities. We report the

results of simulation experiments which support that this modeling method can improve
Bayesian modeling

Unknown causes of events

Disease outbreak detection

the  detection of new disease outbreaks in a population. A contribution of this paper is that it

introduces a multivariate Bayesian approach for jointly modeling both known and unknown

causes of events. Such modeling has general applicability in domains where the space of

known causes is incomplete.

disease-outbreak detection, which we briefly survey in the
1.  Introduction

Bayesian modeling of unknown causes of events is an impor-
tant and pervasive problem. However, it has received relatively
little research attention. In general, an intelligent agent (or
system) has only limited causal knowledge of the world.
Therefore, the agent may well be experiencing the influences
of causes outside its model. For example, suppose a robot that
is exploring a dangerous physical environment is experiencing
metal corrosion from an ambient gas that has not been char-
acterized before (by it or anyone else). If the robot is limited
to reasoning about corrosion using only the causes of corro-

sion that are in its knowledge base, it may well diagnose the
cause as being the most probable one in its knowledge base.
Such a faulty diagnosis could lead it to take incorrect counter-
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measures to stop the corrosion, rather than to investigate the
chemical properties of the new cause of corrosion, which in
turn could lead it to discover more  effective counter measures.
As another example, which is closely related to this paper, a
clinician may be seeing a patient with a virus that is new to
humans; historically, the HIV virus is one such example. It is
important that clinicians be able to recognize that a patient is
presenting with a heretofore unknown disease.

In general, intelligent agents (and systems) need to recog-
nize under uncertainty when they are likely to be experiencing
influences outside their realm of knowledge. This paper illus-
trates a Bayesian approach to doing so in the context of
l Communications 38A/9N912A, U.S. National Library of Medicine,
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remainder of this section.
Detection of anomalous events in data is an emerging

area of research with important applications in domains such

erved.
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s disease outbreak detection [1],  fraud detection [2],  and
lectronic intrusion detection [3].  In a typical scenario, a moni-
oring system examines a sequence of data to determine if any
ecent activity can be considered a deviation relative to his-
orical baseline behavior. Many  detection algorithms, such as
tatistical quality control [4],  regression [5],  time series mod-
ls [6],  and wavelets [7,8], use frequentist statistical techniques
hat derive statistics, such as p values.

With such approaches, it can be difficult to incorporate
ny prior knowledge and information that we may have, as
or example our prior beliefs about the size, location, and
emporal progression of a potential outbreak. In contrast,
ayesian methods excel at incorporating such prior knowl-
dge and information. The Bayesian approach introduced in
his paper uses informative prior probabilities to model known
utbreak diseases (e.g., influenza and anthrax), and relatively
on-informative priors to model unknown outbreak diseases.

Bayesian approaches have been developed that can be
pplied to anomaly detection, such as dynamic linear mod-
ls [9] and hidden Markov models [10]. These methods can
etect a wide range of anomaly types, but usually at the
xpense of being less effective at detecting any particular
ype, as for example an outbreak due to inhalational anthrax.
hus, they are at the generic-outbreak-detection end of the
pectrum.

At the other end of the spectrum, we can use Bayesian
ethods to model specific diseases. Consider, for example,

hat a large-scale airborne release of inhalational anthrax
as known spatio-temporal characteristics such as a specific

ncubation time and a plume-like spatial distribution. Thus,
hen monitoring for such an outbreak, a detection algorithm

an be vigilant in watching for these characteristics. BARD
11] is a Bayesian outbreak-detection algorithm that mod-
ls the effects of an outdoor airborne anthrax release using
he Gaussian plume model of atmospheric dispersion and a
isease-specific model of inhalational anthrax.

The number and variety of possible outbreak diseases that
ould in theory appear, but have not yet appeared, is so large
hat it is not practical to represent them explicitly by using
isease-specific models, even if we could predict well what
hey might be. An example is a new, highly contagious res-
iratory virus that has never been seen before. This paper

ntroduces a Bayesian approach for modeling both known and
nknown diseases within a single framework. We  combine
n unknown-disease model with models of known diseases
o obtain a hybrid modeling approach. The goal is to detect
nown causes of anomalies well and to detect unknown
auses at all.

If an outbreak due to disease d occurs in the population,
atients infected with disease d are often expected to exhibit
everal disease symptoms of d. Although the joint appearance
f evidential features may be highly predictive of an outbreak,
any detection algorithms monitor only a single evidential

eature, which may limit the surveillance system’s detection
apabilities. The Bayesian approach introduced in this paper
xtends the univariate approach in [12] to model multiple evi-

ential features of every person in the population. We call
his approach the multivariate Bayesian hybrid detection algo-
ithm or the MBH  algorithm. Although this paper focuses on
ayesian modeling on unknown diseases, the general ideas
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transfer to modeling unknown events and entities in many
other domains.

2.  Background

This section describes a Bayesian framework that is used for
combining models of known and unknown diseases. In addi-
tion, we provide a brief background regarding non-informative
prior distributions and Beta distributions that are used as pri-
ors in our disease models.

2.1. Bayesian  framework

Let H be a hypothesis and E denote some available evidence.
We are often interested in knowing the posterior probability
of H in light of E, that is P(H|E). Assume we can estimate the
likelihood P(E|H). Frequently such likelihoods are derived from
a model that represents the probability that H is associated
with E. A Bayesian approach requires the specification of a
prior probability of H, namely P(H), which is our belief in H
before seeing evidence E. Eq. (1) shows the well-known use of
the Bayes’ theorem (rule) to derive P(H|E).

P(H|E) = P(E|H)P(H)∑
H′ ∈ S

P(E|H′)P(H′)
,  (1)

where the sum is taken over all hypotheses H′ in a mutually
exclusive and presumed exhaustive set S of hypotheses that
are each modeled as having a non-zero prior probability.

The hypotheses in S can be at different levels of abstrac-
tion. Consider an anomaly detection application in which we
are monitoring population evidence E for new outbreaks of dis-
ease. Such evidence might include the symptoms of patients
who have recently visited emergency departments in a given
region. Suppose S includes some set of disease-specific disease
outbreaks (e.g., outbreaks due to inhalational anthrax, SARS,
and influenza), another hypothesis in S might represent the
absence of any disease outbreak in the population. Tradition-
ally a Bayesian diagnostic system contains only hypotheses for
specific disease outbreaks and for the non-outbreak condition.
However, in this paper we propose to also represent all the dis-
eases (known and unknown) that are not being modeled by a
given set of disease-specific disease outbreaks. For example,
such an outbreak disease could be smallpox, if smallpox is not
modeled in the set of disease-specific disease outbreaks. That
is, we  know about smallpox, but for whatever reason are not
explicitly modeling it currently. As another example, such a
disease could be a new infectious disease that has never been
seen before. In this case, we do not know well how to model it.

In other words, then, we will include in S the union of
the hypotheses for specific disease outbreaks, for the non-
outbreak condition, and for unknown disease outbreaks.
Unknown diseases are so numerous and oftentimes impon-
derable that it is not practical (or even possible) to try to
represent them explicitly. A primary purpose for including

a model of unknown diseases in S is to identify patterns of
evidence E that are not similar to those associated with non-
outbreak diseases or any of the specific outbreak diseases that
we are modeling.

dx.doi.org/10.1016/j.cmpb.2010.11.015
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2.2. Priors  that  are  used  in  the  disease  models

Non-informative priors are sometimes called “objective pri-
ors”. We  use these priors to reflect a situation where there is
a relative lack of knowledge about a parameter. Specifically,
for modeling unknown outbreak diseases in this paper we
use a non-informative prior distribution in the form of a uni-
form distribution on the interval [0,1] for a Binomial proportion
parameter p, which we describe in detail below.

Castillo and Colosimo, as well as many  others, suggest
a non-informative prior for parameters defined over a finite
range to be uniform in that range [13]. An example of this was
proposed by Bayes himself [14], who  used a uniform [0,1] on
the Binomial proportion parameter p. Tuyl et al. also suggest
using the uniform prior Beta(1, 1), called the Bayes–Laplace
prior, on the Binomial proportion parameter p to represent
ignorance [15].

We use informative prior distributions to model the out-
break diseases that we know about and have modeled. We
model six outbreak diseases classified by the CDC as serious
bioterrorism threats, plus the following diseases: influenza,
hepatitis A, cryptosporidiosis, and asthma. We  call these dis-
eases CDC-A+ diseases.

We  use non-uniform Beta distributions to represent prior
belief in modeling the CDC-A+ diseases. The Beta distribution
is a continuous probability distribution that is parameterized
by two positive shape parameters (  ̨ and ˇ). This distribution
has been used for a wide variety of applications because it can
flexibly specify a range of forms of distributions from peaked
(˛,  ̌ > 1) to uniform (  ̨ =  ̌ = 1) and from U-shaped (0 < ˛,  ̌ < 1) to
skewed or either monotonically decreasing or increasing [16].

The Beta distribution can be used to represent the uncer-
tainty or random variation of a rate or proportion. In particular,
the Beta distribution is a conjugate prior of the Binomial like-
lihood function and, as such, it is often used to describe the
uncertainty about a Binomial probability parameter, as we do
in this paper.

3.  Methodology

In this section, we  describe the multivariate Bayesian hybrid
detection algorithm (the MBH  algorithm) in the context of
disease-outbreak detection. MBH  extends the univariate ver-
sion of the Bayesian hybrid detection algorithm described
in [12] and takes as input the binary state of emergency
department patient clinical findings, such as cough = present vs.
absent, fever = present vs. absent,  and diarrhea = present vs. absent,
during the most recent 24 h. Extracting specific clinical find-
ings from electronic emergency department patient reports
remains a research challenge [17], although good progress is
being made [18–20].  This paper assumes that in the foresee-
able future we will be able to obtain a set of clinical findings for
each patient who visits the ED. Thus, the multivariate disease
model uses such evidence rather than assuming we only will
have a single patient chief complaint, which is typically readily

available. For simplicity, MBH  currently models multiple clin-
ical findings for each person in the population by assuming
conditional independence among findings given individual’s
disease state, as described in the sections below. As discussed
 b i o m e d i c i n e 1 0 7 ( 2 0 1 2 ) 436–446

in Section 5, relaxing the conditional independence assump-
tion is possible and is an area for future work.

3.1.  Notation

The term ED that is used below refers to emergency depart-
ments in the region being monitored. The total patient cases
across all EDs are treated as a single pool.

Let D0 represent all the diseases that ED patients can have
in the absence of any disease outbreak in the population, and
let d0 represent an arbitrary member of D0 (e.g., acute appen-
dicitis would be one such non-outbreak disease). We  will call
these diseases non-outbreak diseases.

Let DK represent all the outbreak diseases that we  know
about and have modeled. Assume that there are K types of
such known outbreak diseases, as for example influenza, cryp-
tosporidiosis, and anthrax. Let dk represent a specific outbreak
disease in DK, where 1 ≤ k ≤ K.

Let D* represent all the outbreak diseases that are unknown
or unmodeled. Let d* represent an arbitrary member of D*. For
example, d* might be a newly mutated type of virus that previ-
ously was innocuous to human health, but now is potentially
lethal.

Let the total number of individuals being monitored in a
given region be N.

Let i, 1 ≤ i ≤ N, represent the index of a specific person in
the population.

Let j, 1 ≤ j ≤ J, represent the index of a specific disease
symptom, where J is the total number of symptoms that
are modeled. The MBH algorithm takes as input patient dis-
ease symptoms, of which there can be more  than one per
patient, as for example, a patient presents with cough = present,
fever = present,  and headache = absent,  and j = 2 represents the
binary symptom fever.

Let OB represent the state of an outbreak existing
during the most recent 24-h period in the region being
monitored, and let NOB represent the absence of any
disease outbreak during that period. Note that OB and
NOB are mutually exclusive and exhaustive, and thus,
P(disease outbreak status = OB)  + P(disease outbreak status = NOB) 

3.2.  An  entity-based  disease  model

The disease model we use is an entity-based Bayesian network
model, which represents all the people in the population (not
just the ED patients). Consider Fig. 1 that shows an example
of the plate notation for such a model, where the plate is used
to repeat the inner subgraph N times, and N represents the
total number of people being monitored in a given region, as
described above [21]. Fig. 1 shows an example disease model
where we model a univariate symptom cough of every person
in the population, and the cough state of every patient who
came to the ED in the last 24 h is present or absent.  For those
individuals in the population who did not come to the ED, the
cough variable has the value unknown.

When multivariate symptoms exist, such as cough, fever,

and diarrhea, we assume that these symptoms (evidence) are
conditionally independent given person’s disease state. The
assumption of conditional independence between evidential
features makes it easier to convey the basic approach in this

dx.doi.org/10.1016/j.cmpb.2010.11.015
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Fig. 1 – Plate notation of a univariate Bayesian network
model. The subgraph in the plate (bolded box) repeats N
times, where N is the number of individuals in the
population being monitored, and any links that cross a
plate boundary are replicated once for each subgraph
repetition. See the text next for a description of the nodes
a
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Fig. 3 – Plate notation of the multivariate Bayesian network
model showing the MBH  disease model where each
person’s disease state and evidence state are modeled
using a naïve Bayes model. J on the inner plate denotes
that there are a total of J evidential features modeled for
person i, and N on the outer plate denotes the total number
of population being monitored in the region. See the text
next for a description of the nodes and the conditional
nd the conditional probability tables.

aper. Based on this assumption, we model a person’s symp-
om states and his or her disease state using a naïve Bayes

odel, as shown in Fig. 2. Thus, by modeling multivariate
ymptom states using Fig. 2, we obtain the plate notation for

 multivariate disease model as shown in Fig. 3.

.2.1. The  nodes
he node disease outbreak status represents the outbreak status

n the population during the most recent 24-h period. Let O
epresent this node, where O = OB or NOB.

The node outbreak disease in population represents the par-
icular outbreak disease that is hypothesized to be present in
he population. Let OD denote this node. OD can have the value
one (no outbreak) or dk for k > 0 (outbreak of known disease

k) or d* (outbreak of an unknown disease d*). We  assume in
he current model that different disease outbreaks would not
ccur simultaneously; however, the model could be extended
o allow for multiple disease outbreaks.
The node fraction represents the hypothetical fraction of the
otal population that has the outbreak disease and has visited
he ED in the last 24 h with the outbreak disease in popula-

ig. 2 – A naïve Bayes model (plate notation) representing
he total J evidential features for a specific person i in the
opulation.
probability tables.

tion (if any). Let F denote this node. Let f denote an arbitrary
value of F. For example, f might be 10−4 or 2 × 10−5 or any of a
wide range of fractions. We assume that the probability that
an individual in the population will visit the ED with the out-
break disease on any given day is equal to the hypothesized
fraction f of the population with the outbreak disease who  will
visit the ED on that day.

The node person i disease represents the possible diseases
that person i can have, given outbreak disease OD in the pop-
ulation. Let PDi denote this node. For the people who  did not
come to the ED in the previous 24 h, we have that PDi = noED.
For the people who came to the ED in the previous 24 h, PDi is
a random variable that can take on values d0, d1, . . .,  dK, d*.

If OD = none, a specific person i either has d0 or his (her)
status is noED. Note that d0 represents that an individual (1)
went to the ED during the last 24-h period and (2) has a non-
outbreak ED disease.

When OD = dk (for 1 ≤ k ≤ K), a specific person i could either
present to the ED with outbreak disease dk, present with non-
outbreak disease d0, or not present (noED). That person cannot
have another outbreak disease, because as mentioned in the
current model we assume that there is at most one outbreak
disease present in the population at any given time. Similarly,
when OD = d*, a specific person i could present to the ED with

d*, present with d0, or not present (noED).

Given the disease state of a specific person i in the pop-
ulation, we use the person i evidence state node to model the

dx.doi.org/10.1016/j.cmpb.2010.11.015
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Table 1 – The conditional probability table for P(Ej

i
|PDi).

PDi = d0 PDi = dk PDi = d* PDi = noED

E
j

i
= e
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p

j
0 p

j

k
p

j
∗ 0
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symptom state of that person. We  model a total number of
J disease symptoms of person i as E1

i
, . . . , E

j

i
, . . . , EJ

i
, where E

j

i

represents disease symptom j for person i. Let e
j

i
represent the

value of E
j

i
. For a person who  came to the ED in the last 24 h,

his (or her) symptom state E
j

i
is modeled as having symptom

j as present (ej

i
) or absent (∼e

j

i
). For people who did not visit the

ED, our convention is to assign E
j

i
to be the value unknown.

3.2.2.  The  conditional  probability  tables
Estimating the prior probability P(O = OB)  can be difficult
due to limited literature and lack of previous outbreak
surveillance data on which to base such estimates. Let E
be the status of the multiple symptom states for every
person in the population, and e be its value. The MBH  algo-
rithm described in this paper actually derives the likelihood
ratio LR = P(E = e|O = OB)/P(E = e|O = NOB), instead of the poste-
rior probability P(O = OB|E = e), in order to remove the need to
specify this difficult prior probability. Moreover, the evaluation
measures that we  use are not sensitive to this particular prior
probability; that is, these performance measures are the same,
regardless of the value of P(O = OB).

If O = NOB, the model represents that there is no disease
outbreak occurring in the population in the last 24 h, i.e.,
P(OD = none|O = NOB) = 1. If O = OB,  the model represents that
some outbreak due to disease dk (or d*) is occurring in the pop-
ulation. In Section 4.2,  we discuss how we estimate the value
of P(OD = dk (or d*)|O = OB).

In this paper we  do not model a dependency between F
and OD; however, in general the disease model in Fig. 3 could
be readily extended to represent a dependency between these
two variables.

We  derive the values of f of the fraction node F as n/N, where
N is the total number of individuals in the population who
could potentially visit the EDs in the region, and n represents
the number of outbreak cases who  visited the ED when there
is a disease outbreak in the population. We  model 15 values
of n that increases over the mean number of patients who
came to the ED during days when there presumptively was
no disease outbreak in the population. For example, one value
of n is equal to one standard deviation above this mean. The
values range up to at most five standard deviations above the
mean. The fraction F is assumed to be uniformly distributed
over these 15 discrete values. See [22] for details regarding how
we estimated the values of f.

If OD = none, a specific person i either has d0 or his (her) sta-
tus is noED; the probability that the person has d0 and presents
to the ED, which is denoted as �, is estimated from past ED data
during which it is assumed no outbreak was occurring. Then
P(PDi = noED|OD = none, F = f) = 1 − �.

When OD = dk (for 1 ≤ k ≤ K), a specific person i could have
disease d0, dk, or noED. That person cannot have another out-
break disease, because, as mentioned, in the current model
we assume that there is at most one outbreak disease present
in the population at any time. Recall that d* represents an
unknown disease, which by definition means it is not a mod-

eled disease dk. Therefore, we have P(PDi = d*|OD = dk, F = f) = 0.
The probability of person i having dk is equal to the value of the
fraction node, f, by the construction of that node. Thus, there
is 1 − f fraction of the total population who do not present
E
j

i
= ∼e

j

i
1 − p

j
0 1 − p

j

k
1 − p

j
∗ 0

E
j

i
= unknown 0 0 0 1

to the ED with dk (i.e., who have d0 or noED). It is assumed
that a fraction � of these people present to the ED with d0.
Thus, the probability of person i presenting to the ED with
d0 in light of dk as an outbreak disease in the population is
modeled as being equal to (1 − f) �. Finally, P(PDi = noED|OD = dk,
F = f) = 1 − f − (1 − f) � = (1 − f)(1 − �).

When OD = d*, we can similarly derive P(PDi = d*|OD = d*,
F = f) = f, P(PDi = dk|OD = d*, F = f) = 0, P(PDi = d0|OD = d*,
F = f) = (1 − f) �, and P(PDi = noED|OD = d*, F = f) = (1 − f)(1 − �).

To facilitate describing the basic approach in this paper,
we assume that the symptoms E1

i
, . . . , EJ

i
are conditionally

independent given the disease state of a person (PDi). This
assumption is not required, but it makes the exposition of the
key concepts in the paper more  straightforward. Extending the
work to include symptoms dependencies is useful in future
research, as we mention in Section 5. We  use a naïve Bayes
model (Fig. 2) to represent the conditional independence of
symptoms given a disease state. This model has been used
extensively in biomedical informatics and other fields, and it
often performs classification remarkably well [23,24]. Recall
that for a person who came to the ED in the last 24 h, his or
her evidence state E

j

i
is modeled as having symptom j as present

(ej

i
) or absent (∼e

j

i
). The Bernoulli distribution provides a sim-

ple and natural way to model such a binary symptom [25,26],
P(Ej

i
= present|PDi). A standard Bernoulli distribution requires

that such “success rate” probabilities be constant. However,
we do not have confidence in these probabilities. To repre-
sent our uncertainty in how diseases are manifested clinically,
we model P(Ej

i
= present|PDi) as a random variable. Table 1

describes the conditional probability assignments for P(Ej

i
|PDi),

where p
j
0 is a random variable that represents the probability

that a person came to the ED in the last 24 h, and that per-
son has symptom j as present given he (or she) has disease d0.
Random variables p

j

k
and p

j
∗ can be defined analogously.

The next two sections describe how we  model random vari-
ables p

j
0, p

j

k
and p

j
∗ in the disease-specific model (DSM)  and

the unknown-disease model (UDM). Recall that a total of J dis-
ease symptoms are modeled as conditionally independent. For
simplicity, we thus describe disease modeling in terms of a
specific symptom j and ignore the superscript j that represents
the index of that symptom. Each symptom j is modeled using
an informative or non-informative prior probability distribu-
tion based on the person’s disease state, as described below.
All the multiple disease symptoms are modeled as being con-
ditionally independent given the person’s disease state.

3.2.3.  The  disease-specific  model  (DSM)
As stated, this model represents that a person has a specific
disease d0 or dk (for 0 ≤ k ≤ K). Recall that p0 (pk) represents the

probability of a specific symptom j given a person having d0

(dk). We  assume p0 is distributed according to a Beta distribu-
tion, namely, p0 ∼ Beta(˛0, ˇ0). We also assume pk ∼ Beta(˛k, ˇk).

dx.doi.org/10.1016/j.cmpb.2010.11.015
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ext, we  describe how we modeled p0 and pk using informative
riors.

We estimated the parameters ˛0 and ˇ0 based on real ED
eports from a large healthcare system in Pittsburgh from
anuary to December 2002. Ref. [22] provides details regarding
ow we  estimated these parameters.

Let pk = P(Ej

i
= e

j

i
|PDi = dk) as above, where 1 ≤ k ≤ K. For the

urpose of assessment, pk may be viewed as a fraction in the
arge sample limit of patient cases. We  assessed parameters

k and ˇk based on expert judgments for 1 ≤ k ≤ K. The expert
rovided his expectation �k of pk and an interval assessment

ak, bk] for which he stated a belief that there is a 90% chance
hat pk is between ak and bk. Parameters ˛k and ˇk were then
stimated by solving Eqs. (2) and (3) in terms of the distribution
eta(pk; ˛k, ˇk).

k = ˛k

˛k + ˇk
. (2)

bk

ak

Beta(pk; ˛k, ˇk)dpk = 90%. (3)

.2.4.  The  unknown-disease  model  (UDM)
his model represents that a person has an unknown outbreak
isease d* that we  know little about. We  model p*, the proba-
ility of the symptom state of a specific symptom j in a patient
ith d*, using a non-informative prior. As described in Section

.2, many  researchers have advocated the use of a uniform
0,1] distribution as a non-informative prior on a binary out-
ome. We  model p* using an uniform distribution over [0,1],
r equivalently, p* ∼ Beta(1, 1). Thus, prior to consideration of
ny data, this approach models every probability of the symp-
om as being equally likely given the presence of the unknown
isease.

.3.  Inference

he objective of inference is to derive the posterior probability
f an outbreak occurring given the observed evidence. In this
aper, we  apply a common outbreak-detection measure, the

ikelihood ratio (LR)  method, that is not sensitive to the prior
robability of there being an outbreak [27], and thus we do not
pecify disease outbreak priors here. Although these outbreak
riors affect the magnitude of the posterior probabilities, they
o not affect the relative order of the posterior probabilities
hat are obtained by running the MBH  algorithm on a specific
utbreak dataset (scenario). The evaluation method described

n this paper determines the expected detection time (at a
pecific false positive rate) based on the relative order of the
utput LRs,  which yields the same relative order as posterior
robabilities.

We derive the likelihood ratio LR as
R = P(E = e|O = OB)/P(E = e|O = NOB), where e denotes the status
f the multiple symptom states for all the people in the pop-
lation. By expanding the numerator of the above equation,
e  obtain the following equation:
R =
∑

OD /=  d0
P(E = e|O = OD)P(OD|O = OB)

P(E = e|OD = d0)
.  (4)
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We  derive P(E = e|OD) by setting OD to be one of d0, dk or
d*, and then performing inference on the Bayesian network in
Fig. 3. Inference is complicated by the fact that P(Ej

i
= e

j

i
|PDi) is

not a point probability, but rather a distribution, as described
in Sections 3.2.3 and 3.2.4. Recall that each person is modeled
as having J symptoms, and each symptom state of person i
is modeled as being present or absent using a Bernoulli dis-
tribution. For example, a person who came to the ED could
have symptom states as being cough = present,  fever = present,
and diarrhea = absent.  Given that we are modeling distribu-
tions over probabilities, it turns out that using existing exact
inference methods to perform inference on the Bayesian net-
work in Fig. 3 would require exponential time complexity
[22]. Thus, we applied stochastic methods to approximate
P(E = e|OD). In particular, we applied Monte Carlo integration
[28] to approximate P(E = e|OD). Monte Carlo integration is a
method of approximating an expectation by the sample mean
of a function of sampled random variables.

In particular, for each symptom j and each disease state
that person i could have, we sample M times from the Beta
distribution of P(Ej

i
= e

j

i
|PDi) to get a total number of M sampled

values. For each sample k, we  used the sampled value as the
value of P(Ej

i
= e

j

i
|PDi). Given a point value of P(Ej

i
= e

j

i
|PDi), we

can use exact inference to efficiently compute Pk(E = e|OD) from
the Bayesian network in Fig. 3, where the subscript k denotes
inference for the kth sample. Finally, we  approximated the
expectation of P(E = e|OD) over an infinite number of samples
by computing the expectation of M values of Pk(E = e|OD).

We also investigated the use of importance sampling [28] to
approximate P(E = e|OD) and found that Monte Carlo integra-
tion (with and without importance sampling) converged well.
Since the inference method is not the focus of this paper, we
do not describe it in further detail here. Additional information
is provided in [22].

4. Evaluation

We  chose three diseases from the CDC-A+ diseases for use
in the experiments that we performed. The three diseases are
cryptosporidiosis, early stage anthrax, and inhalation tularemia. We
use each of the three diseases to simulate an outbreak due
to disease dk for 1 ≤ k ≤ 3, as described below. In each experi-
mental simulation, for each disease we modeled three disease
symptoms: cough, headache, and abdominal pain. MBH takes as
input the three symptom states for each individual in the pop-
ulation, as for example cough = present, headache = absent,  and
abdominal pain = absent.  We  selected the three diseases and the
three symptoms because these diseases and their symptoms
contain a wide variety of distributional patterns (over P(Ej

i
|PDi))

among all the CDC-A+ diseases.

4.1.  Datasets

We  obtained real ED cases for the year 2005 from a large hos-
pital in Allegheny County, PA. The mean number of patients

who visited the ED of this hospital per day was about 130.
The time series of real ED cases of the hospital was used to
estimate the number of people who are expected to come to
the ED on a given day without any disease outbreak. Next, we
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describe how we  simulated one outbreak dataset (scenario)
due to disease dk, where dk is a specific outbreak disease out
of the three outbreak diseases that we selected for evaluation
(cryptosporidiosis, early stage anthrax, and inhalation tularemia).

The background time series of non-outbreak cases was sim-
ulated based on the time series of real ED cases. On any given
day (on or after midnight that day and before midnight the
next day), we  sampled from Beta(˛j

0, ˇ
j
0) to determine the prob-

ability p
j
0 of a person having a specific symptom j given that

person had disease d0. We  then sampled from Binomial(n0,
p

j
0) to determine the number of people having that symptom

when there was no disease outbreak in the population on that
day, where n0 is the number of people who  in reality came to
the ED on that day, and persons that have symptom j were
selected randomly from n0 people.

Recall that we assume that an individual’s symptom states
are conditionally independent given his or her disease state.
Thus, assuming the state of independence, we did the above
procedure for each of the three symptoms we  selected (cough,
headache, and abdominal pain). Therefore, for example, a pos-
sible ED patient case that might be generated by this process is
(cough = present, headache = absent, abdominal pain = absent). A
total of n0 such cases would be generated for the current day.
These generated cases with simulated symptom states are
called background cases for that day. Note that we only created a
single time series of background cases for all the experiments
described below. Every dataset (outbreak scenario) was cre-
ated by overlaying the simulated outbreak cases (as described
below) onto this time series of background cases.

We simulated outbreak cases with disease dk by using a
linear outbreak model called “Fictional Linear Onset of an
Outbreak” (or “FLOO”) that is described in [29]. A simulated
FLOO(�,T) outbreak has duration T. It generates t� cases on
day t of the outbreak (0 < t ≤ T/2), and then generates T�/2 cases
per day for the remainder of the outbreak. The outbreak onset
date (when t = 0) was generated randomly as described later
in this section. We note that the FLOO model is but one of
many  possible alternative models that could be used to simu-
late the epidemic curve of an outbreak. Nonetheless, we view
that FLOO provides a reasonable initial evaluation, and it has
been used in previous studies [29,30].

Let nk be the number of simulated outbreak cases gener-
ated by the FLOO model during the previous 24-h period. We
sampled from the distribution Beta(˛j

k
, ˇ

j

k
) to determine the

probability p
j

k
of the symptom j appearing in each of the nk

cases. We  then sampled from Binomial(nk, p
j

k
) to determine the

number of the outbreak cases having disease dk and symptom
j, where outbreak cases that have symptom j were selected
randomly from nk outbreak cases. We  did this for each of
the three symptoms we selected by assuming they are condi-
tionally independent. Thus, for example, a possible outbreak
patient case having disease dk that might be generated by
this process is (cough = present, headache = present, abdominal
pain = absent). A total of nk such cases were generated for the
previous 24-h period.

We generated the onset dates of the simulated outbreak

due to disease dk by randomly selecting 8 unique dates from
each of the 12 consecutive months in 2005. We  created one
dataset by overlaying the simulated outbreak cases produced
 b i o m e d i c i n e 1 0 7 ( 2 0 1 2 ) 436–446

by the FLOO model onto the background ED cases starting at
the onset date and continuing for the outbreak duration. We
thus created 8 × 12 = 96 datasets (scenarios) of outbreaks due
to disease dk.

In order to evaluate the MBH  algorithm using different
magnitudes of disease outbreaks, we generated outbreak
cases using three sets of FLOO parameters, which correspond
to a low, medium, and high severity of disease outbreak.
For each FLOO parameter setting and each disease that we
selected, we  generated 96 datasets, as described above. We
thus generated 3 (FLOO settings) × 3 (diseases) × 96 (outbreak
scenarios) = 864 datasets, with each dataset containing the
symptom states of three disease symptoms of every person
in the population. For the many  people who  did not visit the
ED, their symptoms have the value unknown.

There are several reasons why we used simulated outbreak
data in these initial experiments, rather than real outbreak
data. As described in Section 3, we are not yet able to obtain
a set of clinical findings for each patient who visits the ED
because most of those findings are not electronically avail-
able in the EDs to which we have research access. Another
problem with real data is that the date and time of real out-
breaks are seldom known precisely. Thus, there are downsides
to evaluating MBH using real data. While there are limitations
to using simulated data, rather than real data, using simulated
data does allow us to readily evaluate a detection algorithm
using a variety of patterns of simulated disease outbreaks,
such as different severities of disease outbreaks and differ-
ent disease outbreak onset dates. For this reason, simulated
data have frequently been used in research that evalu-
ates biosurveillance algorithms [8,11,29,31,32].  Simulated data
provide a useful approach to performing an initial set of exper-
iments, such as those reported here. In future work, it will be
worthwhile to evaluate these algorithms using real data as
well.

4.2.  Experimental  methods

Let du and dv be two distinct outbreak diseases. Table 2 shows
our experiments for one such pair of du and dv. In this table,
both experiments have simulated outbreaks due to disease
du. However, disease du is modeled in Exp. 1 but not modeled
(e.g., du is an unknown disease) in Exp. 2. DSM and UDM  repre-
sent two versions of the detection system that are constructed
by using either the DSM or the UDM model, respectively, as
described in Sections 3.2.3 and 3.2.4.

In Exp. 1, UDM models an unknown disease d*, as well as
the known outbreak disease du. We conjectured that includ-
ing d* here would not detract significantly from detecting the
outbreak due to du. In contrast, DSM does not model d*. We
expected this model to detect du somewhat faster than UDM,
because the simulated outbreak was in fact due to du, but we
conjectured it would not be appreciably faster.

In Exp. 2, UDM did not model du, however, the simulated
outbreak was due to du. Nonetheless, UDM did model d*. We
conjectured that modeling d* would allow UDM detect a simu-

lated outbreak due to du faster than would DSM, which models
neither du nor d*.

If the above conjectures proved true, the experiments
would provide support that modeling an unknown disease

dx.doi.org/10.1016/j.cmpb.2010.11.015
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Table 2 – A 2 × 2 table that summarizes the experiments. In all the experiments, the simulated outbreak disease is
denoted as du. In Exp. 1 du is modeled, whereas in Exp. 2 it is not.

DSM system UDM system

Exp. 1 Model  d0, du

ses f
Model d0, du, d*

ses f

(
o

T
t
e
d
d
F
u
E
t
s
u
W
i

n
t
d
a

(du is modeled) Simulate outbreak ca
Exp. 2
(du is not modeled)

Model d0, dv

Simulate outbreak ca

in the form of d*) provides a net benefit in detecting disease
utbreaks.

In each of the four experiments represented by the cells in
able 2, we computed the likelihood ratio LR using Eq. (4).  For
he UDM model in Exp. 1, the sum in Eq. (4) is taken over OD
qual to du and d*, and for UDM in Exp. 2, the sum is taken over

v and d*. For DSM in Exp. 1, the sum consists only of the term

u, and for DSM in Exp. 2, the sum of OD consists only of dv.
ig. 4 shows pseudo-code of the MBH  algorithm, in which we
se the UDM detection system constructed in the context in
xp. 1 (as shown in the top right cell in Table 2) as an example
o describe the process of this experiment. In this paper, due to
pace limitations, we only report experimental results when
sing a uniform prior over P(OD|O = OB) for all values of OD.
e  performed a sensitivity analysis over this distribution, as

s described in detail in [22].
Given the output of the likelihood ratio of an outbreak sce-

ario for a specific experiment, we determined the detection

ime and false positive rate for various detection ratios. The
etection time was the time from the simulated release until

 detection ratio threshold r was exceeded. The false positive

Fig. 4 – Pseudo-code of the MBH  algorithm as appli
rom du Simulate outbreak cases from du

rom du

Model d0, dv, d*

Simulate outbreak cases from du

rate was derived as FP/M,  where FP is the number of false pos-
itives that occurred using threshold r while monitoring a time
series of simulated ED cases in which there was no (simu-
lated) outbreak, and M is length in months for the time series,
namely, M = 12.

We represent models DSM and UDM in Exp. 1 as DSM1 and
UDM1, respectively, and likewise represent models DSM  and
UDM in Exp. 2 as DSM2 and UDM2. Let EDSM1 be the average
detection time of DSM1 over all the experiments described
above at a false positive rate of one per month, since one false
positive per month is commonly cited as an upper bound on a
tolerable rate. Let EDSM2 be the average detection time of DSM2
over all the experiments described above at a false positive rate
of one per month. Define EUDM1 and EUDM2 analogously.

In order to determine the false positive rates under vari-
ous detection thresholds, we ran the MBH algorithm using the
DSM1, DSM2, UDM1, and UDM2 models on the background
time series of ED cases in 2005, which we assumed to con-

tain no outbreaks of the three diseases we  are modeling. For
each model, we selected the threshold r that yielded one false
positive per month. Threshold r was applied to the output like-

ed to Exp. 1 using the UDM detection system.

dx.doi.org/10.1016/j.cmpb.2010.11.015
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Table 3 – Mean detection time (in days) of all four disease models over all the experiments, along with the p-values for
the comparisons.

DSM UDM p-Value

Exp. 1
(du is modeled)

3.06  3.25 H0: EUDM1 = EDSM1 vs. Ha: EUDM1 > EDSM1

0.03
3

assumptions of the evaluation. Solving Eq. (5) using the values
in Table 3, yields q* = 0.12. The standard error of computing q*

is 0.1 [22]. If q = 0.12 then modeling d* is expected to be neither
Exp. 2
(du is not modeled)

4.91  

lihood ratios of an outbreak scenario of a specific experiment
to determine its detection time under one false positive per
month. Using this procedure, we obtained the detection time
of all four disease models over all the experiments.

4.3.  Statistical  analysis

To evaluate the MBH  algorithm, we first adopted the linear
mixed effects model [33] to model the detection times that
were obtained over all the experiments described above. We
used a linear mixed effects model in order to take into account
(1) the hierarchical nature of the detection time data and
(2) the correlations between factors FLOO(�,T) and du, where
FLOO(�,T) is the model that we used for generating the simu-
lated outbreak cases, and du is the disease that is causing the
ongoing disease outbreak. Ref. [22] contains details regarding
this linear mixed effects model.

We  then performed Tukey’s test2 on the detection time data
to evaluate the following null hypothesis H0: EUDM1 = EDSM1 vs.
the alternative hypothesis Ha: EUDM1 > EDSM1 for Exp. 1, and H0:
EUDM2 = EDSM2 vs. the alternative hypothesis Ha: EUDM2 < EDSM2

for Exp. 2. Table 3 shows the mean detection time (in days) of
all four disease models over all the experiments, in which the
last column shows the p-values of comparisons of DSM and
UDM in Exp. 1 and Exp. 2 under a false alert rate of one per
month. All these tests used a significance level of 0.05.

As shown in Table 3, at one false alert per month, modeling
d* in Exp. 1 resulted in UDM having a detection time that was
0.19 days (= 4.6 h) slower than DSM with a statistical signif-
icance of 0.03. In Exp. 2, UDM detected the outbreak disease
1.36 days (= 32.6 h) faster than DSM with a statistical signifi-
cance of 0.01. These results support the conjectures presented
in Section 4.2.

4.4.  Decision  analysis

As described above, modeling an unknown disease d* yields
a substantial decrease in detection time (∼33 h) when the
disease outbreak is caused by an unknown disease (Exp. 2).

When the disease outbreak is due to a known outbreak dis-
ease (Exp. 1), modeling d* degrades the detection performance
only modestly (∼5 h). This section analyzes when modeling

2 Tukey’s test is frequently used as an adjustment for
multiple-comparison procedure to find which means are
significantly different from one another. It was performed in [22]
in  order to evaluate the disease detection performance of three
disease models, in which two of the three disease models (DSM
and UDM) are introduced in this paper. For simplicity of
presentation, this paper only focus on disease model DSM and
UDM, and reports experimental results of the two models.
.55 H0: EUDM2 = EDSM2 vs. Ha: EUDM2 < EDSM2

0.01

the possibility of an unknown outbreak disease will have a
better expected detection performance than not modeling it.

Let event G denote the following event: given that an out-
break is occurring, it is due to a disease that is not being
explicitly modeled in the detection system. According to
Table 2, G is true in Exp. 2 and is false in Exp. 1. Let q be the prob-
ability that G is true. Recall that we wish to evaluate whether
modeling the possibility of an unknown disease occurring is
a net positive in detecting disease outbreaks rapidly. If q = 1,
then modeling d* will likely be helpful. If q = 0, however, mod-
eling d* will be useless and possibly harmful by increasing
the chance of a false positive alert. Our objective is to deter-
mine the value range of q such that modeling an unknown
disease d* (using UDM) yields an overall expected decrease in
detection time. Based on deriving such an estimate of q, we
can then determine whether to construct a DSM or an UDM
model in a detection system. Fig. 5 shows such a decision
analysis.

Recall that EDSM1 and EDSM2 are the average detection time
of DSM1 and DSM2 over all the experiments described above
at a false positive rate of one per month, respectively. Let
EDSM = (1 − q) × EDSM1 + q × EDSM2. Define EUDM analogously. Let
q* be the probability such that the equation below holds:

(1 − q) × EUDM1 + q × EUDM2 = (1 − q) × EDSM1 + q × EDSM2 (5)

Then q* is the threshold such that any probability greater
than q* renders modeling d* helpful, given the conditions and
Fig. 5 – A decision tree showing the decision analysis for
selecting to use DSM vs. UDM for outbreak detection, where
Exp. 1 and Exp. 2 denote as shorthand the condition
represented by these experiments.
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elpful nor harmful. However, if q > 0.12, then including d* in
he model is expected to decrease the detection time when the
etection system is operating at an expected false alert rate of
ne per month.

It seems plausible that there are disease-outbreak mon-
toring situations in which if there is an outbreak then the
robability exceeds 0.12 of it being due to an unknown disease.
he Olympics provide one possible scenario, where a bioter-
orist might attempt to use a new infectious disease agent to

aximize terror. In such situations, the methods described in
his paper could be beneficial.

.  Discussion  and  future  work

his paper introduced a Bayesian method for disease-
utbreak detection that combines models of known diseases
nd unknown diseases. In particular, we modeled the known
on-outbreak disease d0 using an informative prior estimated

rom past ED data, and we  modeled a known outbreak disease

k (for k > 0) using informative priors that were assessed from
n infectious disease expert. The unknown disease model
ses a non-informative prior to model some unknown dis-
ase d*. Simulation results show that this hybrid modeling
pproach can improve the detection of unknown disease out-
reaks in the population.

Recall that the disease model in this paper does not model
ultiple disease outbreaks simultaneously. If this circum-

tance occurred, we  conjecture that modeling d* would still
mprove the detection performance because we  model d* using

 uniform prior, which allows the disease model (UDM) to
atch a wide variety of outbreak-disease patterns.
As mentioned, the Bayesian approach that we  described

or modeling unknown diseases is based on specifying
on-informative priors. There are numerous ways of speci-

ying such non-informativeness, and in other work we have
nvestigated several approaches beyond just using uniform
istributions [22]. In particular, we studied semi-informative
riors, in which some constraints are placed on the param-
ters of a disease model (e.g., the symptom cough has an
ncreased rate of occurrence, relative to background rates),
ut otherwise the parameter distributions are uniform [26].
e also studied a semi-informative prior in the form of a
ixture prior to model an outbreak disease that we partially

now (e.g., a disease that has characteristics of an influenza-
ike illness) and that might manifest some disease symptoms
imilar to one or more  known outbreak diseases. In partic-
lar, the mixture prior consists of several component priors
f known outbreak diseases and a uniform component prior
hat represents our uncertainty about how partially-known
iseases would appear [22]. Simulation results support that
sing a mixture of priors to model a partially-known disease

s beneficial to the detection system’s detection performance.
e believe the investigation of non-informative and semi-

nformative priors holds significant promise in domains where
auses of events may sometimes be unknown, including the

edical domain.
Recall that the MBH  algorithm models the binary state

f every evidential feature, as for example, cough = present
s. absent,  and headache = present vs. absent,  by assuming the
 o m e d i c i n e 1 0 7 ( 2 0 1 2 ) 436–446 445

evidential features are conditionally independent given the
disease state of an individual in the population. Assum-
ing independence between evidential features has facilitated
describing the basic approach in this paper. However, the
approach can be extended to model symptoms that are condi-
tionally dependent. In particular, we could model dependent
symptoms using a Dirichlet-multinomial hierarchical model.
The Monte Carlo inference method we  used in this paper can
be readily adapted to perform inference on such a model.

Finally, we note that the experiments we have described
were based on simulations of disease outbreaks. It is difficult
to obtain adequate real data on a range of disease outbreaks,
which is why many  disease-outbreak studies rely on simula-
tions. We  used real past ED data on non-outbreak diseases
and expert assessments of outbreak diseases in an effort to
develop quality simulation models. Recall from Section 4.1
that the MBH  algorithm was evaluated on the simulated out-
break scenarios, in which the simulated symptom state of
each patient case was generated by sampling from the Beta-
Binomial model. The sampling method itself brings random
effects into the outbreak scenarios to be tested. In addition, as
described in Section 3.2.3, the probability of a symptom state
in a disease was assumed to have a Beta distribution, while
the data were simulated using the Beta-Binomial model, as
described above. Thus, the simulated data contains another
level of random effects. Nevertheless, it will be important in
the future to evaluate further the methods described here
using additional simulation models and ultimately using data
on real outbreaks of a variety of diseases.
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