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Abstract

This paper introduces a Bayesian algorithm for constructing predictive models from data that are
optimized to predict a target variable well for a particularinstance. This algorithm learns Markov
blanket models, carries out Bayesian model averaging over aset of models to predict a target vari-
able of the instance at hand, and employs an instance-specific heuristic to locate a set of suitable
models to average over. We call this method the instance-specific Markov blanket (ISMB) algo-
rithm. The ISMB algorithm was evaluated on 21 UCI data sets using five different performance
measures and its performance was compared to that of severalcommonly used predictive algo-
rithms, including nave Bayes, C4.5 decision tree, logisticregression, neural networks,k-Nearest
Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the data sets, the ISMB algorithm per-
formed better on average on all performance measures against all the comparison algorithms.
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1. Introduction

Prediction is a central problem in machine learning that involves inducing a model from a set of
training instances that is then applied to future instances to predict a target variable of interest.
Several commonly used predictive algorithms, such as logistic regression,neural networks, decision
trees, and Bayesian networks, typically induce a single model from a training set of instances, with
the intent of applying it to all future instances. We call such a model apopulation-wide model
because it is intended to be applied to an entire population of future instances. A population-wide
model is optimized to predict well on average when applied to expected futureinstances.

Recent research in machine learning has shown that inducing models that are specific to the
particular features of a given instance can improve predictive performances (Gottrup et al., 2005).
We call such a model aninstance-specific modelsince it is constructed specifically for a particular
instance (case). The structure and parameters of an instance-specificmodel are specialized to the
particular features of an instance, so that it is optimized to predict especiallywell for that instance.
The goal of inducing an instance-specific model is to obtain optimal predictionfor the instance at
hand. This is in contrast to the induction of a population-wide model where thegoal is to obtain
optimal predictive performance on average on all future instances.

There are several possible approaches for learning predictive models that are relevant to a single
instance. One approach is to learn a model from a subset of the training data set that consists
of instances that are similar in some way to the instance at hand. Another approach is to learn a
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model from a subset of variables that are pertinent in some fashion to the instance at hand. A third
approach, applicable to model averaging where a set of models is collectively used for prediction,
is to identify a set of models that are most relevant to prediction for the instance at hand.

In this paper, we describe a new instance-specific method for learning predictive models that
(1) uses Bayesian network models, (2) carries out Bayesian model averaging over a set of models
to predict the target variable for the instance at hand, and (3) employs aninstance-specific heuristic
to identify a set of suitable models to average over. The remainder of this section gives a brief
description of each of these characteristics.

Bayesian network (BN) models are probabilistic graphical models that provide a powerful
formalism for representation, reasoning and learning under uncertainty(Pearl, 1988; Neapolitan,
2003). These graphical models are also referred to as probabilistic networks, belief networks or
Bayesian belief networks. A BN model combines a graphical representation with numerical in-
formation to represent a probability distribution over a set of random variables in a domain. The
graphical representation constitutes the BN structure, and it explicitly highlights the probabilistic
independencies among the domain variables. The complementary numerical information consti-
tutes the BN parameters, which quantify the probabilistic relationships among thevariables. The
instance-specific method that we describe in this paper uses Markov blanket models, which are a
special type of BN models.

Typically, methods that learn predictive models from data, including those that learn BN mod-
els, perform model selection. In model selection a single model is selected that summarizes the
data well; it is then used to make future predictions. However, given finite data, there is uncer-
tainty in choosing one model to the exclusion of all others, and this can be especially problematic
when the selected model is one of several distinct models that all summarize thedata more or less
equally well. A coherent approach to dealing with the uncertainty in model selection is Bayesian
model averaging (BMA) (Hoeting et al., 1999). BMA is the standard Bayesian approach wherein
the prediction is obtained from a weighted average of the predictions of a set of models, with more
probable models influencing the prediction more than less probable ones. Inpractical situations, the
number of models to be considered is enormous and averaging the predictions over all of them is
infeasible. A pragmatic approach is to average over a few good models, termedselective Bayesian
model averaging, which serves to approximate the prediction obtained from averaging overall mod-
els. The instance-specific method that we describe in this paper performs selective BMA over a set
of models that have been selected in an instance-specific fashion.

The instance-specific method described here learns both the structure and parameters of BNs
automatically from data. The instance-specific characteristic of the method is motivated by the
intuition that in constructing predictive models, all the available information should be used includ-
ing available knowledge of the features of the current instance. Specifically, the instance-specific
method uses the features of the current instance to inform the BN learning algorithm to selectively
average over models that differ considerably in their predictions for the target variable of the in-
stance at hand. The differing predictions of the selected models are then combined to predict the
target variable.

2. Characterization of Instance-Specific Models

Figure 1 illustrates the key difference between population-wide and instance-specific models: the
instance-specific model is constructed from data in the training set, as well as, from the features
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about the particular instance to which it will be applied. In contrast, the population-wide model is
constructed only from data in the training set. Thus, intuitively, the additionalinformation available
to the instance-specific method can facilitate the induction of a model that provides better prediction
for the instance at hand. In instance-specific modeling, different instances will potentially result in
different models, because the instances contain potentially different values for the features.1 The
instance-specific models may differ in the variables included in the model (variable selection), in the
interaction among the included variables (encoded in the structure of the model), and in the strength
of the interaction (encoded in the parameters of the model). Another approach is to select a subset
of the training data that are similar in their feature values to those of the instanceat hand and learn
the model from the subset. A generalization of this is to weight the instances in the training data set
such that those that are more similar to the instance at hand are assigned greater weights than others,
and then learn the model from the weighted data set. The following are two illustrative examples
where instance-specific methods may perform better than population-wide methods.

population-wide 

modeltraining set

instance prediction

apply population-wide method

inference

instance-specific 

modeltraining set

instance prediction

 inference

apply instance-specific method

Figure 1: A general characterization of the induction of and inference inpopulation-wide (top
panel) and instance-specific (bottom panel) models. In the bottom panel, there is an
extra arc frominstanceto model, because the structure and parameters of the model are
influenced by the features of the instance at hand.

2.1 Variable Selection

Many model induction methods implicitly or explicitly perform variable selection, a process by
which a subset of the domain variables is selected for inclusion in the model. Forexample, logistic

1. A feature is a variable-value pair, that is, a variable that has been assigned a value.
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regression is often used with a stepwise variable selection process. An instance-specific version
of logistic regression could, for example, select different variables for different instances being
predicted, compared to the standard population-wide version that selects asingle subset of variables.
Consider a simple example where a geneG that has several alleles. Suppose that allele a1 is rare,
and it is the only allele that predicts the development of diseaseD; indeed, it predictsD with
high probability. For future instances, the aim is to predictP(D|G). In a population-wide logistic
regression model,G may not be included as a predictor (variable) ofD, because in the vast majority
of instances in the data setG 6= a1 andD is absent, and havingG as a predictor would just increase
the overall noise in predictingD. In contrast, if there is an instance at hand in whichG= a1, then
the training data may contain enough instances to indicate thatD is highly likely. In this situation,G
would be added as a predictor in an instance-specific model. Thus, for aninstance in whichG= a1,
the typical population-wide logistic regression model would predict poorly,but an instance-specific
model would predict well.

This idea can be extended to examples with more than one predictor, in which some predictors
are characterized by having particular values that are relatively rare but strongly predictive for the
outcome. A population-wide model tends to include only those predictors that on average provide
the best predictive performance. In contrast, an instance-specific model will potentially include
predictors that are highly predictive for the particular instance at hand;such predictors may be
different from those included in the population-wide model.

2.2 Decision Theoretic Comparison of Population-Wide and Instance-Specific Models

We first introduce some notation and definitions and then compare population-wide with instance-
specific models in decision theoretic terms. Capital letters likeX, Z, denote random variables
and corresponding lower case letters,x, z, denote specific values assigned to them. A feature is
a specification of a variable and its value. Thus,X = x is a feature that specifies that variable
X is assigned the valuex. Bold upper case letters, such asX, Z, represent sets of variables or
random vectors, and their realization is denoted by the corresponding bold lower case letters,x, z.
A feature vector is a list of features. Thus,X = x is a feature vector that specifies that the variables
in X have the values given byx. In addition,Z denotes the target variable (class variable) being
predicted,X denotes the set of predictor variables,M denotes a model (including both its structure
and parameters),D denotes the training data set,Ci =< X i ,Zi > denotes a generic training instance
in D andCt =< Xt ,Zt > denotes a generic test instance that is not inD. A test instancet is one in
which the unknown value of the target variableZt is to be predicted from the known values of the
predictorsXt and the known values of< X i ,Zi > of a set of training instances.

A probabilisticmodelis a family of probability distributions indexed by a set of parameters.
Model selectionrefers to the problem of using data to select one model from a set of modelsun-
der consideration (Wasserman, 2000). The process of selecting a model typically involves model
class selection (e.g., logistic regression, BN), variable selection, and parameter estimation.Model
averagingrefers to the process of estimating some quantity (e.g., prediction of the value of a target
variable) under each of the models under consideration and obtaining a weighted average of their
estimates (Wasserman, 2000).

Model selection can be done using either non-Bayesian or Bayesian approaches. Non-Bayesian
methods of model selection include choosing among competing models by maximizing the like-
lihood, by maximizing a penalized version of the likelihood or by maximizing some measure of
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interest (e.g., accuracy) using cross-validation. Use of multiple models to improve performance
can also be done using either non-Bayesian or Bayesian approaches.Ensemble techniques such as
bagging and boosting are non-Bayesian approaches that combine multiple models to create a new
better performing model. In both bagging and boosting, the data are resampled several times, a
model is constructed from each sample, and the predictions of the individual models are combined
to obtain the final prediction. In the non-Bayesian approach, the heuristics used in model selection
and model combination are typically different. In contrast, the Bayesian approach to model selec-
tion and model combination both involve computing the posterior probability of each model under
consideration. In Bayesian model selection the single model found that hasthe highest posterior
probability is chosen. The Bayesian model combination technique is called model averaging where
the combined prediction is the weighted average of the individual predictionsof the models with
the model posterior probabilities comprising the weights.

When the goal is prediction of future data or future values of the target variable, BMA is pre-
ferred, since it suitably incorporates the uncertainty about the identity of the true model. However,
sometimes interest is focused on a single model. For example, a single model may beuseful for pro-
viding insight into the relationships among the domain variables or can be used as a computationally
less expensive method for prediction. In such cases, Bayesian model selection maybe preferred to
BMA. However, the optimal Bayesian approach is to perform model averaging, and thus, model
selection is at best an approximation to model averaging.

Population-wide model selection and instance-specific model selection are characterized in de-
cision theoretic terms as follows. In this paper, all conditional probabilities have a conditioning
eventK, which represents background knowledge and which we will leave implicit for notational
simplicity. Given training dataD and a generic test instance< Xt ,Zt >, theoptimal population-
wide modelis:

argmax
M

{

∑
Xt

U
[

P(Zt |Xt ,D),P(Zt |Xt ,M)
]

P(Xt |D)

}

(1)

where the utility functionU gives the utility of approximating theBayes optimal estimate P(Zt |Xt ,D)
with the estimateP(Zt |Xt ,M) obtained from modelM. For a modelM, Expression 1 considers all
possible instantiations ofXt and for each instantiation computes the utility of estimatingP(Zt |Xt ,D)
with the specific model estimateP(Zt |Xt ,M), and weights that utility by the posterior probability of
that instantiation. The maximization is over the modelsM in a given model space.

TheBayes optimal estimate P(Zt |Xt ,D) in Expression 1 is obtained by combining the estimates
of all models (in a given model space) weighted by their posterior probabilities:

P(Zt |Xt ,D) =
∫

M
P(Zt |Xt ,M)P(M|D)dM. (2)

The termP(Xt |D) in Expression 1 is given by:

P(Xt |D) =
∫

M
P(Xt |M)P(M|D)dM. (3)

Theoptimal instance-specific modelfor estimatingZt is the one that maximizes the following:

argmax
M

{

U
[

P(Zt |xt ,D),P(Zt |xt ,M)
]}

, (4)
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wherext are the values of the predictors of the test instanceXt for which the target variableZt is to
be predicted. TheBayes optimal instance-specific prediction P(Zt |Xt ,D) is derived using Equation
2, for the special case in whichXt = xt , as follows:

P(Zt |xt ,D) =
∫

M
P(Zt |xt ,M)P(M|D)dM.

The difference between the population-wide and the instance-specific model selection can be
noted by comparing Expressions 1 and 4. Expression 1 for the population-wide model selects the
model that on average will have the greatest utility. Expression 4 for the instance-specific model,
however, selects the model that will have the greatest utility for the specific instanceXt = xt . For
predictingZt given instanceXt = xt , application of the model selected using Expression 1 can never
have an expected utility greater than the application of the model selected usingExpression 4. This
observation provides support for developing instance-specific models.

Equations 2 and 3 carry out BMA over all models in some specified model space. Expressions 1
and 4 include Equation 2; thus, these expressions for population-wide and instance-specific model
selection, respectively, are theoretical ideals. Moreover, Equation 2 isthe Bayes optimal prediction
of Zt . Thus, in order to do optimal model selection, the optimal prediction obtained from BMA
must already be known.

Model selection, even if performed optimally, ignores the uncertainty inherent in choosing a
single model based on limited data. BMA is a normative approach for dealing withthe uncertainty
in model selection. Such averaging is primarily useful when no single model inthe model space
under consideration has a dominant posterior probability. However, since the number of models in
practically useful model spaces is enormous,exact BMA, where the averaging is done over the entire
model space, is usually not feasible. That is, it is usually not computationallyfeasible to solve for
the exact solution given by Equation 2. In such cases,selective BMAis typically performed, where
the averaging is done over a selected subset of models.

BMA has been shown to improve predictive performance, and several examples of significant
decrease in prediction errors with the use of BMA are described by Hoetinget al. (1999). However,
in other cases BMA has not proved to be better than ensemble techniques. For example, uniform
averaging was shown by Cerquides and Mantaras (2005) to have betterclassification performance
than BMA for one dependence estimators. This may be because, as Minka (2002) points out,
BMA is better described as a method for ’soft model selection’ rather than atechnique for model
combination.

3. Related Work

There exists a vast literature in machine learning, data mining and pattern recognition that is con-
cerned with the problem of predictive modeling and supervised learning. We briefly describe some
of the aspects of the similarity-based methods and instance-specific methods because these methods
are most closely relevant to the present paper. Similarity-based methods are characterized by the
use of a similarity (or distance) measure necessary for measuring the similaritybetween instances.
Instance-specific methods, on the other hand, learn an explicit model or models from the training
instances that are then applied to the test instance. The induction of a model or set of models are
influenced by the values of the features of the test instance, and a similarity measure is not used.
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3.1 Similarity-Based Methods

These methods are also known as memory-based, case-based, instance-based, or exemplar-based
learners. They (1) use a similarity or a distance measure, (2) defer most ofthe processing until
a test instance is encountered, (3) combine the training instances in some fashion to predict the
target variable in the test instance, and (4) discard the answer and any intermediate results after
the prediction. Typically, no explicit model is induced from the training instances at the time of
prediction (Aha, 1998). The similarity measure evaluates the similarity between the test instance
and the training instances and selects the appropriate training instances andtheir relative weights
in response to the test instance (Zhang et al., 1997). The selected traininginstances can be equally
weighted or weighted according to their similarity to the test instance. To predictthe target variable
in the test instance, the values of the target variable in the selected training instances are combined
in some simple fashion such as majority vote, simple numerical average or fitted witha polynomial.

Thenearest-neighbor techniqueis the canonical similarity-based method. When a test instance
is encountered, the training instance that is most similar to the test instance is located and its target
value is returned as the prediction (Cover and Hart, 1967). A straight-forward extension to the
nearest-neighbor technique is thek-Nearest Neighbor(kNN) method. For a test instance, this method
selects thek most similar training instances and either averages or takes a majority vote of their
target values. Another extension is the distance-weightedk-Nearest Neighbor method. This weights
the contribution of each of thek most similar training instances according to its similarity to the
test instance, assigning greater weights to more similar instances (Dasarathy, 1991). A further
extension is locally weighted regression that selects instances similar to the testinstance, weights
them according to their similarity, and performs regression to predict the target (Atkeson et al.,
1997).

One drawback of the similarity-based methods is that they may perform poorlywhen predictors
are redundant, irrelevant or noisy. To make the similarity metrics more robust,variable selection
and variable weighting have been employed.

3.2 Instance-Specific Methods

Instance-specific methods are model-based methods that take advantage of the features in the test
instance while inducing a model. Such methods are not as reliant on a similarity measure, if they
use one at all, as the similarity-based methods.

Friedman et al. (1996) describe one such algorithm called LazyDT that searches for the best
CART-like decision tree for a test instance. As implemented by the authors, LazyDT did not per-
form pruning and processed only nominal variables. The algorithm was compared to ID3 and C4.5
(standard population-wide methods for inducing decision trees), each withand without pruning.
When evaluated on 28 data sets from the UCI Machine Learning repository, LazyDT generally
out-performed both ID3 and C4.5 without pruning and performed slightly better than C4.5 with
pruning.

Ting et al. (1999) developed a framework for inducing rules in a lazy fashion that are tailored
to the features of the test instance. Zheng and Webb (2000) describe animplementation of this
framework called the Lazy Bayesian Rules (LBR) learner that induces a rule tailored to the features
of the test instance that is then used to classify it. A LBR rule consists of (1) aconjunction of the
features (variable-value pairs) present in the test instance as the antecedent, and (2) a local naive
Bayes classifier as the consequent. The structure of the local naive Bayes classifier consists of
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the target variable as the parent of all other variables that do not appear in the antecedent, and the
parameters of the classifier are estimated from those training instances that satisfy the antecedent.
A greedy step-forward search selects the optimal LBR rule for a test instance to be classified. In
particular, each predictor is added to the antecedent of the current best rule and evaluated for whether
it reduces the overall error rate on the training set that is estimated by cross-validation. The predictor
that most reduces the overall error rate is added to the antecedent and removed from the consequent,
and the search continues; if no single predictor move can decrease the current error rate, then the
search halts and the current rule is applied to predict the outcome for the test instance. LBR is an
example of an instance-specific method that uses feature information available in the test instance
to direct the search for a suitable model in the model space.

The performance of LBR was evaluated by Zheng and Webb (2000) on 29 data sets from the
UCI Machine Learning repository and compared to that of seven algorithms: a nave Bayes classifier
(NB), a decision tree algorithm (C4.5), a Bayesian tree learning algorithm (NBTree) (Kohavi, 1996),
a constructive Bayesian classifier that replaces single variables with newvariables constructed from
Cartesian products of existing nominal variables (BSEJ) (Pazzani, 1998), a selective naive Bayes
classifier that deletes irrelevant variables using Backward Sequential Elimination (BSE) (Pazzani,
1995), and LazyDT, which is described above. Based on ten three-fold cross validation trials (for a
total of 30 trials), LBR achieved the lowest average error rate across the 29 data sets. The average
relative error reduction of LBR over NB, C4.5, NBTree, BSEJ, BSE and LazyDT were 9%, 10%,
2%, 3%, 5% and 16% respectively. LBR performed significantly better thanall other algorithms
except BSE; compared to BSE its performance was better but not statisticallysignificantly so.

The instance-specific algorithms like LazyDT and LBR have limitations in that theycan process
only discrete variables, and continuous variables have to be discretized.Also, they are computation-
ally more intensive than many other learning algorithms. However, they have been shown to have
better accuracy than several of the population-wide methods.

4. Bayesian Networks

A Bayesian network (BN) is a probabilistic model that combines a graphical representation (the BN
structure) with quantitative information (the BN parameterization) to represent a joint probability
distribution over a set of random variables (Pearl, 1988; Neapolitan, 2003). More specifically, a
BN modelM representing the set of random variablesX for some domain consists of a pairG,θG.
The first componentG is a directed acyclic graph (DAG) that contains a node for every variable
in X and an arc between a pair of nodes if the corresponding variables are directly probabilisti-
cally dependent. Conversely, the absence of an arc between a pair of nodes denotes probabilistic
independence between the corresponding variables. In this paper, theterms variable and node are
used interchangeably in the context of random variables being modeled bynodes in a BN. Thus, a
variableXi in the domain of interest is represented by a node labeledXi in the BN graph. Note that
the phraseBN structurerefers only to the graphical structureG, while the term BN (model) refers
to both the structureG and a corresponding set of parametersθG.

The terminology of kinship is used to denote various relationships among nodes in a graph.
These kinship relations are defined along the direction of the arcs. Predecessors of a nodeXi in G,
both immediate and remote, are called theancestorsof Xi . In particular, the immediate predecessors
of Xi are called theparentsof Xi . The set of parents ofXi in G is denoted byPa(Xi ,G) or more
simply asPai when the BN structure is obvious from the context. In a similar fashion, successors of
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Xi in G, both immediate and remote, are called thedescendantsof Xi , and the immediate successors
are called thechildren of Xi . A nodeXj is termed aspouseof Xi if Xj is a parent of a child of
Xi . The set of nodes consisting of a nodeXi and its parents is called thefamily of Xi . Figure 2
gives an illustrative example of a simple hypothetical BN, where the top panelshows the graphical
componentG of the BN. In the figure, the variablepoor diet is a parent of the variableischemic
heart diseaseas well as a parent of the variablegastroesophageal reflux disease. The variablechest
pain is a child of the variablelung canceras well as a child of the variablegastroesophageal reflux
disease, and the variablesischemic heart diseaseandabnormal electrocardiogramare descendants
of the variablepoor diet.

poor diet

X1

X X2 3

X4 X5

gastroesophageal 

reflux disease

ischemic heart 

disease 

chest pain abnormal  

exercise

electrocardiogram  

P(X1 = F) = 0.70 

P(X2 = F | X1 = F) = 0.97 

P(X2 = F | X1 = T) = 0.96 

P(X3 = F | X1 = F) = 0.94 

P(X3 = F | X1 = T) = 0.96 

P(X4 = F | X2 = F, X3 = F) = 0.90 

P(X4 = F | X2 = F, X3 = T) = 0.40 

P(X4 = F | X2 = T, X3 = F) = 0.50 

P(X4 = F | X2 = T, X3 = T) = 0.25 

P(X5 = F | X3 = F) = 0.80 

P(X5 = F | X3 = T) = 0.25 

P(X1 = T) = 0.30 

P(X2 = T | X1 = F) = 0.03 

P(X2 = T | X1 = T) = 0.04 

P(X3 = T | X1 = F) = 0.06 

P(X3 = T | X1 = T) = 0.08 

P(X4 = T | X2 = F, X3 = F) = 0.10 

P(X4 = T | X2 = F, X3 = T) = 0.60 

P(X4 = T | X2 = T, X3 = F) = 0.50 

P(X4 = T | X2 = T, X3 = T) = 0.75 

P(X5 = T | X3 = F) = 0.20 

P(X5 = T | X3 = T) = 0.75 

Node X1

Node X2

Node X3

Node X4

Node X5

Figure 2: A simple hypothetical Bayesian network for a medical domain. All thenodes represent
binary variables, taking values in the domain T, F where T stands for True and F for
False. The graph at the top represents the Bayesian network structure.Associated with
each variable (node) is a conditional probability table representing the probability of each
variable’s value conditioned on its parent set. (Note: these probabilities are for illustration
only; they are not intended to reflect frequency of events in any actualpatient population.)
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The second componentθG represents the parameterization of the probability distribution over
the space of possible instantiations ofX and is a set of local probabilistic models that encode quan-
titatively the nature of dependence of each variable on its parents. For each nodeXi there is a
probability distribution (that may be discrete or continuous) defined on that node for each state of
its parents. The set of all the probability distributions associated with all the nodes comprises the
complete parameterization of the BN. The bottom panel in Figure 2 gives an example of a set of
parameters forG. Taken together, the top and bottom panels in Figure 2 provide a fully specified
structural and quantitative representation for the BN.

4.1 Markov Blanket

TheMarkov blanketof a variableXi , denoted by MB(Xi), defines a set of variables such that con-
ditioned on MB(Xi) is conditionally independent of all variables given MB(Xi) for joint probability
distributions consistent with BN in which MB(Xi) appears (Pearl, 1988). The minimal Markov blan-
ket of a nodeXi , which is sometimes called its Markov boundary, consists of the parents, children,
and children’s parents ofXi . In this paper, we refer to the minimal Markov blanket as the Markov
blanket (MB). This entails that the variables in MB(Xi) are sufficient to determine the probability
distribution ofXi . Since d-separation is applied to the graphical structure of a BN to identify all
conditional independence relations, it can also be applied to identify the MB of a node in a BN. The
MB of a nodeXi consists of its parents, its children, and its children’s parents and is illustrated in
Figure 3. The parents and children ofXi are directly connected to it. In addition, the spouses are also
included in the MB, because of the phenomenon of explaining away which refers to the observation
that when a child node is instantiated its parents in general are statistically dependent. Analogous
to BNs, theMB structurerefers only to the graphical structure while the MB (model) refers to both
the structure and a corresponding set of parameters.

X5

X1 X2 X3 X

X7X6

4

X5XX

XX8

X10

9

X11

Figure 3: Example of a Markov blanket. The Markov blanket of the nodeX6 (shown stippled)
comprises the set of parents, children and spouses of the node and is indicated by the
shaded nodes. The nodes in the Markov blanket includeX2 andX3 as parents,X8 andX9

as children, andX5 andX7 as spouses ofX6. X1, X4, X10 andX11 are not in the Markov
blanket ofX6.

The MB of a node is noteworthy because it identifies all the variables that shield the node from
the rest of the network. In particular, when interest centers on the distribution of a specific target
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node, as is the case in classification, the structure and parameters of only the MB of the target node
need be learned.

4.2 Markov Blanket Algorithms

Many approaches for learning general BNs as well as for learning MBs from data have been de-
scribed in the literature. Here we briefly review algorithms that learn MB classifiers. One of the
earliest described MB learning algorithms is the Grow-Shrink (GS) Markovblanket algorithm that
orders the variables according to the strength of association with the targetand uses conditional
independence tests to find a reduced set of variables estimated to be the MB (Margaritis and Thrun,
1999). Madden (2002a,b) described the Markov Blanket Bayesian Classifier (MBBC) algorithm
that constructs an approximate MB classifier using a Bayesian score for evaluating the network.
The algorithm consists of three steps: the first step identifies a set of direct parents and children
of the target, the second step identifies a set of parents of the children, and the third step identifies
dependencies among the children. The MBBC was competitive in terms of speed and accuracy rel-
ative to Nave Bayes, Tree-Augmented Nave Bayes and general Bayesian networks, when evaluated
on a large set of UCI data sets.

Several MB algorithms have been developed in the context of variable selection and learning
local causal structures around target variables of interest. Koller andSahami (1996) showed that
the optimal set of variables to predict a target is its MB. They proposed a heuristic entropy-based
procedure (commonly referred to as the KS algorithm) that assumes that the target influences the
predictor variables and that the variables most strongly associated with the target are in its MB.
The KS algorithm was not guaranteed to succeed. Tsamardinos and Aliferis (2003) showed that for
faithful distributions, the MB of a target variable is exactly the set of strongly relevant features, and
developed the Incremental Association Markov Blanket (IAMB) to identifyit. This algorithm has
two stages: a growing phase that adds potential predictor variables to the MB and a shrinking phase
that removes the false positives that were added in the first phase. Based on the faithfulness assump-
tion, Tsamardinos et al. (2006) later developed the Min-Max Markov Blanket algorithm (MMMB)
that first identifies the direct parents and children of the target and then parents of the children using
conditional independence tests. A comparison of the efficiency of several MB learning algorithms
are provided by Fu and Desmarais (2008). A recent comprehensive overview of MB methods of
classification and the local structure learning is provided by Aliferis et al. (2010a,b).

Several methods for averaging over BNs for prediction or classification have been described in
the literature, including Dash and Cooper (2002), Dash and Cooper (2004) and Hwang and Zhang
(2005). In prior work, we developed a lazy instance-specific algorithmthat performs BMA over
LBR models (Visweswaran and Cooper, 2004) and showed that it had better classification perfor-
mance than did model selection. However, to our knowledge, averaging over MBs has not been
described in the literature.

5. The Instance-Specific Markov Blanket (ISMB) Algorithm

The goal of the instance-specific Markov blanket (ISMB) algorithm is to predict well a discrete
target variable of interest. Relative to some model space, BMA is the optimal method for making
predictions in the sense that it achieves the lowest expected error rate in predicting the outcomes of
future instances. Such Bayes optimal predictions involve averaging overall models in the model
space which is usually computationally intractable. One approach, termedselective model averag-
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ing, has been to approximate the Bayes optimal prediction by averaging over a subset of the pos-
sible models and has been shown to improve predictive performance (Hoeting et al., 1999; Raftery
et al., 1997; Madigan and Raftery, 1994). The ISMB algorithm performsselective model averaging
and uses a novel heuristic search method to select the models over which averaging is done. The
instance-specific characteristic of the algorithm arises from the observation that the search heuristic
is sensitive to the features of the particular instance at hand.

The model space employed by the ISMB algorithm is the space of BNs over thedomain vari-
ables. In particular, the algorithm considers only MBs of the target node,since a MB is sufficient
for predicting the target variable. The remainder of this section describesthe ISMB algorithm in
terms of the (1) model space, (2) scoring functions including parameter and structure priors, and
(3) the search procedure for exploring the space of models. The current version of the algorithm
handles discrete variables.

5.1 Model Space

As mentioned above, the ISMB algorithm learns MBs of the target variable rather than entire BNs
over all the variables. Typically, BN structure learning algorithms that learnfrom data induce a BN
structure over all the variables in the domain. The MB of the target variable can be extracted from
the learned BN structure by ignoring those nodes and their relations that are not members of the
MB. The ISMB algorithm modifies the typical BN structure learning algorithm to learn only MBs
of the target node of interest, by using a set of operators that generateonly the MB structures of the
target variable.

The ISMB algorithm is a search-and-score method that searches in the space of possible MB
structures. Both, the BN structure learning algorithms and the MB structure learning algorithm
used by ISMB, search in a space of structures that is exponential in the number of domain variables.
Though the number of MB structures grows more slowly than the number of BNstructures with
the number of domain variables, the number of MB structures is still exponential in the number of
variables (Visweswaran and Cooper, 2009). Thus, exhaustive search in this space is infeasible for
domains containing more than a few variables and heuristic search is appropriate.

5.2 Instance-Specific Bayesian Model Averaging

The objective of the ISMB algorithm is to derive the posterior distributionP(Zt |,xt ,D) for the target
variableZt in the instance at hand, given the values of the other variablesXt = xt and the training
dataD. The ideal computation of the posterior distributionP(Zt |,xt ,D) by BMA is as follows:

P(Zt |xt ,D) = ∑
G∈M

P(Zt |xt ,G,D)P(G|D), (5)

where the sum is taken overall MB structuresG in the model spaceM. The first term on the
right hand side,P(Zt |xt ,G,D), is the probabilityP(Zt |xt) computed with a MB that has structure
G and parameterŝθG that are given by Equation 6 below. This parameterization ofG produces
predictions equivalent to those obtained by integrating over all the possibleparameterizations for
G. The second term,P(G|D), is the posterior probability of the MB structureG given the training
dataD. In essence, Equation 5 states that a conditional probability of interestP(Zt |xt) is derived by
taking a weighted average of that probability over all MB structures, where the weight associated
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with a MB structure is the probability of that MB structure given the data. In general,P(Zt |xt) will
have different values for the different sets of models over which the averaging is carried out.

5.3 Inference in Markov Blankets

ComputingP(Zt |xt ,G,D) in Equation 5 involves doing inference in the MB with a specified struc-
ture G. First, the parameters of the MB structureG are estimated using Bayesian parameters as
given by the following expression (Cooper and Herskovits, 1992; Heckerman, 1999):

P(Xi = k|Pai = j)≡ θ̂i jk =
αi jk +Ni jk

αi j +Ni j
(6)

where (1)Ni jk is the number of instances in data setD in which Xi = k and the parents ofXi have
the state denoted byj, (2) Ni j = ∑k Ni jk , (3) αi jk is a parameter prior that can be interpreted as belief
equivalent to having previously (prior to obtainingD seenαi jk instances in whichXi = k and the
parents ofXi have the state denoted byj, and (4)αi j = ∑k αi jk . The θ̂i jk in Equation 6 represent
the expected value of the probabilities that are derived by integrating overall possible parameter
values. For the ISMB algorithm we setαi jk to 1 for all i, j, andk, as a simple non-informative
parameter prior (Cooper and Herskovits, 1992). Next, the parameterized MB is used to compute the
distribution over the target variableZt of the instance at hand given the valuesxt of the remaining
variables in the MB by applying standard BN inference (Neapolitan, 2003).

5.4 Bayesian Scoring of Markov Blankets

In the Bayesian approach, the scoring function is based on the posteriorprobabilityP(G|D) of the
BN structureG given dataD. This is the second term on the right hand side in Equation 3. The
Bayesian approach treats the structure and parameters as uncertain quantities and incorporates prior
distributions for both. The specification of the structure priorP(G) assigns prior probabilities for
the different MB structures. Application of Bayes rule gives:

P(G|D) =
P(D|G)P(G)

P(D)
. (7)

Since the denominatorP(D) does not vary with the structure, it simply acts as a normalizing factor
that does not distinguish between different structures. Dropping the denominator yields the follow-
ing Bayesian score:

score(G;D) = P(D|G)P(G). (8)

The second term on the right in Equation 8 is the prior over structures, whilethe first term is
the marginal likelihood (also know as the integrated likelihood or evidence) which measures the
goodness of fit of the given structure to the data. The marginal likelihood iscomputed as follows:

P(D|G) =
∫

θG

P(D|θG,G)P(θG|G)dθG, (9)

whereP(D|θG,G) is the likelihood of the data given the BN(G,θG) andP(θG|G) is the specified
prior distribution over the possible parameter values for the network structure G. Intuitively, the
marginal likelihood measures the goodness of fit of the structure over all possible values of its
parameters. Note that the marginal likelihood is distinct from the maximum likelihood, though both
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are computed from the same function: the likelihood of the data given the structure. The maximum
likelihood is the maximum value of this function while the marginal likelihood is the integrated (or
the average) value of this function with the integration being carried out with respect to the prior
P(θG|G).

Equation 9 can be evaluated analytically when the following assumptions hold: (1) the vari-
ables are discrete and the dataD is a multinomial random sample with no missing values; (2) global
parameter independence, that is, the parameters associated with each variable are independent; (3)
local parameter independence, that is, the parameters associated with each parent state of a variable
are independent; and (4) the parameters’ prior distribution is Dirichlet. Under the above assump-
tions, the closed form forP(D|G) is given by (Cooper and Herskovits, 1992; Heckerman, 1999):

P(D|G) =
n

∏
i=1

qi

∏
j=1

Γ(αi j )

Γ(αi j +Ni j )

r i

∏
k=1

Γ(αi jk +Ni jk)

Γ(αi jk)
, (10)

whereΓ denotes the Gamma function,n is the number of variables inG, qi is the number of joint
states of the parents of variableXi that occur inD, r i is the number of states ofXi that occur inD,
andαi j = ∑k αi jk . Also, as previously described,Ni jk is the number of instances in the data where
nodei has valuek and the parents ofi have the state denoted byj, andNi j = ∑k Ni jk .

The Bayesian score in Equation 7 incorporates both structure and parameter priors. The term
P(G) represents the structure prior and is the prior probability assigned to the BNstructureG. For
the ISMB algorithm, a uniform prior belief over allG is assumed which makes the termP(G) a
constant. Thus,P(G|D) is equal toP(D|G) up to a proportionality constant and the Bayesian score
for P(G) is defined simply as the marginal likelihood as follows:

score(G;D) = P(D|G) ∝ P(G|D). (11)

The parameter priors are incorporated in the marginal likelihoodP(D|G) as is obvious from the
presence of the alpha terms in Equation 10. For the ISMB algorithm we setαi jk to 1 for all i, j, and
k in Equation 10, as a simple non-informative parameter prior, as mentioned in theprevious section.

5.5 Selective Bayesian Model Averaging

Since Equation 5 sums over a very large number of MB structures, it is not feasible to compute
it exactly. Hence, complete model averaging given by Equation 5 is approximated with selective
model averaging, and heuristic search (described in the next section) isused to sample the model
space. For a setRof MB structures that have been chosen from the model space by heuristic search,
selective model averaging estimatesP(Zt |xt ,G) as:

P(Zt |xt ,D)∼= ∑
G∈R

P(Zt |xt ,G,D)
P(G|D)

∑G′∈RP(G′|D)
. (12)

Substituting Equation 11 into Equation 12, we obtain:

P(Zt |xt ,D)∼= ∑
G∈R

P(Zt |xt ,G,D)
score(G;D)

∑G′∈Rscore(G′;D)
. (13)

The ISMB algorithm performs selective model averaging and seeks to locate a good set of
models over which averaging is carried out.
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5.6 Instance-Specific Search

The ISMB algorithm uses a two-phase search to sample the space of MB structures. The first phase
(phase 1) ignores the evidencext from the instance at hand, while searching for MB structures that
best fit the training data. The second phase (phase 2) continues to add tothe set of MB structures
obtained from phase 1, but now searches for MB structures that havethe greatest impact on the
prediction ofZt for the instance at hand. We now describe in greater detail the two phasesof the
search.

Phase 1 usesgreedy hill-climbing searchand accumulates the best model discovered at each
iteration of the search into a setR. At each iteration of the search, successor models are generated
from the current best model; the best of the successor models is added toR only if this model
is better than current best model; and the remaining successor models are discarded. Since, no
backtracking is performed, phase 1 search terminates in a local maximum.

Phase 2 usesbest-first searchand adds the best model discovered at each iteration of the search
to the setR. Unlike greedy hill-climbing search, best-first search holds models that have not been
expanded (i.e., whose successors have not be generated) in apriority queue Q. At each iteration of
the search, successor models are generated from the current best model and added toQ; after an
iteration the best model fromQ is added toR even ifthis model is not better than the current best
model inR. Phase 2 search terminates when a user set criterion is satisfied. Since, the number of
successor models that are generated can be quite large, the priority queue Q is limited to a capacity
of at mostw models. Thus, ifQ already containsw models, addition of a new model to it leads to
removal of the worst model from it. The queue allows the algorithm to keep in memory up to the
bestw scoring models found so far, and it facilitates limited backtracking to escape local maxima.

5.7 Search Operators and Scores

The operators used by the ISMB algorithm to traverse the space of MB structures are the same as
those used in standard BN structure learning with minor modifications. The standard BN structure
learning operators are (1) add an arc between two nodes if one does not exist, (2) delete an exist-
ing arc, and (3) reverse an existing arc, with the constraint that an operation is allowed only if it
generates a legal BN structure (Neapolitan, 2003). This constraint simplyimplies that the graph of
the generated BN structure be a DAG. A similar constraint is applicable to the generation of MB
structures, namely, that an operation is considered valid if it produces a legal MB structure of the
target node. This constraint entails that some of the operations be deemed invalid, as illustrated in
the following examples. With respect to a MB, the nodes can be categorized into five groups: (1)
the target node, (2) parent nodes of the target, (3) child nodes of the target, (4) spousal nodes, which
are parents of the children, and (5) other nodes, which are not part of the current MB. Incoming arcs
into parents or spouses are not part of the MB structure and, hence operations that add such arcs
are deemed invalid. Arcs between nodes not in the MB are not part of the MB structure and, hence
operations that add such arcs are also deemed invalid. Figure 4 gives exhaustively the validity of the
MB operators. Furthermore, the application of the delete arc or the reverse arc operators may lead
to additional removal of arcs to produce a valid MB structure (see Figure 5for an example).

As described in the previous section, the search for MB structures proceeds in two sequential
phases. In phase 1 the candidate MB structures are scored with the Bayesian score (phase 1 score)
shown in Equation 11. Since this phase selects the highest scoring MB structure at each iteration, it
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Figure 4: Constraints on the Markov blanket operators. The nodes arecategorized into five groups:
T = target, P = parent, C = child, S = spouse, and O = other (not in the Markov blanket of
T). The cells with check marks indicate valid operations and are the only onesthat need
to be considered in generating candidate structures. The cells with an asterisk indicate
that the operation is valid only if the resulting graph is acyclic.
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Figure 5: An example where the application of an operator leads to additionalremoval of arcs to
produce a valid Markov blanket structure. Deletion of arcZ→ X5 leads to removal of the
arcX4→ X5 sinceX5 is no longer a part of the Markov blanket ofZ. Reversal of the same
arc also leads to removal of the arcX4→ X5 sinceX5 is now a parent and is precluded
from having incoming arcs. Also, unlessX4→ X5 is removed there will be a cycle.

accumulates MB structures with high marginal likelihood. The purpose of this phase is to identify
a set of MB structures that are highly probable, given dataD.

Phase 2 searches for MB structures that change the current model-averaged estimate ofP(Zt |xt ,D)
the most. The notion here is to find viable competing MB structures for making this posterior prob-
ability prediction. When no competitive MB structures can be found, the prediction is assumed to
be stable. Phase 2 differs from the phase 1 in two aspects: it uses best-first search and it employs a
different scoring function for evaluating candidate MB structures.
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At the beginning of the phase 2,R contains MB structures that were generated in phase 1.
Successors to the MB structures inR are generated, scored with the phase 2 score (described in
detail below) and added to the priority queueQ. At each iteration of the search, the highest scoring
MB structure inQ is removed fromQ and added toR; all operations leading to legal MB structures
are applied to it; the successor structures are scored with the phase 2 score; and the scored structures
are added toQ. Phase 2 search terminates when no MB structure inQ has a score higher than some
small valueε or when a period of timet has elapsed, whereε andt are user specified parameters.

In phase 2, the model score is computed as follows. Each successor MB structureG∗ to be added
to Q is scored based on how much it changes the current estimate ofP(Zt |xt ,D); this is obtained
by model averaging over the MB structures inR. More change is better. Specifically, we use the
Kullback-Leibler (KL) divergence between the two estimates ofP(Zt |xt ,D), one estimate computed
with and another computed withoutG∗ in the set of models over which the model averaging is
carried out. The KL divergence, or relative entropy, is a quantity whichmeasures the difference
between two probability distributions (Cover and Joy, 2006). Thus, the phase 2 score for a candidate
MB structureG∗ is given by:

f (R,G∗) = KL(p||q)≡∑
x

p(x) log
p(x)
q(x)

,

where

p(x) = ∑
G∈R

P(Zt |xt ,G,D)
P(G|D)

∑G′∈RP(G′|D)

and

q(x) = ∑
G∈R∪G∗

P(Zt |xt ,G,D)
P(G|D)

∑G′∈R∪G∗ P(G′|D)
.

Using Equation 11 the termP(G|D) that appears inp(x) andq(x) can be substituted with the term
score(G;D). Using this substitution, the score forG∗ is:

f (R,G∗) = KL(p||q)≡∑
x

p(x) log
p(x)
q(x)

, (14)

where

p(x) = ∑
G∈R

P(Zt |xt ,G,D)
score(G;D)

∑G′∈Rscore(G′;D)

and

q(x) = ∑
G∈R∪G∗

P(Zt |xt ,G,D)
score(G;D)

∑G′∈R∪G∗ score(G′;D)
.

The pseudocode for the two-phase search procedure used by ISMBalgorithm is given in Figure
6.
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ProcedureSearchForISMB
// phase 1: greedy hill-climbing search
R← empty set
BestModel← empty MB (graph containing only the target node)
ScoreBestModelwith phase 1 score
BestScore← phase 1 score ofBestModel
Add BestModelto R

Do
For every possible operatorO that can be applied toBestModel

Apply O to BestModelto deriveModel
ScoreModelwith phase 1 score
ModelScore← phase 1 score ofModel
If ModelScore> BestScore

BestModel←Model
BestScore←ModelScore
FoundBetterModel← True

End if
Endfor
If FoundBetterModelis True

Add BestModelto R
Else

Terminatedo
End if

Enddo

// phase 2: best-first search
Q← empty priority queue with maximum capacityw
Generate all successors for the MB structures inR and add them toQ
Score all MB structures inQ with phase 2 score

Do while elapsed time< t
BestModel← remove MB structure with highest phase 2 score fromQ
BestScore← phase 2 score ofBestModel
For every possible operatorO that can be applied toBestModel

Apply O to BestModelto deriveModel
ScoreModelwith phase 2 score
Add Model to Q

Endfor
If BestScore> ε

Add BestModelto R
Else

Terminatedo
End if

Enddo

ReturnR

Figure 6: Pseudocode for the two-phase search procedure used bythe ISMB algorithm. Phase 1
uses greedy hill-climbing search while phase 2 uses best-first search.

5.8 Complexity of the ISMB Algorithm

For one instance, the ISMB algorithm runs inO(bdmn) time and usesO((w+d)mn) space, where
m is the number of instances in the training data setD, n is the number of domain variables,d is the
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total number of iterations of the search in the two phases 2,b (the branching factor) is the maximum
number of successors generated from a MB structure, andw is the capacity of the priority queueQ.

5.8.1 TIME COMPLEXITY

At each iteration of the search, a maximum ofb successor MB structures are generated. Ford
iterations of the search, the number of MB structures generated and scored with the phase 1 score
is O(bd). Note that both phases of the search require successor MB structuresto be scored with the
phase 1 score.

Since the phase 1 score decomposes over the MB nodes, to compute it for anewly generated
MB structure only those MB nodes whose parent nodes have changed need be evaluated. The
number of MB nodes that need to be evaluated is either one (when theadd or removeoperator is
applied) or two (when thereverseoperator is applied). Computing the phase 1 score for a MB
node entails estimating the parameters for that node and calculating the marginallikelihood from
those parameters. Estimating the parameters requires one pass overD and takesO(mn) time which
determines the time complexity of the phase 1 score.

The phase 2 score computes the effect of a candidate MB structure on themodel averaged
estimate of the distribution of the target variable. This requires doing inference for the target node
in a MB that contains all measured variables which takesO(n) since at mostn nodes influence the
target distribution and hence at mostn sets of parameters need be retrieved. Computing both phase
1 and phase 2 scores for a MB structure therefore takesO(mn) time. Thus, the total time required
by the ISMB algorithm that runs ford iterations of the search and generatesb MB structures at each
iteration isO(bdmn). However, the branching factorb is O(n2) andd is O(n) and hence the overall
complexity isO(mn4). This complexity limits that algorithm’s applicability to data sets of small to
medium dimensionality with up to several hundred variables.

5.8.2 SPACE COMPLEXITY

The ISMB algorithm searches in the space of MB structures using greedyhill-climbing search for
phase 1 and best-first search with a priority queue of capacityw for phase 2. Ford iterations of the
search, the maximum number of MB structures that is stored isO(w+d). The space required for
each MB structure is linear in the number of its parameters.

For a given MB node, the number of parameters (using a conditional probability table) is ex-
ponential in the number of its parent nodes. However, the number of distinct parameters cannot be
greater than the number of instancesm in the training dataD; the remaining parameters for a node
have a single default value. Thus, the space required for the parameters of a MB node isO(m).
In a domain withn variables, a MB structure can have up ton nodes and thus requires space of
O(mn). In total, the space required by the ISMB algorithm that runs ford iterations of the search is
O((w+d)mn).

6. Evaluation of the ISMB Algorithm

This section describes the evaluation of the ISMB algorithm on a synthetic dataset and several data
sets from the UCI Machine Learning repository (UCI data sets). We firstdescribe the preprocessing
of variables, the evaluation measures and the comparison algorithms.
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6.1 Preprocessing

Any instance that had one or more missing values was removed from the data set, as was done by
Friedman et al. (1997). Sixteen of the 21 UCI data sets have no missing values and no instances
were removed. In the remaining five data sets, removal of missing values resulted in a decrease in
the size of the data set of less than 10%. After the removal of instances with missing values, the
data sets were evaluated with two stratified applications of 10-fold cross-validation. Hence, each
data set was split twice into 10 stratified training and test folds to create a total of 20 training and
test folds. All experiments were carried out on the same set of 20 training and test folds. All target
variables in all the data sets are discrete. However, some of the predictor variables are continuous.
All continuous variables were discretized using the method described by Fayyad and Irani (1993).
The discretization thresholds were determined only from the training sets andthen applied to both
the training and test sets.

6.2 Performance Measures

The performance of the ISMB algorithm was evaluated on two measures of discrimination (i.e., pre-
diction under 0-1 loss) and three probability measures. The discrimination measures used are the
misclassification error and the area under the ROC curve (AUC). For multipleclasses, we used the
method described by Hand and Till (2001) for computing the AUC. The discrimination measures
evaluate how well an algorithm differentiates among the various classes (orvalues of the target vari-
able). The probability measures considered are the logarithmic loss, squared error, and calibration.
The closer the measure is to zero the better. For the multiclass case, we computed the logarithmic
loss as described by Witten and Frank (2005) and the squared error asdescribed by Yeung et al.
(2005). For calibration, we used the CAL score that was developed by Caruana and Alexandru
(2004) and is based on reliability diagrams. The probability measures indicatehow well probability
predictions correspond to reality. For example, consider a subsetC of test instances in which target
outcome is predicted to be positive with probabilityp. If a fraction p of C actually has a positive
outcome, then such performance will contribute toward the probability measures being low. A brief
description of the measures is given in Table 1.

Performance measure Range Best score
Misclassification error [0, 1] 0
Area under the ROC curve (AUC)[0, 1] 1
Logarithmic loss [0, ∞) 0
Squared error [0, 1] 0
Calibration score (CAL) [0, 1] 0

Table 1: Brief description of the performance measures used in evaluationof the performance of
the algorithms.

6.3 Comparison Algorithms

The performance of the instance-specific algorithms was compared to the following methods: nave
Bayes (NB), C4.5 decision tree (DT), logistic regression (LR), neuralnetworks (NN),k-Nearest
Neighbor (kNN), Lazy Bayesian Rules (LBR), and AdaBoost (AB). The first four are representative
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population-wide methods, the next two are examples of instance-specific methods, and AB is an
ensemble method.kNN is a similarity-based method. The LBR algorithm induces a rule tailored to
the features of the test instance that is then used to classify it, and is an example of a model-based
instance-specific method that performs model selection. For all the seven comparison methods, we
used the implementations in the Weka software package (version 3.4.3) (Witten and Frank, 2005).
We used the default settings provided in Weka for NB, DT, and LR. For NN, we set the number
of hidden nodes to(n+ c)/2 wheren is the number of predictor variables andc is the number of
classes, the learning rate to 0.3 and the momentum to 0.2 (these are the default settings in Weka) and
the number of iterations to 1000 since this setting resulted in slightly better performance than the
default setting of 500. ForkNN, we used the Weka setting that identifies the best value fork (i.e., the
number of neighbors) by way of cross validation. For AB, we used Weka’s AdaBoostM1 procedure
with the decision tree J48 as the base classifier and the number of iterations set to n/log(m), where
n is the number of variables andm is the number of instances in the training data set. We did not
perform variable selection as a pre-processing step before applying the above classification methods.
However, DT, LBR and AB perform variable selection as part of the model learning procedure,
while the other the methods do not.

Three versions of the ISMB algorithm were used in the experiments described later in this
section, and they are listed in Table 2. The ISMB algorithm performs selective model averaging
to estimate the distribution of the target variable of the instance at hand as described in Section 5.
The ISMB-MS algorithm is amodel selectionversion of the ISMB algorithm. It chooses the MB
structure that has the highest posterior probability from those found by the ISMB algorithm in the
two-phase search, and uses that single model to estimate the distribution of thetarget variable of the
instance at hand. Comparing the ISMB algorithm to the ISMB-MS algorithm measures the effect
of approximating selective model averaging by using model selection. Whenthe training data set is
large the performance of the ISMB algorithm and the ISMB-MS algorithm may be similar if a single
model with a relatively large posterior probability overwhelms the contributionsof the remaining
models during model averaging.

Acronym Algorithm Phase 1 Phase 2 Prediction
ISMB Instance-specific Is non-instance- Is instance-specificBy model averaging

Markov blanket specific Uses best-first search over models selected
Uses greedy hill- Uses phase 2 scorein phase 1 and
climbing search phase 2
Uses phase 1 score

ISMB-MS Instance-specific Same as ISMB Same as ISMB Based on the highest
Markov blanket - scoring model from
Model Selection models found by ISMB

NISMB Non-instance- Same as ISMB Is non-instance- By model averaging;
specific Markov specific number of selected
blanket Uses best-first search models is the same

Uses phase 1 score as in ISMB

Table 2: Three versions of the ISMB algorithm.
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The NISMB algorithm is thenon-instance-specific(i.e., population-wide) version of the ISMB
algorithm. Phase 1 of the NISMB algorithm is identical to that of the ISMB algorithm. In phase 2,
the NISMB algorithm accumulates the same number of MB models as the ISMB algorithm except
that the models are identified on the basis of the non-instance-specific phase 1 score. Thus, the
NISMB algorithm averages over the same number of models as the ISMB algorithm. Comparing
the ISMB algorithm to the NISMB algorithm measures the effect of the instance-specific heuristic
on the performance of model averaging.

6.4 Evaluation on a Synthetic Data Set

This section describes the evaluation of the ISMB algorithm on a small syntheticdata set. The
synthetic domain consists of five binary variablesA, B, C, D, Z whereZ is a deterministic function
of the other variables:

Z = A∨ (B∧C∧D).

On such a small data set it is possible to perform model averaging over all models, and this es-
tablishes the best possible prediction performance that is attainable using MBmodels. The training
and the test sets used in the experiments are shown in Figure 7. The training set simulates a low
occurrence ofA = T (only five out of 69 instances haveA = T), and the test set consists of three
instances ofA= T which are not present in the training set.

Training set 

A,B,C,D,Z

T,F,F,F,T

T,F,T,F,T

T,T,F,T,T

T,T,T,F,T

T,T,T,T,T

F,F,F,F,F

F,F,F,T,F

F,F,T,F,F

F,F,T,T,F

F,T,F,F,F

F,T,F,T,F

F,T,T,F,F

F,T,T,T,T

Test set 

A,B,C,D,Z

T,F,F,T,T

T,T,F,F,T

T,F,T,T,T

Repeated 8 times

Figure 7: Training and test data sets derived from the deterministic functionZ = A∨ (B∧C∧D).
The training set contains a total of 69 instances and the test set a total of three instances
as shown; the test instances are not present in the training set. The training set simu-
lates low prevalence ofA= T since only five of the 69 instances have this variable-value
combination.

The following algorithms were used in the experiments: (1) a complete model averaged version
of the ISMB algorithm where model averaging is carried out over all 3567possible MB structures,
(2) the ISMB algorithm, (3) the ISMB-MS algorithm, and (4) the NISMB algorithm.
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The settings used for the ISMB algorithm are as follows:

• Phase 1: As described in Section 5.

• Phase 2: The model score for phase 2 is computed using Equation 14 that isbased on KL-
divergence. Phase 2 uses best-first search with a priority queueQ whose maximum capacity
w was set to 1000. Phase 2 search terminates when no MB structure inQ has a phase 2 score
higher thanε = 0.001 for 10 consecutive iterations of the search. The maximum period of
running timet for phase 2 was not specified since the algorithm terminated in a reasonable
period of time with the specified value forε.

• The predicted distribution for the target variableZ of the test instance is computed using
Equation 13; for each MB structure the parameters are estimated using Equation 6.

The results are given in Table 3. All performance measures except the AUC were computed for
the test set of three instances. The AUC could not be computed since all theinstances in the test
set are from the same class,Z = T. The results from complete model averaging represent the best
achievable expected performance that could be achieved by the ISMB algorithm. The ISMB and the
NISMB algorithms that average over a subset of all models had poorer performance than complete
model averaging but performed better than ISMB-MS. However, the ISMB algorithm improved over
the performance of the NISMB algorithm. Though both methods average over the same number of
models, the ISMB algorithm uses the instance-specific phase 2 score to choose phase 2 models
while the ISMB algorithm uses the non-instance-specific phase 1 score to choose both phase 1 and
phase 2 models. The phase 2 models chosen by the ISMB algorithm are potentially different for
each test instance in contrast to the NISMB algorithm which selects the same models irrespective
of the test instance. These results, while limited in scope, provide support that the instance-specific
search for models may be able to choose models that better approximate the distribution of the target
variable of the instance at hand.

Performance measure ISMB ISMB ISMB-MS NISMB
complete model

averaged
Misclassification error 0.0000 0.0000 0.3333 0.3333
AUC - - - -
Logarithmic loss 0.0406 0.0505 0.0596 0.0585
Squared error 0.0684 0.0783 0.0902 0.0862
CAL score 0.3720 0.4092 0.4534 0.4284

Table 3: Results obtained from the training and test sets that are given in Figure 7. The AUC could
not be computed since the test set instances are all from a single class. Results in the first
column are obtained by model averaging over all 3567 MBs.

Figure 8 plots the estimate ofP(Zt = T|xt ,D) for each test instancet as it varies with each
addition of a model to the set of models being averaged over. A second curve plots the model score
as the logarithmic posterior probability of the model given the data; this score measures the relative
contribution of the model to the final estimate ofP(Zt = T|xt ,D). Each row in the figure contains a
pair of plots for a single test instance, the plot on the left is obtained from theISMB algorithm and
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the corresponding plot on the right is obtained from the NISMB algorithm. The plot for the estimate
of P(Zt = T|xt ,D) is shown in black while the plot for the model score is shown in gray. In each
plot, on going from left to right, the estimate ofP(Zt = T|xt ,D) initially fluctuates considerably and
then settles to a stable estimate as the number of models providing the estimate increases. In the
first two test instances the final estimates ofP(Zt = T|xt ,D) obtained from the instance-specific and
non-instance-specific model averaging respectively are very close;both the ISMB and the NISMB
algorithms predicted the value ofZ correctly as T. In the third test instance, the final estimates of
P(Zt = T|xt ,D) are quite different; the ISMB algorithm predicted the value ofZ correctly as T while
the NISMB algorithm predicted the value ofZ incorrectly as F.

6.5 Evaluation on UCI Data Sets

We now describe the evaluation of the ISMB algorithm on 21 data sets from theUCI Machine
Learning repository (UCI data sets) (Frank and Asuncion, 2010). The selected UCI data sets have
between four and 60 predictor variables and a single target variable thathas between two and seven
classes. The size of the data sets, the number and type of predictor variables, and the number of
classes (states) taken by the target variable are given in Table 4 The performance of the ISMB
algorithm is compared to that of the ISMB-MS and the NISMB algorithms, and also to that of the
seven comparison machine learning methods described in Section 6.3.

6.5.1 EXPERIMENTAL DESIGN

The experimental design is as follows:

• For each data set, a total of 10 machine learning algorithms were run: ISMB,ISMB-MS,
NISMB, NB, DT, LR, NN,kNN, LBR and AB.

• The data sets used in the experiments are the 21 UCI data sets listed in Table 4.

• Summary statistics were measured using 10-fold stratified cross-validation done twice for a
total of 20 training-test pairs. The summary statistics were computed for misclassification
error, the AUC, logarithmic loss, squared error and the CAL score.

• The statistical tests performed were (1) significance testing with the Wilcoxon paired-samples
signed ranks test, and (2) effect size testing with paired-samplest test.

The settings for the ISMB algorithm are the same as those stated in Section 6.4 for the synthetic
data evaluation.

6.5.2 RESULTS

Table 5 gives the average number of models selected by the ISMB and the NISMB algorithms in
each of the phases for each data set. The average number of models varies from 17.99 for the iris
data set (with four predictor variables) to 89.38 for the lymphography dataset (with 18 predictor
variables).

Tables 6 to 10 report the means of the misclassification error, the AUC, logarithmic loss, squared
error and the CAL score respectively for the ISMB algorithm, its variants and the comparison al-
gorithms. In each table, a row represents a data set and a column represents an algorithm. The last
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Figure 8: Plots of model averaged estimate ofP(Zt = T|xt ,D) that is abbreviated asP(Z = T) and
model score obtained by ISMB and NISMB algorithms on the three test casesgiven in
Figure 7. Each row represents a single test case with the plot on the left obtained from
the ISMB algorithm and the plot on the right obtained from the NISMB algorithm.The
value of the final averaged estimate ofP(Zt = T|xt ,D) is the point where the darker curve
meets the Y-axis on the right.
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Data Set # Predictors # Classes # Cases
(cnt + dsc = total)

australian 6 + 8 = 14 2 690
breast-cancer 9 + 0 = 9 2 683
cleveland 6 + 9 = 13 2 296
corral 0 + 6 = 6 2 128
crx 6 + 9 = 15 2 653
diabetes 8 + 0 = 8 2 768
flare 0 + 10 = 10 2 1066
german 7 + 13 = 20 2 1000
glass2 9 + 0 = 9 2 163
glass 9 + 0 = 9 7 214
heart 13 + 0 = 13 2 270
hepatitis 6 + 13 = 19 2 80
iris 4 + 0 = 4 3 150
lymphography 0 + 18 = 18 4 148
pima 8 + 0 = 8 2 768
postoperative 1 + 7 = 8 3 87
sonar 60 + 0 = 60 2 208
vehicle 18 + 0 = 18 4 846
vote 0 + 16 = 16 2 435
wine 13 + 0 = 13 3 178
zoo 0 + 16 = 16 7 101

Table 4: Description of the 21 UCI data sets used in the experiments. In the column on predictors,
the number of continuous (cnt) and discrete (dsc) predictors as well as the total number of
predictor variables (excluding the target variable) are given. In the column on instances,
the numbers of instances used in the experiments are given; this may be less than the total
number of instances in the original UCI data set since instances with missing values were
removed.

row in each table gives for each algorithm the overall mean of the specifiedperformance measure
across all the data sets. From the tables, it is seen that on all five performance measures, the ISMB
algorithm achieved a better overall average score than each of the otheralgorithms.

Tables 11 and 12 report results from pair-wise comparisons of the performance of the algorithms
on all the data sets that are aimed at assessing the statistical significance andthe magnitude of the
observed differences in the measures. Table 11 reports results from atwo-sided Wilcoxon paired-
samples signed ranks test, and Table 12 reports results from a two-sided paired-samplest test.

Table 13 reports the running times of the ISMB and the comparison algorithms. The experiments
were performed on a server with 8 GB of RAM and two dual core Pentium processors of 3 GHz
each that were running the Windows XP operating system. The algorithms were restricted to a
single core in all the experiments. Averaged over all the data sets, the ISMBtook approximately 2
minutes for a test instance.

We ran additional experiments on the first seven data sets (see Table 4) to analyze the sensitivity
of the ISMB algorithm to the parametersw (queue capacity) andε (change in Phase 2 score). For
w, we evaluated values of 100, 200, 400, 800, 1600, 3200 and 6400. The performance on all the
evaluation measures peaked at values of 800 or 1600 and beyond 1600no further improvement was
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Data Set # models # models # models
phase 1 phase 2 phases 1 and 2

australian 28.55 11.00 39.55
breast-cancer 18.85 10.15 29.00
cleveland 20.45 11.99 32.44
corral 10.65 15.03 25.68
crx 32.10 13.42 45.52
diabetes 11.65 10.03 21.68
flare 20.75 11.44 32.19
german 22.45 19.23 41.68
glass2 12.05 13.26 25.31
glass 15.80 10.73 26.53
heart 18.50 11.32 29.82
hepatitis 27.45 26.63 54.08
iris 7.25 10.74 17.99
lymphography 51.55 37.83 89.38
pima 40.40 16.97 57.37
postoperative 12.00 10.02 22.02
sonar 11.65 10.09 21.74
vehicle 1.15 21.09 22.24
vote 59.80 18.44 78.24
wine 39.30 10.73 50.03
zoo 45.55 13.53 59.08

Table 5: Average number of models in phases 1 and 2 over which averaging is carried out by the
ISMB and NISMB algorithms. Both algorithms average over the same number ofmodels
in each phase. Both algorithms select the same models in phase 1 but potentially different
models in phase 2. The number of models in phases 1 and 2 is the sum of the models
selected in the two phases.

seen. Forε, we evaluated values of 1.0, 0.1, 0.01, 0.001, 0.0001 and 0.00001. The performance
improved asε decreased until 0.001 or 0.0001, but did not improve further for smaller values ofε.

The results are encouraging in that they show that the ISMB algorithm never underperformed
on any performance measure when compared to the other learning methods including the variants
of the ISMB algorithm that do model selection and non-instance-specific model averaging. For
misclassification error, logarithmic loss, squared error and the CAL score, the mean difference is
always negative which denotes that the ISMB algorithm always has a lower score on these measures.
For the AUC, the difference is always positive which means that the ISMB algorithm always has
a higher AUC. However, all mean differences are not statistically significant at the 0.05 level as
can be seen by the p-values in Tables 11 and 12. The best performanceis seen in logarithmic loss
where the ISMB algorithm significantly outperforms all other methods, followed by squared error
and CAL score where the ISMB algorithm significantly outperforms many of the methods. On
misclassification error and the AUC, the ISMB algorithm has smaller performance gains.

Overall, the ISMB algorithm significantly improved on the probabilities of the predictions while
maintaining or slightly improving on discrimination over all other algorithms used in theexperi-
ments. The non-instance-specific NISMB algorithm had inferior performance on logarithmic loss
and squared error but similar performance on the other measures when compared to the ISMB al-
gorithm. Both the ISMB and the NISMB algorithms average over the same numberof models and
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.1457 0.1457 0.1435 0.1449 0.13330.1486 0.1848 0.1457 0.1471 0.1453
breast-cancer 0.0256 0.0271 0.0256 0.0256 0.0403 0.0337 0.0373 0.0286 0.02560.0264
cleveland 0.1740 0.1791 0.1740 0.16550.2095 0.16550.1993 0.1791 0.16550.1985
corral 0.0000 0.0156 0.0000 0.1328 0.0508 0.1289 0.00000.0977 0.1250 0.0000
crx 0.1547 0.1577 0.1485 0.1348 0.1317 0.1424 0.1692 0.1485 0.1340 0.1308
diabetes 0.2116 0.2129 0.2142 0.2201 0.2194 0.2135 0.2272 0.2201 0.2207 0.2244
flare 0.1806 0.1834 0.1825 0.2012 0.1735 0.17210.2054 0.1806 0.1750 0.1730
german 0.2580 0.2585 0.2580 0.2445 0.2845 0.24250.2980 0.2695 0.2475 0.2818
glass2 0.1503 0.1564 0.1472 0.1595 0.1933 0.1442 0.1442 0.14110.1503 0.1503
glass 0.2150 0.2220 0.2196 0.2687 0.2500 0.2547 0.2220 0.2173 0.2500 0.2420
heart 0.1778 0.1778 0.1778 0.16300.1870 0.16300.1963 0.1741 0.16300.1724
hepatitis 0.0938 0.1000 0.1000 0.1375 0.1250 0.1375 0.1688 0.06880.1375 0.1040
iris 0.0567 0.0600 0.0633 0.05330.0600 0.0567 0.0633 0.0633 0.05330.0600
lymphography 0.1622 0.1486 0.1622 0.14860.2365 0.2365 0.1622 0.1622 0.1520 0.1622
pima 0.2155 0.2135 0.2142 0.2214 0.2259 0.2148 0.2389 0.2246 0.2227 0.2224
postoperative 0.3391 0.3851 0.3391 0.3103 0.2989 0.3736 0.4138 0.3333 0.3103 0.2111
sonar 0.1635 0.1659 0.1731 0.1490 0.1659 0.14420.1611 0.1707 0.1490 0.1742
vehicle 0.2600 0.2577 0.2612 0.3712 0.2843 0.2914 0.2825 0.2766 0.2784 0.2923
vote 0.0453 0.0582 0.0453 0.0927 0.03880.0733 0.0711 0.0819 0.0927 0.0438
wine 0.0084 0.0084 0.00560.0112 0.0702 0.0253 0.0169 0.0281 0.0112 0.0617
zoo 0.0347 0.0396 0.0347 0.0644 0.0792 0.0594 0.0495 0.03470.0644 0.0658
average 0.1463 0.1511 0.1471 0.1629 0.1647 0.1629 0.1672 0.1546 0.1560 0.1496

Table 6: Mean misclassification errors of different algorithms based on 10-fold cross-validation
done twice. The bottom row gives the average misclassification errors. Best results are
underlined.

both select the same models in phase 1 of the search. In phase 2 of the search, while the number of
selected models is the same, the two methods identify potentially different models. This provides
evidence that the models selected in phase 2 by the ISMB algorithm, using instance-specific search,
are able to improve the performance of the ISMB algorithm over the already good performance
obtained by the NISMB algorithm. Of note, LBR, which is an instance-specificapproach that per-
forms model selection, is tied with ISMB on mean error and comes second afterISMB on AUC, but
it performs more poorly on the probabilistic measures.

7. Discussion

This paper described the development and evaluation of a new approachfor learning predictive
models that are relevant to a single instance. The instance-specific method wedeveloped uses MB
models, carries out selective BMA to predict the outcome of interest for theinstance at hand, and
employs an instance-specific heuristic to locate a set of suitable models to average over. The essence
of the instance-specific method lies in the model score used in phase 2 of the search. This score is
sensitive to both the posterior probability of the model and the predicted distribution for the outcome
variable of the instance at hand. Typically, methods that evaluate models with ascore employ a
score that is sensitive only to the fit of the model to the training data and not to the prediction of the
outcome variable.
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.9315 0.9303 0.9313 0.9200 0.9032 0.9187 0.8937 0.9092 0.9186 0.9172
breast-cancer 0.9926 0.9922 0.9925 0.99330.9613 0.9879 0.9818 0.9930 0.99330.9802
cleveland 0.9098 0.9079 0.9084 0.91410.7952 0.9089 0.8781 0.8995 0.91410.8350
corral 1.0000 0.9997 1.0000 0.9252 0.9916 0.9459 1.00000.9827 0.9373 0.9932
crx 0.9303 0.9280 0.9302 0.9301 0.9087 0.9138 0.9002 0.9057 0.9302 0.9140
diabetes 0.8468 0.8468 0.8466 0.8438 0.7991 0.8439 0.8311 0.8148 0.8423 0.8004
flare 0.7289 0.7288 0.7261 0.75570.4916 0.7451 0.6445 0.6797 0.7520 0.7034
german 0.7662 0.7633 0.7641 0.7903 0.6736 0.7839 0.7340 0.7442 0.7891 0.7911
glass2 0.8703 0.8653 0.8700 0.8769 0.7982 0.88450.8483 0.8384 0.8826 0.8744
glass 0.9364 0.9361 0.9361 0.9408 0.8834 0.9101 0.9241 0.9112 0.9434 0.9488
heart 0.9055 0.9049 0.9073 0.91060.8239 0.9032 0.8649 0.8791 0.91060.8332
hepatitis 0.9225 0.9262 0.9237 0.9013 0.8203 0.7784 0.8436 0.8792 0.8970 0.9004
iris 0.9890 0.9900 0.9905 0.99380.9629 0.9846 0.9785 0.9886 0.99380.9808
lymphography 0.9139 0.9156 0.9173 0.91930.7741 0.8571 0.9192 0.9087 0.9175 0.8830
pima 0.8431 0.8424 0.8424 0.8450 0.7977 0.84560.8237 0.8134 0.8449 0.8284
postoperative 0.5026 0.4943 0.4538 0.50350.4228 0.4515 0.4113 0.3665 0.50350.4975
sonar 0.9203 0.9204 0.9217 0.9343 0.8521 0.9275 0.9331 0.9132 0.9345 0.9142
vehicle 0.9234 0.9228 0.92350.8655 0.8761 0.9016 0.8931 0.9032 0.9109 0.8965
vote 0.9875 0.9850 0.9854 0.9684 0.9578 0.9582 0.9871 0.9735 0.9660 0.9498
wine 0.9994 0.9994 0.9994 1.00000.9660 0.9967 0.9994 0.9981 1.00001.0000
zoo 0.9994 0.9992 0.9992 0.9989 0.9565 0.9967 0.9916 0.99950.9989 0.9622
average 0.8962 0.8952 0.8938 0.8919 0.8293 0.8783 0.8705 0.8715 0.8943 0.8764

Table 7: Mean AUCs of different algorithms based on 10-fold cross-validation done twice. The
bottom row gives the average AUCs. Best results are underlined.

The experimental results demonstrate that the ISMB algorithm improves prediction of the target
variable on a variety of performance measures when compared to several population-wide predictive
algorithms. The greatest improvements occur in logarithmic loss and squared error, followed by
good improvement in calibration and smaller improvements in misclassification errorand the AUC.
BMA had better performance than Bayesian model selection, and within modelaveraging, instance-
specific BMA had better performance than non-instance-specific BMA though the improvement
is not as large as that of model averaging over model selection. The improved performance by
ISMB may arise from not only the model averaging but also from the variable selection that is
performed implicitly by the Markov blanket models. Both these components likely explain the
better performance of ISMB over comparison methods such as NB, LR andkNN that do not perform
variable selection. However, the superiority of ISMB over ISMB-MS suggests that model averaging
is an important component in the improved performance of the former. We have also evaluated
ISMB on several medical data sets and obtained good results (Visweswaran et al., 2010).

Several situations are possible where the instance-specific method has noadvantage over a
population-wide method. As one example, in a domain where complete BMA is tractable and
model averaging is carried out over all models in the model space, a search heuristic that selects a
subset of models such as the one used by the instance-specific method is superfluous. Typically, in
real life domains, complete BMA over all models is not tractable due to the enormous number of
models in the model space. Thus, the ISMB algorithm is useful for selectivemodel averaging where
it identifies a potentially relevant set of models that is predictive of the instance at hand. As another
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.3390 0.3456 0.3417 0.4476 0.4091 0.7136 0.4263 0.8627 0.4482 0.3850
breast-cancer 0.1068 0.1138 0.1083 0.2497 0.2955 0.1485 0.1205 0.2138 0.2497 0.2772
cleveland 0.3925 0.4067 0.4021 0.4491 1.3001 0.6500 0.4584 0.8625 0.4491 0.7044
corral 0.1018 0.1101 0.0989 0.3326 0.1475 0.2753 0.1542 0.01750.3130 0.1280
crx 0.3451 0.3564 0.3525 0.4113 0.3783 0.9377 0.4678 0.8747 0.4018 0.3845
diabetes 0.4601 0.4606 0.4604 0.4809 0.5497 0.4588 0.6039 0.5028 0.4826 0.4478
flare 0.4282 0.4294 0.4314 0.5904 0.4879 0.4042 0.5333 0.5858 0.5182 0.4032
german 0.5331 0.5413 0.5377 0.52131.4604 0.5229 0.5801 1.5415 0.5221 0.7981
glass2 0.4238 0.4302 0.4246 0.4532 0.8498 0.41540.8853 0.4562 0.4447 0.4530
glass 0.7112 0.7239 0.7113 0.7697 2.3005 4.0749 1.3612 0.8685 0.7264 0.9452
heart 0.3996 0.4069 0.3973 0.4560 0.6920 0.3907 0.6109 0.8483 0.4560 0.3788
hepatitis 0.2396 0.2517 0.2583 0.4247 0.6122 17.7871 0.3562 0.6253 0.4272 0.2548
iris 0.1560 0.1909 0.1620 0.1621 0.5287 0.7579 0.5770 0.2240 0.1621 0.1712
lymphography 0.4100 0.4289 0.4430 0.4282 2.9112 21.6371 0.5765 0.7272 0.4409 0.7422
pima 0.4647 0.4657 0.4657 0.4793 0.5268 0.45720.5873 0.5114 0.4774 0.4880
postoperative 0.7381 0.7776 0.72870.7953 1.1395 2.8236 1.3339 1.9418 0.7953 0.9453
sonar 0.3573 0.3726 0.3743 0.4573 1.2814 0.5762 0.4170 0.5728 0.4554 0.4344
vehicle 0.5863 0.5900 0.5866 1.8645 2.3842 3.9997 1.0134 1.2590 0.7815 1.0042
vote 0.1393 0.1635 0.1588 0.6804 0.3028 5.5427 0.3171 0.2782 0.5629 0.1562
wine 0.0418 0.0402 0.0367 0.03030.8270 0.9593 0.1032 0.0409 0.03030.0531
zoo 0.1297 0.1202 0.1268 0.1474 1.1102 0.5325 0.05960.1595 0.1474 0.1130
average 0.3573 0.3679 0.3622 0.5063 0.9759 3.0507 0.5497 0.6654 0.4425 0.4604

Table 8: Mean logarithmic losses of different algorithms based on 10-fold cross-validation done
twice. The bottom row gives the average logarithmic losses. Best results are underlined.

example, in a domain where features that are relevant are commonly present, selection of relevant
variables may not be a problem. In such a situation, the variables selected bya population-wide
method are likely to be relevant for predicting any future instance and the instance-specific method
that performs model selection will likely select the same set of variables for each new instance.

Improvements in the phase 1 search may make the phase 2 search relatively less contributory to
the overall performance. We believe that the greedy hill climbing approachused in phase 1 of ISMB
serves as a useful starting point for investigating this algorithm. Nonetheless, such an approach may
become trapped in local maxima, leading it to miss finding highly probable MB structures. To
explore this issue a number of search strategies that augment local greedy search that have been
successfully applied to learning BN structures can be tried, such as best-first search (Neapolitan,
2003), simulated annealing (Heckerman et al., 1995), tabu lists (Friedman etal., 1999), random
restarts to escape the numerous local optima (Heckerman et al., 1995), andoptimal reinsertion
(Moore and Wong, 2003). Algorithms that have been developed specifically for learning MBs
such as the Markov Blanket Bayesian Classifier (MBBC) (Madden, 2002a), HITON (Aliferis et al.,
2003), the Incremental Association Markov Blanket (IAMB) (Tsamardinos and Aliferis, 2003),
and the Min-Max Markov Blanket algorithm (MMMB) (Tsamardinos et al., 2006) are additional
candidates for consideration. Investigating the use of such alternative search methods in phase 1 is
an interesting open problem.

There are several open questions regarding the behavior of the instance-specific method. Char-
acterizing theoretically the bias of the selective model averaged prediction of the instance-specific
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.2054 0.2082 0.2060 0.2234 0.2066 0.2116 0.3062 0.2287 0.2287 0.2075
breast-cancer 0.0440 0.0449 0.0441 0.0474 0.0731 0.0542 0.0689 0.0484 0.0474 0.0622
cleveland 0.2433 0.2499 0.2462 0.2553 0.3516 0.23390.3364 0.2526 0.2553 0.3314
corral 0.0352 0.0463 0.0354 0.2056 0.0887 0.1836 0.00380.1051 0.1951 0.0787
crx 0.2081 0.2146 0.2087 0.2092 0.19650.2121 0.2948 0.2363 0.2078 0.1987
diabetes 0.2978 0.2981 0.2979 0.3073 0.3219 0.29780.3156 0.3315 0.3086 0.2978
flare 0.2619 0.2626 0.2652 0.3145 0.2846 0.2513 0.3203 0.2843 0.2700 0.2498
german 0.3526 0.3570 0.3555 0.3419 0.4196 0.33680.5104 0.3591 0.3433 0.4050
glass2 0.2469 0.2513 0.2468 0.2450 0.3116 0.2409 0.2572 0.2603 0.2393 0.2572
glass 0.3609 0.3635 0.36050.3823 0.4186 0.4363 0.4075 0.3880 0.3673 0.3857
heart 0.2444 0.2486 0.2420 0.2570 0.3113 0.23940.3273 0.2611 0.2570 0.2565
hepatitis 0.1410 0.1495 0.1534 0.2079 0.2170 0.2750 0.2579 0.1481 0.2090 0.1483
iris 0.0727 0.0828 0.0753 0.0751 0.1122 0.0942 0.1032 0.1086 0.0751 0.0834
lymphography 0.2391 0.2353 0.2433 0.23440.4162 0.4545 0.2687 0.2650 0.2406 0.2388
pima 0.3009 0.3011 0.3011 0.3065 0.3264 0.29680.3248 0.3332 0.3060 0.3130
postoperative 0.4772 0.5044 0.4748 0.4894 0.4525 0.6011 0.7221 0.6168 0.4894 0.4512
sonar 0.2349 0.2391 0.2369 0.2411 0.2887 0.22280.2764 0.2402 0.2405 0.2614
vehicle 0.3471 0.3481 0.34700.5805 0.4171 0.4109 0.4672 0.3934 0.4059 0.3815
vote 0.0788 0.0903 0.0810 0.1681 0.07030.1461 0.1172 0.1293 0.1529 0.0911
wine 0.0183 0.0158 0.01420.0191 0.1268 0.0503 0.0213 0.0407 0.0191 0.0255
zoo 0.0612 0.0652 0.0630 0.0860 0.1415 0.0991 0.0568 0.04060.0860 0.0877
average 0.2129 0.2179 0.2142 0.2475 0.2644 0.2547 0.2745 0.2415 0.2354 0.2292

Table 9: Mean squared errors of different algorithms based on 10-fold cross-validation done twice.
The bottom row gives the average squared errors. Best results are underlined.

method is an open problem. In contrast, the bias of selective BMA over modelsthat are chosen
randomly is low. However, the variance of selective BMA over models that are chosen randomly is
likely to be much larger than the variance of selective BMA over models chosen by the instance-
specific method which is constrained to prefer models that are good fit to the training data. The
results here support that as a practical matter ISMB is attaining a good balance between bias and
variance.

The experimental work presented in this paper is a first step in exploring theutility of the
instance-specific framework, and several directions of future work are possible. The computation
of the phase 2 score (see Equation 14) requires a dissimilarity metric to compare the predictive
distributions of the target variable in candidate MB structures. The current implementation of the
ISMB algorithm uses KL divergence as the dissimilarity metric. The experimental results indicate
that KL divergence optimizes most logarithmic loss and the largest improvementin performance is
observed on this measure. Alternative dissimilarity metrics that may optimize other performance
measures are worth exploring.
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.0470 0.0459 0.0454 0.0775 0.0463 0.04400.0526 0.1423 0.0817 0.0454
breast-cancer 0.0146 0.0146 0.0144 0.0200 0.0261 0.0155 0.01140.0299 0.0200 0.0210
cleveland 0.0497 0.0630 0.0569 0.0930 0.0690 0.02950.0432 0.1543 0.0930 0.0632
corral 0.0583 0.0656 0.0561 0.0470 0.0505 0.0473 0.0162 0.01150.0368 0.0516
crx 0.0452 0.0518 0.0503 0.0711 0.0440 0.03940.0722 0.1354 0.0689 0.0430
diabetes 0.0403 0.0401 0.0411 0.0618 0.0633 0.0433 0.0813 0.0662 0.0590 0.0400
flare 0.0551 0.0546 0.0562 0.1260 0.0467 0.0414 0.0762 0.1000 0.0707 0.0404
german 0.0684 0.0696 0.0699 0.0625 0.1038 0.05040.0547 0.2363 0.0645 0.0942
glass2 0.0359 0.0395 0.0373 0.0644 0.0386 0.03220.0482 0.0561 0.0569 0.0349
glass 0.0188 0.0189 0.01860.0282 0.0223 0.0262 0.0258 0.0246 0.0241 0.0232
heart 0.0498 0.0585 0.0513 0.0913 0.0641 0.03210.0624 0.1385 0.0913 0.0524
hepatitis 0.0422 0.0294 0.0381 0.0488 0.0306 0.0462 0.01970.0492 0.0466 0.0288
iris 0.0110 0.0115 0.0114 0.0132 0.0188 0.0142 0.0219 0.0205 0.0132 0.0144
lymphography 0.0226 0.0259 0.0256 0.0326 0.0279 0.0863 0.0272 0.0512 0.0359 0.0269
pima 0.0532 0.0539 0.0539 0.0596 0.0660 0.04440.0960 0.0805 0.0586 0.0588
postoperative 0.0404 0.0358 0.0438 0.0436 0.0450 0.0707 0.0844 0.1175 0.0436 0.0430
sonar 0.0437 0.0656 0.0643 0.1042 0.0591 0.0814 0.0503 0.1336 0.1045 0.0535
vehicle 0.0479 0.0481 0.0480 0.1272 0.0654 0.0632 0.0567 0.0984 0.0690 0.0543
vote 0.0247 0.0285 0.0306 0.0722 0.02270.0520 0.0603 0.0346 0.0658 0.0235
wine 0.0062 0.0043 0.0054 0.0083 0.0247 0.0154 0.0256 0.0133 0.0083 0.0103
zoo 0.0065 0.0067 0.0069 0.0078 0.0094 0.0055 0.00290.0075 0.0078 0.0067
average 0.0372 0.0396 0.0393 0.0600 0.0450 0.0419 0.0471 0.0810 0.0533 0.0395

Table 10: Mean CAL scores of different algorithms based on 10-fold cross-validation done twice.
The bottom row gives the average CAL scores. Best results are underlined.

Performance ISMB- NISMB NB DT LR NN kNN LBR AB
measure MS
Misclassification -2.338 -0.776 -2.121 -2.070 -1.181 -3.861 -0.825 -0.368 -1.720
error 0.019 0.438 0.034 0.038 0.238 <0.001 0.409 0.713 0.085
AUC -2.085 -1.257 -1.511 -4.457 -2.197 -4.029 -4.203 -0.927 -3.198

0.037 0.209 0.131 0.001 0.028 0.001 0.001 0.354 0.001
Logarithmic -3.595 -2.426 -4.280 -4.457 -3.340 -4.254 -4.026 -4.051 -3.215
loss 0.001 0.015 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Squared error -3.608 -2.313 -3.975 -3.24 -2.121 -4.127 -3.518 -3.213 -2.839

0.001 0.021 0.001 0.001 0.034 0.001 0.001 0.001 0.005
CAL score -2.032 -1.867 -4.026 -2.806 -0.063 -4.076 -1.892 -3.543 -1.443

0.042 0.062 0.001 0.005 0.949 0.001 0.058 0.001 0.149

Table 11: Two-sided Wilcoxon paired-samples signed ranks test comparing the performance of
ISMB with other algorithms. For each performance measure the number on topis the
Z statistic and the number at the bottom is the corresponding p-value. The Z statistic is
negative when ISMB has a lower score on a performance measure than the competing
algorithm. On all measures, a negative Z statistic indicates better performanceby ISMB.
Underlined results indicate p-values of 0.05 or smaller.
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Performance ISMB- NISMB NB DT LR NN kNN LBR AB
measure MS
Misclassification -0.004 -0.001 -0.021 -0.013 -0.012 -0.019 -0.005 -0.007 -0.003
error 0.077 0.312 0.014 0.021 0.065 <0.001 0.334 0.289 0.258
AUC -0.001 -0.002 -0.001 -0.104 -0.017 -0.032 -0.023 -0.001 -0.020

0.077 0.242 0.975 <0.001 0.022 <0.001 <0.001 0.932 0.001
Logarithmic -0.009 -0.004 -0.163 -0.211 -0.215 -0.306 -0.140 -0.071 -0.103
loss 0.001 0.026 0.005 <0.001 0.006 <0.001 <0.001 <0.001 0.002
Squared error -0.004 -0.001 -0.044 -0.044 -0.034 -0.062 -0.023 -0.019 -0.016

0.003 0.054 0.002 <0.001 0.009 0.002 <0.001 0.017 0.007
CAL score -0.003 -0.002 -0.033 -0.011 -0.003 -0.047 -0.008 -0.016 -0.002

0.044 0.058 <0.001 0.018 0.441 <0.001 0.079 0.001 0.237

Table 12: Two-sided paired-samples t test comparing the performance ofISMB with other algo-
rithms. For each performance measure the number on top is the mean difference between
ISMB and the indicated algorithm and the number at the bottom is the corresponding
p-value. The mean difference is negative when ISMB has a lower scoreon a performance
measure than the competing algorithm. On all measures, a negative mean difference
indicates better performance by ISMB. Underlined results indicate p-values of 0.05 or
smaller.

Algorithm Average running time
NB < 1 second
DT < 1 second
LR < 1 second
NN < 1 second
kNN < 1 second
LBR ≈ 1 second
AB < 1 second
ISMB ≈ 2 minutes

Table 13: Approximate running times of the various algorithms. For each algorithm, the time
shown is the average running time over all the UCI data sets. For the instance-specific
algorithms LBR and ISMB the reported running time is for a single test instance,while
for the other algorithms the reported running time is over all test instances.
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