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Abstract 

Kutat61 is a system that takes as input a 
database of cases and produces a belief net­
work that captures many of the dependence 
relations represented by those data. This 
system incorporates a module for determining 
the entropy of a belief network and a module 
for constructing belief networks based on 
entropy calculations. Kutat6 constructs an 
initial belief network in which all variables 
in the database are assumed to be marginally 
independent. The entropy of this belief net­
work is calculated, and that arc is added 
that minimizes the entropy of the resulting 
belief network. Conditional probabilities for 
an arc are obtained directly from the data­
base. This process continues until an entropy­
based threshold is reached. We have tested 
the system by generating databases from net­
works using the probabilistic logic-sampling 
method, and then using those databases as 
input to Kutat6. The system consistently 
reproduces the original belief networks with 
high fidelity. 

1. Introduction 

Computer-based information processing 
has changed dramatically since the construc­
tion of the first computers. From its inception 
as an arithmetic discipline, the field has 
evolved to provide sophisticated means for 
increasing our understanding of nature. This 
evolution has been made possible by the 
availability of increasingly sophisticated 
hardware and software, and has been driven 
by the rapid growth of information from 

1 Kutat6 means "explorer" or "investigator" 
in Hungarian. 

experiments. Data are being generated so 
rapidly in some fields that manual or even 
semiautomated methods of data analysis 
cannot keep pace, resulting in databases that 
remain unexplored. 

Researchers have explored databases for 
several reasons, most notably to discover and 
to validate knowledge [Walker, 1990]; here, 
we focus on the automated or semiautomated 
construction of probabilistic expert systems, a 
form of knowledge discovery. In particular, 
we address the problem of constructing a 
Bayesian belief network, herein referred to 
as a belief network, from a database. We 
direct the reader to [Cooper, 1989; Horvitz, 
1988] for introductions to belief networks and 
their relation to other expert-system para­
digms; to [Ross, 1984] and to [Jaynes, 1982; 
Levine, 1978] for introductions to the concepts 
of entropy and maximum entropy, respec­
tively; to [Cohen, 1982; Michalski, 1983; 
Michalski, 1986] for discussions of machine 
learning based on artificial-intelligence 
techniques; to [Glymour, 1987] for an analysis 
of the determination of causal structure based 
on statistical methods; and to [Breiman, 1984] 
for a discussion of discovering associations 
among variables by recursive partitioning of 
a data set. 

Many of the numerical algorithms for 
database exploration have their roots in 
information theory; in particular, they share 
a foundation on the principle of maximum 
entropy [Jaynes, 1982]; the entropy of a 
distribution is calculated using the equation 

H=-'IPi logPi. 
where Pi corresponds to an element in the 

full joint distribution (there would be 2n terms 
for a distribution based on n binary 



variables). The maximum-entropy principle 
is invoked when there is insufficient infor­
mation to determine a full joint distribution 
unambiguously. The principle states that, in 
the absence of prior information about the 
distribution, by choosing the full joint distri­
bution that has maximum entropy given the 
information at hand, we guarantee that 
probabilities derived from the resulting dis­
tribution will have no bias. This result is 
unique to the principle of maximum entropy; 
imposing any other constraints (such as that 
of a particular distribution class) on the data 
may introduce biases. 

From the perspective of reconstructing a 
probability distribution from a database, 
researchers have employed the principle of 
maximum entropy by treating the cases in a 
database as constraints on an underlying dis­
tribution; since most databases have far 
fewer cases than elements in the correspond­
ing full joint distribution, the latter is 
severely underconstrained. Algorithms using 
this principle return a list of probabilities 
from the database that, taken together, rep­
resent all the interdependence in the underly­
ing full joint distribution; that is, any proba­
bilities in the full joint distribution not in the 
list may be calculated from those in the list, 
since the list is assumed to capture all signifi­
cant dependencies among variables. For ex­
ample, if the list consisted solely of first­
order probabilities, all higher-order proba­
bilities could be calculated as products of 
these first-order probabilities. In addition to 
its use in estimating distributions, entropy 
calculation has been used to perform proba­
bilistic inference [Wen, 1988] and to generate 
production rules from a database [Chan, 1989; 
Cheeseman, 1983; Gevarter, 1986; Goodman, 
1989]. 

Researchers first used entropy-based 
methods for database exploration . as a 
byproduct of investigating the more general 
problem of generating a parsimonious proba­
bility distribution that best approximates a 
known underlying distribution. Lewis [Lewis 
II, 1959] described an algorithm for approxi­
mating an nth-order binary distribution as a 
product of lower-order distributions, based on 
the closeness metric: 

2"-1 p. 
lp.p= }:.Pjln-!-, 

j•O p j 
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which is also known as the Kullback-Liebler 
cross-entropy measure [Kullback, 1951]. This 
number is 0 if and only if the two distributions 
P and P' are identical; otherwise, it is posi­
tive. The algorithm searches a strongly 
restricted subset of possible approximating 
distributions P' (those that have the same 
lower-order joint probabilities as those of the 
true distribution P), and chooses the distribu­
tion that minimizes the closeness metric. 

Chow and Liu [Chow, 1968] considered 
the approximation of an nth-order distribu­
tion with n - 1 second-order distributions, 
using Lewis' closeness metric. In this algo-

rithm only {�) numbers need to be deter­

mined; they correspond to pairwise associa­
tions, and are added incrementally until the 
n - 1 strongest have been included, at which 
time the program terminates. Although this 
algorithm is relatively efficient computa­
tionally, it is highly restricted in that only 
those approximating distributions composed 
of second-order probabilities are considered. 

Ku and Kullback [Ku, 1969] generalized 
Chow and Liu's algorithm, allowing any 
lower-order marginal distributions to be used 
in approximating an nth-order distribution. 
A convergent iterative formula is used to 
determine the distribution given a set of 
lower-order marginal constraints. As ex­
pected, the algorithm converges on increas­
ingly accurate approximations as the order of 
the marginal distributions is increased; this 
accuracy is obtained at the cost of running 
times and data requirements that are expo­
nential in the order of the approximating dis­
tribution, as each element of that distribution 
must be estimated with the convergent itera­
tive algorithm. 

An algorithm developed by Cheeseman 
[Cheeseman, 1983] and augmented by 
Gevarter [Gevarter, 1986] maximizes the 
entropy of a distribution given only first­
order constraints obtained from data. The 
algorithm searches for significant constraints 
heuristically, in contrast to the iterative, 
exhaustive methods used by previous 
workers. A significance test is employed to 
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determine whether the second-order proba­
bilities derived from the database are signif­
icantly different from those obtained from 
the maximum-entropy distribution. If they 
are, the most extreme deviant (itself a sec­
ond-order probability) is added to the set of 
constraints, and an enhanced maximum­
entropy distribution is computed. This pro­
cess continues until no further second-order 
constraints are significant; the algorithm 
then continues to test third- and higher-order 
constraints until there remain no statistically 
significant differences between the distribu­
tion computed from maximum-entropy consid­
erations and that derived from the database. 
In summary, this procedure represents a 
myopic search progressing from the lowest­
order constraints to the highest-order con­
straints embodied in the database, and uses a 
significance test at each step to determine 
whether any probabilities in the database 
are different from their expected values 
given the constraints already found. 

Because the general methods of Ku and 
Kullback and of Cheeseman and Gevarter 
rely on iterative algorithms and have run­
ning times that are exponential in the order 
of the approximating distribution, re­
searchers sought to bring other computational 
techniques to bear on the problem of con­
structing a probabilistic expert system from 
data. Pearl [Pearl, 1988) discussed the 
separation of what he called structure learn­
ing, determining a dependency model for a 
probability distribution, and parameter 
learning, determining the probabilities that 
complete that model. From this perspective, 
the algorithm developed by Chow and Liu 
returns a dependence tree, which is a span­
ning tree representing all significant pairwise 
correlations among variables, and a set of sec­
ond-order probabilities for each (undirected) 
arc in that tree. Pearl also described a 
method whereby a polytree could be extract­
ed from a probability distribution using cal­
culations similar to those specified by Chow 
and Liu in addition to partial structure deter­
minations based on tests of conditional 
independence. This algorithm, although 
more general than that described by Chow 
and Liu, is not guaranteed to find the best 
polytree-based approximation to an arbi-

trary distribution; furthermore, the algo­
rithm cannot return nontree structures. 
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Extending the distinction between struc­
ture and parameter learning, Spiegelhalter 
and Lauritzen [Spiegelhalter, 1989] main­
tained that structure learning should occur 
only in the presence of a domain expert, and 
described a method for using data to update 
the conditional probabilities in a belief net­
work whose structure has been specified by an 
expert. The method is based on local- and 
global-independence assumptions; the former 
allows the algorithm to individually para­
meterize each particular conditional-prob­
ability distribution for a node given a 
particular instantiation of its parents, and 
the latter allows the algorithm to compute 
the belief network's distribution as the prod­
uct of the distributions for each node. The 
authors use a Dirichlet distribution to 
parameterize the conditional-probability 
distributions parsimoniously and to provide a 
basis for locally updating these conditional­
probability functions via approximations to 
the resulting finite-mixture distributions. 
The strong independence assumptions and 
updating heuristics allow incremental updat­
ing of the conditional probabilities (that is, 
on a case-by-case basis), at the cost of main­
taining the network structure constant over 
time, and with the restriction that these 
techniques be applied only to domains that 
manifest global and local independence. 

In contrast to the approach of 
Spiegelhalter and Lauritzen regarding auto­
mated parameter determination, Srinivas, 
Russell, and Agogino [Srinivas, 1989] posited 
that a system that can learn structure from 
data or other constraints might alleviate the 
knowledge-acquisition bottleneck. They 
developed an algorithm that takes as input 
some qualitative information from an expert 
about the dependencies in the domain, and 
returns a belief network incorporating these 
constraints. No attempt is made to use data 
to compute conditional probabilities; only the 
structure is determined. The expert-derived 
information about a variable or set of vari­
ables may be stated in any one of four forms: 

• A variable X is a root node, or hypothesis 
variable 



• A variable X is a leaf node, or evidence 
variable 

• A variable X is a direct predecessor, or 
parent, of Y (that is, X causes Y) 

• Variable sets X and Y are conditionally 
independent given set Z 

The algorithm applies a priority heuristic to 
each node, adding hypotheses, causes, 
effects, and evidence nodes to the nascent 
belief network in that order; it breaks ties by 
adding the node that would bring with it the 
fewest arcs. This process continues until all 
nodes have been added to the network. The 
algorithm's computational complexity is 
exponential in the number of nodes, does not 
use data, and does not compute conditional 
probabilities, although in principle the last 
two issues could be addressed with extensions 
to the algorithm. 

2. The Kutat6 Algorithm 

We have developed an algorithm, called 
Kutat6, that, given a database, returns a 
belief network. Kutat6 determines the net­
work's structure by beginning with the 
assumption of marginal independence among 
all variables, and by adding the arc that 
maintains acyclicity and results in a belief 
network with minimal entropy. We attempt 
to minimize entropy since we are approaching 
the maximum-entropy distribution from 
above. The arc-addition step represents an 
attempt to find the association that most 
strongly constrains the ensuing distribution. 
As an arc is added, the database is used to 
update the conditional-probability distribu­
tion for the node at the head of the new arc. 
Arcs are added in this manner until a thresh­
old is reached in the rate of decrease of the 
entropy between two successive networks. 
Consider an n-node model; since any two nodes 
may in principle be associated, O(n2) arcs are 
considered before the best one to add (if any) 
is chosen; further, since in principle all these 
associations may be found to be significant, 
this cycle is repeated 0(n2) times, resulting in 
a complexity (not including entropy calcula­
tions) of 0(n4). 

Directions of arcs are dictated by a total 
order on variables in the database, although 
the alternative of having the algorithm 
choose arc directions based on entropy mini-
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mization is also available to the user. 
Kutat6 obtains the total order from a domain 
expert by having him answer the question, 
"For the two variables A and B, which one 
cannot cause the other?" for each pair of 
variables (A, B) in the database. (If the 
answer is not known, a random order may be 
assigned.) This procedure obviates complex 
reasoning about causality, results in a more 
intuitively appearing belief network, and 
provides a relatively simple and efficient 
method for obtaining rudimentary causal 
knowledge; yet, it is not required. Indeed, the 
user might supply an order resulting in a more 
highly connected network than would have 
resulted without any causal information. 
Thus, in some cases, there may be a tradeoff 
between choosing the directions of the arcs 
and decreasing the interconnectedness of the 
final network. 

2.1 The Entropy-Computation Algorithm 

Given that inference in belief networks is 
NP-hard [Cooper, 1987], it is not surprising to 
find that the problem of determining the 
entropy of an arbitrary probability distribu­
tion is NP-Hard [Cooper, 1990a]. Just as other 
workers have exploited the principle of con­
ditional independence to increase greatly the 
efficiency of inference, we have developed an 
algorithm that exploits the conditional 
independence embodied in a belief network to 
compute its distribution's entropy. Using this 
algorithm is much more efficient than is 
summing over the full joint distribution, 
which makes this project feasible. As dis­
cussed in Section 2, in the worst cases, the 
entropy calculations must be performed 0(n4> 
times, thus making the overall complexity of 
Kutat6 0(n4 2"). We emphasize that this 
upper bound on complexity represents the 
worst case, wherein each node is directly con­
nected to every other node. We expect many 
realistic models to be sparsely connected, and 
indeed, this has been our experience. 

The formula for calculating the entropy 
of a distribution represented by a belief net­
work is based on the concept of conditional 
entropy [Ross, 1984]. Let U be the set of nodes 
in a belief network BN; for any node X E U, 
let llx be the set of its parents (direct prede­
cessors}, and let 1rx be a particular instantia-
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tion of the parents of X. The entropy of the 
distribution represented by BN is 

H BN = L, L,P(flx= trx) H Xlnx' 
Xe U nx 

where 

Hxlnx=LP(X=x lllx•nx) lnP(X=x lllx=nx). 
" 

These formulas state that we can calcu-
late the entropy of a distribution represented 
by a belief network by weighting each node's 
conditional entropy given a particular instan­
tiation of that node's parents by the joint 
probability of the parents' assuming those 
values. We implemented a modified version 
of this formula using Cooper's recursive 
decomposition algorithm [Cooper, 1990b]. 
With this implementation, we can compute 
the entropy of ALARM [Beinlich, 1989]-a 
belief network with 37 nodes, 46 arcs, and 
approximately 1017 elements in its joinf dis­
tribution-in less than 10 seconds. Con­
ditional independence provides the computa­
tional leverage that allows this calculation 
to be performed efficiently. 

2.2 The Significance Test 

Each cycle of the algorithm yields a set 
of O(n2) entropy measures corresponding to 
the individual additions of each possible 
remaining arc. A function is needed as a 
means of determining the best arc to add, or 
whether the program should halt. We chose 
to test for significance using the change in 
entropy of the underlying distribution, 
because entropy is sensitive to bias, and 
because we can formulate a straightforward 
significance test based on entropy changes, as 
shown in (Jaynes, 1982]. Jaynes demonstrated 
that the test statistic 2NL1H, where N is the 
number of cases used to update the network, 
and tJ.H is the difference in entropy that 
results from adding an arc to the network, is 

asymptotically (as N � oo) distributed as 
chi-squared. We can use this result in con­
structing a significance test. 

For each arc considered during a cycle of 
the algorithm, we compute the probability 
that the distribution represented by the 
belief network including the arc is the same 
as the distribution of that network without 
the arc. Computing the entropy difference 
between the two networks, we can employ a 
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chi-squared test with the appropriate 
degrees of freedom. We then have, for each 
arc, a probability that that arc's addition 
makes no difference in the underlying distri­
butions; this result corresponds to conditional 
independence. By choosing the arc with the 
lowest probability of manifesting conditional 
independence, we maximize the probability 
that this arc should be added to the belief 
network. 

2.3 The Dirichlet Distribution 

Any classification or exploration system 
must have a method for managing incomplete 
information. In particular, systems that 
examine databases for interdependence 
among variables are plagued by the problem 
of overfitting of the data. For example, a 
data set could be partitioned into so many 
elements that each unique case is grouped 
alone; this result is equivalent to maintaining 
the full joint distribution, which is unwieldy. 
Furthermore, in some sense, overclassification 
can be viewed as an algorithm's overconfi­
dence in how well the data represent the 
underlying distribution. Most databases 
have far fewer cases than they have ele­
ments in the corresponding full joint distribu­
tion, so this distribution is severely undercon­
strained. Here is another case where the 
maximum-entropy principle could be em­
ployed, yet it is prohibitively expensive 
computationally to compute the entropy of a 
database. It would be much more convenient 
to compute the entropy of a belief network 
derived from a database. 

As an alternative, we can consider the 
database to represent a sample from an 
infinitely exchangeable multinomial se­
quence; we can then use symmetric Dirichlet 
prior probabilities for computing conditional 
probabilities [Zabell, 1982]. In particular, for 
node X having V x values, parents llx, and 
considering a particular instantiation of 
those parents trx, we compute the correspond­
ing conditional probability with the follow­
ing formula: 

) 
C(X=x,llx= trx)+ 1 P(X=x I llx= nx = c(n l v , x=nx + x 

where C(«l») is the number of cases that match 
the instantiated set of variables «1». 



The use of such prior probabilities 
addresses several problems. When we are 
attempting to determine the conditional 
probabilities for an arc that is not repre­
sented in the database, the principle of max­
imum entropy, if applied locally, would gen­
erate a uniform distribution for these condi­
tional probabilities; this result also follows 
when we use the Dirichlet distribution. In 
addition, this method allows Kutat6 to han­
dle incomplete data. Only those cases that 
can update the conditional-probability table 
are used; if none exist, a default uniform dis­
tribution results. Using Dirichlet prior prob­
abilities further results in a natural halt to 
overspecification: When a uniform condi­
tional-probability distribution is generated 
(due to an absence of relevant cases), the 
entropy of the belief network will rise, lead­
ing to prompt rejection of the corresponding 
arc. Indeed, this effect is also observed when 
the number of relevant cases is small, since 
the resulting distribution will still be 
approximately uniform. 

3. lles�ts2 

We tested Kutat6 by acquiring a belief 
network, generating a database of cases with 
the probabilistic logic-sampling method 
[Henrion, 1988], and then using that database 
as input to Kutat6. The first belief network 
tested was MCBNl, a binary network of five 
nodes and five arcs (see Figure 1); its full joint 
distribution thus has 32 elements, and the 
probabilities in that distribution range from 
0.00024 to 0.46656. Because this distribution 
has few elements, we were able to test the 
Kutat6 with the exact full joint distribution, 
the equivalent of an infinite database, 
instead of data. Kutat6 returned MCBNl 
exactly, in 13 seconds. We then used logic 
sampling to generate a database of 1000 com­
plete cases. Kutat6 generated MCBN1 's 
structure exactly in less than 1 minute (two­
thirds of this time was spent reading the 
database), and all of the conditional proba­
bilities (ranging from 0.1 to 0.9) were accurate 
to within 0.04. 

2 The software was implemented and 
evaluated on a Macintosh II using 
Lightspeed Pascal v. 2.0. 
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Figure 1 The MCBNI binary belief network, 
with five nodes and five arcs. 

We next tested the ALARM belief network 
(see Figure 2), using a database of 10,000 com­
plete cases. The resulting network was gener­
ated in approximately 22.5 hours (one-fourth 
of which was spent reading the database); it 
is shown in Figure 3. The program added 46 
arcs before halting (the original version of 
ALARM also has 46 arcs). Two arcs of 46 were 
missing, and two extra arcs were added. 

4. Future llesearch 

We will apply Kutat6 to a series of 
databases in a variety of domains. We also 
will investigate the system's behavior in the 
face of increasingly sparse data. Several 
other possible extensions to this work include: 
• 

• 

• 

• 

A probabilistic reformulation of this 
work. One such algorithm, K2, has been 
developed by Cooper, and is being inves­
tigated by the authors. Preliminary 
results indicate that, compared to 
Kutat6, this algorithm runs faster and is 
more robust to noise. 
A version of K2 based on continuous dis­
tributions. A version based on the multi­
variate Gaussian distribution would com­
plement Shachter's work on Gaussian 
influence diagrams [Shachter, 1989]. 
Modifications of the greedy search used 
for arc addition. For example, several 
arcs could be added at a time, or arcs 
could be deleted. 
Development of a template for temporal 
models. Variables could be modeled dur­
ing several discrete time periods to 
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Figure 2 The ALARM belief network, with 37 nodes and 46 arcs. 

Figure 3 The ALARM network generated by Kutat6 from a lO,DOO-case database. The arcs from 
node 21 to node 31 and from node 12 to node 32 are missing, and extra arcs (bold) from 
node 15 to node 34 and from node 22 to node 24 have been added. 

• 

determine time-lagged probabilistic 
associations among variables. 
Delineation of a constraint language. It 
should be capable of expressing expert­
derived constraints on relationships 
among variables in the database. This 
language would greatly extend the sys­
tem's expressiveness beyond the current 
total order used to determine the 
direction of arcs. 1<2, unlike Kutat6, can 
incorporate prior probabilities over pos­
sible networks; thus, we will apply this 
language to K2. 

5. Conclusion 

Kutat6 is an efficient system for approx­
imating the maximum-entropy distribution of 
a database. It is applicable in the presence of 
missing data, noisy data (such as those 
obtained from probabilistic logic-sampling), 
and immense joint-probability spaces. The 
algorithm makes use of the conditional inde­
pendence manifested in a belief network to 
streamline computation, enabling us to run the 
program on readily available hardware. A 
new, probabilistic version of this algorithm 
show even greater promise for constructing 
probabilistic networks from data. 
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