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SUMMARY

The objective of this report is to provide a basis to inform decisions about priorities for developing statistical
research initiatives in the field of public health surveillance for emerging threats. Rapid information
system advances have created a vast opportunity of secondary data sources for information to enhance the
situational and health status awareness of populations. While the field of medical informatics and initiatives
to standardize healthcare-seeking encounter records continue accelerating, it is necessary to adapt analytic
and statistical methodologies to mature in sync with sibling information science technologies. One major
right-of-passage for statistical inference is to advance the optimal application of analytic methodologies for
using multiple data streams in detecting and characterizing public health population events of importance.
This report first describes the problem in general and the data context, then delineates more specifically
the practical nature of the problem and the related issues. Approaches currently applied to data with
time-series, statistical process control and traditional inference concepts are described with examples in
the section on Statistics and the Role of the Analytic Surveillance Data Monitor. These are the techniques
that are providing substance to surveillance professionals and enabling use of multiple data streams. The
next section describes use of a more complex approach that takes temporal as well as spatial dimensions
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into consideration for detection and situational awareness regarding event distributions. The space–time
statistic has successfully been used to detect and track public health events of interest. Important research
questions which are summarized at the end of this report are described in more detail with respect to
the methodological application in the respective sections. This was thought to help elucidate the research
requirements as summarized later in the report. Following the description of the space–time scan statistical
application; this report extends to a less traditional area of promise given what has been observed in recent
application of analytic methods. Bayesian networks (BNs) represent a conceptual step with advantages of
flexibility for the public health surveillance community. Progression from traditional to the more extending
statistical concepts in the context of the dynamic status quo of responsibility and challenge, leads to a
conclusion consisting of categorical research needs. The report is structured by design to inform judgment
about how to build on practical systems to achieve better analytic outcomes for public health surveillance.
There are references to research issues throughout the sections with a summarization at the end, which
also includes items previously unmentioned in the report. Copyright q 2007 John Wiley & Sons, Ltd.

KEY WORDS: applied statistics; public health bioterrorism surveillance; multiple data streams;
biosurveillance

INTRODUCTION

A variety of analytic approaches have arisen and are in use for performing bioterrorism (BT)
surveillance using social and other public health indicators from various types of data (e.g. pre-
diagnostic/chief complaint ambulatory care encounters, nurse call line data, laboratory test orders,
over-the-counter (OTC) sales, absenteeism, Emergency Department (ED) discharge summaries,
prescription pharmaceutical sales, 911-emergency calls, etc.). The value of data anomaly investi-
gation and signal detection as technologies in surveillance can be enhanced by more formalized
application of data pre-processing methods and applied probabilistic decision science concepts
and principles. A full characterization of the usefulness as well as corresponding development
of analytic methods for exploiting opportunistic data are rich areas for research, especially in
the context of information system integration. The specific focus of this report is on the analytic
surveillance component where multiple sources of data are utilized to assess the health-related
temporal and geographic status of human health risk. The purpose of the report is to provide (1)
an overview of the problems, (2) a detailed view of current practices in operation, (3) evolving
application areas of promise, and (4) to identify priority topics for a research agenda to address
this area of application.§

Data issues

Data sources in use, or those which may potentially be used, for public health surveillance range in
ability to indicate population events; early or otherwise [1]. There have been attempts to characterize
their relative value generally along the lines of timeliness and for their ability to accurately represent
true population events and generally provide for actionable situational awareness [2–7]. There are

§The concept for this report was promulgated by the Working Group on Adverse Event and Disease
Reporting, Surveillance and Analysis (http://dimacs.rutgers.edu/Workshops/AdverseEvent/index.html), which
was formed as part of a five-year Special Focus on Computational and Mathematical Epidemiology
(http://dimacs.rutgers.edu/SpecialYears/2002 Epid/) at the Center for Discrete Mathematics and Theoretical Com-
puter Science (http://dimacs.rutgers.edu/). A subgroup of participants from the Working Group constitutes the
author list.
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many other considerations which are not characteristics of the data per se, but which are related
and must be addressed in order to operationally make practical use of data in real time. Those
considerations are important criteria for making policy decisions for system development but
are situational so will be included here in general but will not be specifically addressed. These
include:

• Cost.
• What data one already has (relative coverage for geography, demographics, etc.).
• Implementation feasibility (given one’s information technology infrastructure, staffing capa-
bilities, political factors, administrative and other logistical factors, etc.).

• Privacy/confidentiality factors.

For the sake of the statistical focus of this report, the main criteria for data under consideration
will be their ability to (1) detect events of importance early, (2) provide for situational awareness
including post-event dynamic characterization of health impact and (3) enable surveillance capa-
bilities for other public health purposes during periods when there is no BT. The interdependency
of analytic approaches with data characteristics is fully acknowledged.

Data analytic issues

Particular data factors that are directly associated with the utility of surveillance operations and
may be addressed or at least accounted for through creative analytic approaches are ‘data lag’,
‘time alignment’ and the ‘unlinked data source’ problem. The data lag time can be operationally
described as (1) the average time between a population event (e.g. patient encounter or some
other health-seeking behavioural event) and the event’s data representation in an analytic system
interface or (2) the proportion of data available at the time a decision is needed (versus at some
later time). ‘Time alignment’ refers to the differential health-seeking behaviour times relevant for
various data sources that may be available in one analytic system. For example, if one were able
to view time series signals in response to a population exposure that caused illness, it may appear
earlier in time for OTC sales data than for ED data. The reasoning is that people generally purchase
products for self-treatment before symptoms would be severe enough to warrant a trip to the ED.
There is little evidence for behavioural response staging patterns to becoming ill.

The unlinked data source problem is an issue for the secondary use of data sources when record
linkage is either not possible or is avoided for other reasons. Given that much of the data used in
automated surveillance are gathered for some other purpose (e.g. treating patients, billing, market
analysis, inventory) and that protecting individual confidentiality is a motive, broad linkage of
records is not generally feasible. Therefore, the extent of information overlap is unknown across
data streams. For example, if a system uses OTC, ED and laboratory test order data, it is not
known to what extent the same people and their reactions to illness are manifest in the different
sources.

This is a small subset of the issues that motivate needed research in order to more fully
take advantage of secondary data sources for surveillance. These data have been referred to as
opportunistic to emphasize that they are used for a purpose other than the original intent of their
collection. There is no sampling design that explicitly defines the relationship between the data
and the population that they represent. Therefore, the basis for quantifying inferential conclu-
sions using probability concepts is more challenging than, for example, when using sample survey
data or data resulting from an experimental design. In contrast, the application of statistical and
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other analytical approaches is empirical with modern surveillance data. Refinement of method-
ologies is more dependent on applied experience with data based on creative new applications of
statistical theory and concepts. In operational practice, the analytic data monitor in near real time
surveillance in an empirical system is employing a multitude of deductive procedures (e.g. to
rule out perceived aberrations in expected patterns that may only be indicative of data processing,
coding or transmission artefacts) and inductive methodologies (e.g. to enable probabilistic deci-
sions for responding to potential threats to the public). Methodologies, techniques and tools that
can incorporate both types of reasoning are needed. In addition, the methodologies would best be
adaptable to evolving surveillance requirements for standardization at least in concept. That way,
if ‘small areas’ have differential requirements, standardized concepts could be common ground for
combining information across jurisdictions for ‘large areas’. Designed flexibility for surveillance
system development as a goal is important not only for the front end of data systems, but also for
the analytic side.

A characterization of the research needed in order for efficient multiple data stream analytic
exploitation for surveillance utility cannot be properly addressed in isolation from the context in
which it is translated into practice. To say that we need to get from point A to point B is not
complete. We also need to know what size steps to take. We know that we would like to take
fuller advantage of available data and prior information. The methods for accomplishing this must
be compatible with the public health community’s needs and ability to adapt. Communication
and interaction between subject matter experts and methodologists is a major success factor for
accomplishing this goal.

STATISTICS AND THE ROLE OF THE ANALYTIC SURVEILLANCE DATA MONITOR

The growing availability of data streams for biosurveillance requires corresponding growth in
methodologies to analyse them. Analytic data monitors examine these data on a daily basis at
all levels of public health. In 2005, the job descriptions and protocols of these monitors are still
being established [8, 9]. Investigation of statistical anomalies beyond the database level is labour-
intensive and time-consuming [10]. A multiplicity of data sources has appeal because consistent
evidence may be employed to suggest inferential accuracy. In practice, however, multiple data
sources can be contradictory. Plate 1 shows time series plots of syndromic data taken from a large
Maryland county leading into the influenza season of 2004.

The data sources represented were counts of respiratory diagnoses from visits to civilian physi-
cian offices (‘Office Visits (OV)’), military clinic visits (‘MILITARY’), hospital emergency depart-
ments (‘ED-UI’ and ‘ED ILI’), and sales of related OTC remedies (‘OTC’). Retrospectively, there
was a sharp rise in respiratory illness, confirmed by positive laboratory influenza tests, beginning
in late November 2003. Public health status in preceding weeks was less clear. The September
increase in OTC sales and in civilian OV was not reflected in the other data streams. Sporadic in-
fluenza cases were documented in October and early November, but for those weeks, the illustrated
increases in the clinical data streams were gradual.

Decision requirements for the prospective analytic data monitor involve when and how deeply
to investigate a data anomaly as well as when to escalate the information (as an alert) for
action. Unambiguous, corroborated data spikes are the exception rather than the rule. For sin-
gle data streams, univariate algorithms employ data modelling and hypothesis tests to provide
systematic signal escalation protocols. In the multivariate data environment, the statistical decision
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requirements of the analytic data monitor also include: (1) which combinations of data sources
to test, (2) which algorithms to use with respect to characteristics of the data background, (3)
how to achieve sensitivity over many locations within manageable false alert rate frequency, and
(4) how much corroboration among data streams is required to achieve a threshold for escalating
the information. The following paragraphs describe an approach for adapting multivariate testing
methodologies from other disciplines to meet these requirements.

The parallel and consensus analytic monitoring problems

In a classical hypothesis test, values of an observed quantity are treated as realizations of a random
variable, and the null hypothesis is that this variable satisfies membership in an assumed distribution.
A test statistic is computed from the observed values. The mean or some other property of the
assumed distribution is used to calculate the probability, or p-value, of randomly occurring values
at least as unlikely as those observed. The null hypothesis is rejected if this p-value falls below
a predetermined threshold �. In the current applied biosurveillance context, the null hypothesis is
generally assumed to be the absence of a disease outbreak. An outbreak is suspected if the null
hypothesis is rejected. An outbreak, however is not a necessary condition but only one possible
cause for this type of observed signal in data. Other possible causes include changes or errors in
diagnostic coding, increases in participating data providers, and database problems. However, if a
single data stream adequately represents the care-seeking behaviour of the monitored population
for a given syndrome group, and the care-seeking behaviour of a population reflects its disease
status, an outbreak may be a sufficient condition for a signal in data. Thus, alerts based on such
signals in data may be used to focus the attention of health officials to potential outbreaks if there
is a reasonable rate of false positives. The question here is how to extend hypothesis testing to the
multi-source, distributed surveillance context.

We consider two prototype monitoring problems for the multivariate context [11]. The parallel
monitoring problem pertains to time series representing distributed locations, such as counties or
treatment facilities, possibly stratified by other covariates such as syndrome type or age group. The
statistical challenge is to maintain sensitivity while limiting the number of false signals arising
from testing the resulting time series. The second problem, the consensus monitoring problem, is
the testing of a single hypothesis using multiple sources of evidence. For example, the combination
of syndromic counts of ED visits, outpatient clinic office appointments, and sales of OTC remedies
may be used to test the hypothesis that there is no current outbreak of gastrointestinal disease in
the monitored population.

Parallel monitoring methods

Signal and subsequent false alert rates can grow to a nuisance level as the number of monitored data
streams increases [12]. We may preserve a nominal overall background alert rate � by replacing the
individual test threshold �.. with the Bonferroni bound �./N , where N is the number of monitored
data streams [13]. The resulting criterion may result in a severe loss of sensitivity, especially if
the data streams are correlated. Several published methods [14–17] relax the Bonferroni criterion
to maintain the overall error rate with less stringent rejection criteria. Let P(1), . . . , P(N ) be the
p-values sorted in ascending order. For correlated streams, Hommel rejected the combined null
hypothesis [14] if for any j , j = 1, . . . , N

P( j)< j · �/C · N where C =∑1/j
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Plate 1. Recent respiratory syndrome data.
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For tests that are independent, Simes [15] and others showed that this criterion gives an overall
error rate of �. for C = 1 if the tests are independent, and this relaxed criterion has been shown to
maintain this error rate for many common multivariate data sets with positive correlation [17]. These
improvements were widely applied after it was shown [18] that they control the false discovery rate
(FDR), or expected ratio of false alerts to the total alert count. For example, National Health Service
of the United Kingdom has used FDR methods to monitor results of CUSUM charts applied to
hospital data streams from numerous districts [19]. The benefit of FDR methods increases as data
streams are added, as their correlation increases, and as the alerting threshold � is raised. These
factors should be considered in the choice of a parallel monitoring method intended to control
alert rates.

For practical considerations, note that the Simes criterion may be formulated to alert if

Min{N · P( j)/j}<�, j = 1, . . . , N

Note that only p-values below the nominal threshold � can contribute to an alert. There is no
consensus effect as in the next section—the method applied to 10 p-values of 0.06 returns 0.06.
It has been noted [14–16] that the Simes criterion does not specify which of the data streams
should be investigated; a popular procedure [12] is to reject the null hypothesis for all streams
with p-values below the largest one that satisfies the inequality. More conservative closed-form
criteria [16] have been developed that indicate which component hypotheses to reject, and the
designers of large, complex systems with hundreds of simultaneous data streams should consider
these criteria.

Consensus monitoring methods

The consensus problem is the combination of various sources of clinical and non-clinical evidence
to gain sensitivity in disease monitoring. A critical issue in the choice of methods is whether the
combination of time series adds more to the background noise—leading to excessive alerting—or
to potential signals of interest. In the former situation, multiple univariate strategies are preferable,
while in the latter, fully multivariate algorithms may add sensitivity at practical alert rates. We
consider both strategies in the following paragraphs.

The multiple univariate methods are similar to parallel monitoring ones except that the p-values
are combined to produce a single p-value p∗ = f (p1, . . . , pn), where f has a consensus property
that several near-critical values can produce a critical one. Many functions f have such a property;
this section considers two methods used in independent, sequential clinical trials. The first is
Fisher’s rule [20], a function of the product of the p-values. The statistic is

F = 2
∑
j
ln(p j )

If the separate hypothesis test results are independent, this quantity is distributed �2 with 2n
degrees of freedom. As a multiplicative method, it is more sensitive to a few small p-values
than to a broader number of moderate values. It is recommended if the objective is to extract
a single decision on whether to avoid the overall null hypothesis and avoid considering the
individual p j .
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The second statistic is Edgington’s method [21], an additive method that calculates the resultant
p-value as

pE = Sn

n! −
(
n

1

)
(S − 1)n

n! +
(
n

2

)
(S − 2)n

n! −
(
n

3

)
(S − 3)n

n! + · · ·

where S is the sum of the n p-values. The summation continues until (S− j) is no longer positive.
This additive method is more sensitive to multiple, near-critical values. For more than a few dozen
data streams, this formula cannot be computed accurately. In such cases, the expression

(mean(p) − 0.5)/(0.2887/
√
n)

gives a z-score whose Gaussian probability is a close approximation to this formula [22].
If the data streams are independent, Edgington’s method gives fewer alerts than Fisher’s method

at nominal thresholds but is more sensitive to data correlation. Edgington’s method is recommended
if the number of data streams is modest—say less than a dozen—and the user wishes a sensitive
consensus indicator in addition to the individual test results. This need has been expressed by
epidemiologist users who require some summarization but are skeptical of bottom-line results that
hide the contributions of individual evidence sources. Note that very small single p-values do not
necessarily cause alerts in Edgington’s method because it is an additive method. If the system is not
also monitoring single streams, either the use of Fisher’s method or both methods is recommended.

An example of the potential benefit of combining univariate alerting results is shown in Plate 2.
Input data were the time series shown in Plate 1 for emergency department visits (ED), physician

OV, and OTC sales. The ordinate for these plots is the daily computed algorithm p-value, with
markers below the red line indicating alerts at the � = 0.01 level. Univariate EWMA algorithms
were applied to each individual time series, and the derived p-values are shown for the office visit
data. Also plotted are composite daily p-values computed by combining univariate values for the
three time series with the Edgington method. The composite algorithm showed added sensitivity
for the influenza event. There were sporadic data signals during the early outbreak interval with
stronger and more consistent signals during the height of the outbreak.

Multivariate methods

Alerting algorithms that combine values from separate time series in a single computation have
the potential to detect evidence of faint outbreaks. While strong correlation among data sources
tends to dilute the benefit of FDR-like methods, prospective multivariate algorithms can exploit
consistent correlation. Published work on multivariate methods [23, 24] based on weekly data
from large regions has focused on multivariate statistical process control (MSPC) [25]. Little
published research deals with more complex multivariate hypothesis tests based on wavelets,
Bayesian statistics, etc. Most MSPC methods are based on Hotelling’s T 2 as applied in monitoring
efforts in related fields [26]. The T 2 statistic may be written as

(X − �)S−1(X − �)

where X , multivariate data from the test interval; �, vector mean estimated from the baseline
interval; and S, estimate of covariance matrix calculated from the baseline interval.

While Hotelling’s T 2 may be viewed as a multidimensional z-score, this method has been
generalized to obtain other multivariate control charts. A multivariate EWMA chart (MEWMA)
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Plate 4. Modelling the data epicurve: 4 stochastic realizations.

Plate 5. ROC curve comparisons for multivariate methods applied to simulated data.
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has shown improved run length characteristics [27] and has yielded promising results with health
surveillance data [28]. In Lowry’s MEWMA, the data vector is replaced by the exponentially
weighted moving average

Z j = RX + (1 − R)Z j−1

where R is a diagonal matrix of smoothing coefficients, and the covariance matrix is a scalar
multiple of the data covariance matrix S in the usual application where equal smoothing coeffi-
cients are used. Analogous multivariate CUSUMs have also been applied to surveillance data, with
Pignatiello’s MCUSUM [29] applied to yearly, spatially distributed counts of breast cancer inci-
dence [24]. Hawkins [30] describes Hotelling’s T 2 as ‘particularly bad at distinguishing location
shifts from scale shifts.’ Rogerson and Yamada [24] notes that combined univariate methods are
‘directional’ in that they may be quick to detect shifts in just a few data sources but less sensitive
to shifts in more general directions. These methods are omni-directional—a property that can be
useful in detecting an earlier signal, but which can also cause false alerts if there is a change in
the covariance matrix that is irrelevant to any outbreak signal of interest. Plate 3 illustrates this
problem with applications of three MSPC methods, Hotelling T 2 [26], Lowry’s MEWMA [26],
and Crosier’s MCUSUM [31], to two syndromic time series that are highly correlated.

The spikes in the algorithm outputs were in general agreement and plausible signals except for
those seen for August 7. These spikes are purely the result of a change in day-of-week behaviour
for one of the two data streams. For practical analytic data monitoring to take advantage of the
added sensitivity of these MSPC techniques, procedures and protocols must be developed to avoid
irrelevant alert escalation.

Evaluation methodology

This section presents a simulation approach for evaluating the detection performance of the mon-
itoring algorithms discussed above. To challenge the algorithms, data epicurves of injected cases
attributable to a presumed outbreak are added to background data. These epicurves are stochasti-
cally drawn from an ideal incubation period distribution [32]. This procedure is adopted to produce
plausible outbreak-like signals, in contrast to the standard method of adding a fixed quantity to
the process mean to find the average run length of a control chart [13].

We first describe the procedure for testing univariate alerting algorithms. The lognormal incu-
bation period distribution of Sartwell [33] is used to estimate the idealized curve for the expected
number of new symptomatic cases on each outbreak day. Stochastic epicurves are drawn as follows.
In order to construct a difficult signal to detect, the number of cases on the peak outbreak day
is set at a fixed multiple k (1�k�3) of the standard deviation of the background data. The total
outbreak size N is this peak value divided by the maximum of the lognormal probability density
function and rounded up. Individual incubation periods are then chosen with a set of N random
lognormal draws, one draw for each simulated case. The number of cases to add for each day after
onset is then the number of draws rounded to that day. Four typical data epicurves drawn with this
procedure are shown in Plate 4.

To test a univariate algorithm, repeatedly draw one of these stochastic signals and then add
it to the background time series at a randomly chosen start day (beyond a warm-up period that
is kept constant for all tested methods). Algorithms to be evaluated are then applied to each
resultant time series, and for each threshold level of interest, sensitivity or probability of detection
(PD) is estimated as the fraction of all trials for which the algorithm output exceeds that level

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:1834–1856
DOI: 10.1002/sim



1842 H. ROLKA ET AL.

during the interval of injected cases. For the same threshold, the daily false alarm probability
(PFA) is the fraction of non-outbreak days for which the level is exceeded. (The signals may
be injected into simulated or authentic background data. While an authentic background may be
preferable, it makes the identification of non-outbreak days more subjective.) A receiver operating
characteristic (ROC) curve may be formed by plotting PD versus PFA as the algorithm threshold
varies. Algorithm performance can be precisely measured in this process because the start and
duration of each simulated outbreak are known.

For testing multivariate algorithms, four additional simulation decisions reflecting the complexity
of multivariate detection affect algorithm performance: (1) the number of data streams analysed,
(2) the number of data streams an outbreak affects, (3) the relative magnitudes of the outbreak
effect among the impacted streams, and (4) the time lag between the separate data signals. The
first three have been shown to affect the decision of whether a multiple univariate or a multivariate
algorithm is preferable [24].

We present ROC curve results of a single experiment to compare the straightforward method of
choosing the minimum univariate p-value with multiple univariate methods (Fisher and Edgington)
and with multivariate methods (Hotelling’s T 2 and Lowry’s MEWMA). To represent background
data streams, four independent time series simulating 700 days of syndromic data counts were
formed by random draws from a Poisson distribution with a mean of 100. The lognormal parameters
of the epicurve distribution were chosen to give a median incubation period of 3.5 days, consistent
with associated symptoms of known weaponized diseases [34], and a temporal case dispersion
consistent with past observed outbreaks [33]. The expected number of attributable cases on the
peak day of the outbreak was set at one standard deviation of the background, or 10 cases, for
each data stream. The stochastic signals were computed separately and injected into all four data
streams with effect delays of 0, 2, 3 and 4 days. Plate 5 shows the resulting ROC curve for 100
trials.

Daily false alert rates, or background recurrence rates, may be read from the x-axis. An expected
alert every 2, 6 and 10 weeks corresponds to PFA values of 0.071, 0.024 and 0.014, respectively.
Corresponding sensitivity estimates may be read from the plot. The independence of the back-
ground streams gave a clear advantage to the multiple univariate methods and degraded the MSPC
performance. As noted above, the Edgington method is more consensus-oriented, and it suffers
from the relative signal delays. It outperformed the Fisher method when effects were simultaneous,
but its background alert rate was far more degraded by cross-correlation. Additional experiments
with correlated data streams have pushed the MSPC curves above the others, but these advantages
are highly scenario-dependent and require consistent correlation. For some scenarios, the ROC
curve for the minimum p-value gives the best performance, indicating an FDR-like combination
rule. The overall message is that the optimal algorithm choice requires an understanding of the
multivariate data environment.

The effectiveness of monitoring with multiple data sources depends on user acceptance and
visualization tools as well as on algorithm development and data analysis. The utility of multi-
variate methods in biosurveillance systems [35] involves epidemiologist, analytic data monitors,
database/website designers and statisticians. This cross-disciplinary collaboration requires a tech-
nical implementation approach in which familiar data plots, univariate charts, and regression
predictions are employed while newer fusion methods are gradually introduced along with com-
bination views. This process involves evolution of technologies as well as the knowledge base of
the analytic data user community at all levels of public health [8, 36]. The data analytic meth-
ods described in the following sections are successively less implemented but hold promise for
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effectiveness in the modern public health surveillance context as more insight is gained about the
nature of multiple relevant data sources and how best to incorporate more refined approaches.

SPACE–TIME SCAN STATISTICS WITH MULTIPLE DATA STREAMS

A short review

Scan statistics [37–39] have been used to detect and evaluate temporal disease clusters since
the early 1980s [40, 41]. Spatial scan statistics [42] have also become popular for the evaluation
of geographical disease clusters in a wide range of application areas including cancer [43, 44],
infectious diseases [45, 46] and pediatrics [47, 48]. More recently, space–time scan statistics have
been used in a prospective setting for the early detection of disease outbreaks [49, 50], with uses
ranging from West Nile virus [51] to syndromic surveillance [52]. The basic idea in the prospective
setting is to use a variable size cylinder where the circular base represents space and the height
represents time. This concept is then used algorithmically, to scan across the geographical and
temporal study region, comparing counts of the observed and expected number of cases within
cylinders. Only those cylinders where the temporal height reaches the current time are used. Based
on a likelihood criterion, the most unusual cylinder is noted, and its statistical significance is
evaluated using Monte Carlo hypothesis testing [53], adjusting for the multiple testing inherent in
the many cylinder sizes and locations evaluated.

In order to simultaneously search for and evaluate clusters in more than one data set,
a multivariate scan statistic that incorporates multiple data sets from the same geographical area
into one single analysis can be used [54, 55]. For example, one may be interested in spatial clusters
with excess incidence of leukaemia only, of lymphoma only or of both simultaneously. As another
example, one may be interested in detecting a gastrointestinal disease outbreak that affects children
only, adults only or both simultaneously. The different data set could also be from different sources,
such as (1) ED visits from hospitals, (2) ambulatory care visits from a health insurance plan and
(3) over the counter drug sales from a pharmacy chain. As discussed in the previous section of
this report, each of these data sources may contain evidence for a specific disease outbreak as
different people seek different types of health care.

The rationale for the multivariate scan statistic is that together there may be sufficient joint
evidence to signal an outbreak even when neither constituent generates a signal on its own. This
idea may be interpreted (although we may not have a valid independence assumption between
data sources) as increasing the detection ‘power’ by increasing the ‘sample size’. If a space–time
scan statistic is used to analyse one single combined data set, one may miss a cluster that is only
present in one of the subgroups. On the other hand, if two analyses are performed, one for each
data set, there is a loss of power if the true cluster is about equally strong in both data sets.

The multivariate scan statistic with multiple data sets works as follows when searching for
clusters with high rates:

1. For each window location and size, the log likelihood ratio is calculated for each data set.
2. The log likelihood ratios for the data sets with more than expected counts are summed up.

This sum is the likelihood for that particular window.
3. The maximum of all the summed log likelihood ratios, taken over all the window locations

and sizes, constitutes the most likely cluster. This is evaluated in the same way as for a single
data set.
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When searching for clusters with low rates, the same procedure is performed, except that we
instead sum up the log likelihood ratios of the data sets with fewer than expected counts within the
window in question. When searching for both high and low clusters, both sums are calculated, and
the maximum of the two is used to represent the log likelihood ratio for that window. A detailed
description of the multivariate scan statistic has been presented by Kulldorff et al. [55], who also
applied it to three different types of physician encounters: (1) telephone calls, (2) regular ambulatory
care visits and (3) urgent care visits in the Boston metropolitan area. Analyses using the multivariate
scan statistic can be done using the freely available SaTScan software (www.satscan.org).

Open research questions

When working with multiple data types, the ideal is to have independent data sets, where no person
is counted more than once. If not, temporal correlation in the data may trigger unnecessary false
alarms. (This issue is referred to summarily in the conclusions section of this report as ‘record
linkage’.) When incorporating multiple data types within the same analysis, and the same person
has more than one encounter of either the same or a different type, the duplicate encounter records
should ideally be removed from the count. For example a patient first visits her regular physician
and then goes to the ED the next day. When all information comes from the same data provider,
such as a health insurance company, it is sometimes possible to remove such duplicates [56], but
it is a much more challenging problem when there are multiple data providers. Modifications to
approaches using multiple data sources are needed to take the duplicate encounters by the same
person into account. If not, a single person could theoretically generate a signal if he has many
health encounters in a very short period of time.

When we are able to remove duplicates, it is not clear that it is always the latter encounter
that should be removed. For example, if a person visits her doctor on Tuesday due to fever and a
subsequent laboratory test is found to be positive on Thursday, the latter encounter may contain
more ‘information’. In such a situation, one could include the fever encounter in the analyses
performed on the Tuesday and Wednesday data but eliminate it from subsequent analyses when
the laboratory test result is available. The best approach will obviously vary depending on the
data used, and to some extent one can use intuition, but formal investigations in different settings
would be very valuable. For the multivariate space–time scan statistic one option is to use the same
cylinder for each data set when adding up the log likelihoods. That may not be the best approach
though. When there is asynchronous reporting, with, for example, laboratory tests of blood cultures
that take longer than gram stains or urine cultures, the various data sets should be appropriately
synchronized. Depending on the data types and the infectious disease outcome under study, one
could incorporate different temporal lag times, but this has not yet been tried. Experimentation to
scan with different spatial windows for the different data sets may also prove informative.

There is nothing in the application of the multivariate space–time scan statistic that requires
uniform geographical coverage for each data set. At the same time, little is known about how
such differential coverage will affect the analysis and the ability to pick up a disease outbreak in
different regions. The use of irregularly shaped scanning windows [57–60] rather than circles has
been proposed and it makes sense to try such approaches for prospective multivariate space–time
scan statistics as well.

The multivariate space–time scan statistic is considerably more computer intensive than the
univariate version. Ideas presented by Neill and Moore [61] could potentially be very useful to
improve speed if they can be generalized to the multivariate space–time setting.
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With the multivariate scan statistic, clusters may be detected in one or any combination of
the data sets used. That is often what we want but in some cases we may only be interested in
certain combinations of data sets. For example, while we may wish to group two different types
of leukaemia, two different types of lymphomas, or all leukaemias with all lymphomas, we may
not want to group one type of leukaemia with one type of lymphoma without including the other
types. For that, one could combine the space–time scan statistic with the tree-based scan statistic
[62] to create a space–time-tree dimensional scan statistic. How such a method would perform in
practice is unknown.

In summary, the multivariate scan statistics shows promise as a useful tool for early disease
outbreak detection when there are multiple data sources. There is still much to learn about its
practical utility which includes (1) how to handle duplicate data, (2) the optimal use of temporal and
spatial lags, (3) differential geographical data coverage effects, (4) irregularly shaped cluster issues,
(5) computational algorithm efficiency and (6) how to combine the space–time and the tree-based
scan statistics. It is in our interests to continue building upon this tool for exploiting multiple data
source to enhance disease detection and rapid situational awareness. Much of the needed research,
especially regarding surveillance data knowledge, will simultaneously serve interests for other
methodologies that we will continue to explore and refine as we evolve our analytic opportunities
in this field. The following concept represents another such opportunity.

A BAYESIAN APPROACH TO COMBINING MULTIPLE DATA STREAMS

In this section we describe a particular Bayesian approach to combining multiple data streams to
perform biosurveillance for disease outbreaks. The approach is based on modelling a population
as a set of the individuals (which are also modelled) in the population. We first describe this basic
approach. Next we introduce the Bayesian network (BN), which is the representation we use in
modelling a population as a set of individuals. We then describe a particular Bayesian-network-
based biosurveillance system that we have implemented, and we explain how it combines multiple
data streams in performing biosurveillance. We conclude with a set of research challenges.

Individual-based modelling

In individual-based modelling, each person in the population (being monitored for disease out-
breaks) is represented as a sub-model. These sub-models are linked to each other through the
outbreak diseases being modelled. Through inference, evidence about the individuals can influ-
ence belief about the presence of outbreak diseases in the population. Individual-based modelling
allows us to represent what we know about each person that is relevant to disease outbreak detec-
tion. We may have more information about some people than others. For one person we may only
have evidence about age, gender, and home zip code. For another person, we may also know that he
came to the ED at a particular time with a particular primary problem (chief complaint).¶ Beyond
evidence about individuals, we also can represent evidence about the population by functionally
modelling behaviour of individuals. As an example, the number of OTC thermometers sold in a

¶The data we use for biosurveillance are de-identified in the sense that appropriately we do not have information,
such as name, address, or a social security number, that would uniquely identify a person, even if that person has
visited in an ED, for example.
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given city on a given day can be reasonably modelled as a function of the purchases of those
thermometers by individuals. By modelling (under uncertainty) thermometer purchases by indi-
viduals, we can derive a distribution over the number of thermometers sold on a given day in the
region. Doing so is important, because typically we only know the aggregate sales volume, rather
than the purchases of thermometers by specific individuals. In the next section, we describe the
representation that we use to model individuals and populations.

Bayesian networks

A BN model represents the joint distribution of a set of variables of interest [63–65]. For example,
over all possible joint states of the variables in evidence set E and hypothesis set H , a BN could
represent P(E, H). From such a joint distribution, we can derive any probability of interest, such
as P(H | E).

A BN has two parts: a structure and a set of parameters. The structure contains nodes, which
represent model variables,‖ as well as arcs, which connect nodes that are related probabilistically.
The resulting graph is required to contain no directed cycles, meaning that it is not possible to
start at some node and follow a path of arcs that leads back to that same node. The parents of
a node (variable) Xi are those nodes that have arcs into Xi . A descendant of Xi is a node X j
for which there is a directed path from Xi to X j . The following Markov condition specifies the
independence that is expressed in a BN:

A node is independent of its non-descendants, given just the state of its parents

This is the most important key to understanding BNs. It tells us that if we want to predict
the value of some variable in the BN, and we already know the values of all of its parents, then
no variable (except possibly some of a node’s descendents) could possibly give us any useful
predictive information beyond that supplied by its parents. As an example, the BN structure in
Figure 1 contains five nodes. The node Season could be modelled as having the values spring,
summer, fall and winter. Age represents a patient’s age, perhaps discretized into ranges of years.
The nodes Influenza, Cough and Fever could be modelled as being present or absent.

As an example of the BN Markov condition, we see that the structure in Figure 1 specifies that
Cough is independent of Season given the state of Influenza. If the designer of the network had
decided that this independence assumption was unreasonable, she could have added an arc from
Season to Cough.

Someone who designs a BN first develops the structure. But more work is needed after that. The
network must be populated with numerical parameters. For each node Xi , there is a probability
distribution P(Xi | parents(Xi )), where parents(Xi ) are the parents of Xi in the BN. For example,
we might have P(Cough= present | Influenza= present) = 0.90. If Xi contains no parents, then
the probability P(Xi ) is specified. The BN Markov condition implies that we can factor the joint
distribution of the variables in the model as follows [65]:

P(X1, X2, . . . , Xn) =
n∏

i=1
P(Xi | parents(Xi )) (1)

The fewer the number of parents per node, the fewer the number of parameters needed to specify
each conditional probability P(Xi | parents(Xi )), and thus, the fewer the number of parameters

‖We use the terms node and variable interchangeably in this section.
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Season Age

Influenza

Cough Fever

Figure 1. An example of a Bayesian network structure.

in the model. Therefore, a BN with relatively fewer arcs will require relatively fewer model
parameters. A BN can thereby represent parsimoniously the joint distribution over n variables.

If the arcs are interpreted as being direct causal relationships (relative to the variables being
modelled) then the model is called a causal Bayesian network. For a causal BN, the Markov
condition states (in part) that effects are independent of distant causes, given the state of all the
proximal causes. For example, Fever is independent of the distant influence of Season and Age,
given that we know the state (present or absent) of Influenza, which is the proximal cause of Fever
in the model in Figure 1.

Equation (1) specifies a complete joint probability distribution over all n variables in the BN
model. From such a joint distribution we can derive the probability of any subset of nodes
conditioned on the state of another subset of nodes. Thus, for the example BN, we could derive
P(Influenza |Cough= present, Season=winter, Fever= present). Note that information about the
patient’s age is missing in this conditional probability; in general, we need only condition on a
subset of the variables in the model.

Researchers have developed exact BN inference algorithms that take advantage of the inde-
pendence among the variables that follows from the BN Markov condition when some arcs are
missing. These algorithms are often able to derive conditional probabilities relatively efficiently
[65]. When exact inference would require too much computation time, approximate algorithms
are available [64, 65].

PANDA: a Bayesian-network approach to biosurveillance

Population-wide anomaly detection and assessment (PANDA) is a biosurveillance application
that is based on a BN composed of sub-networks of individuals in the population. The current
implementation focuses on representing non-contagious infectious diseases, such as inhalational
anthrax. Figure 2 illustrates this representational focus schematically. Population Risk Factors
represents factors that influence the current risk level, such as the national terrorist alert level.
Population disease factors (PDF) denotes all the information about disease exposure that renders
the individuals (persons) conditionally independent of one another, when we are not conditioning
on Population-Wide Evidence. The Population-Wide Evidence designates evidence that is a function
of the individuals and their behaviour, such as the total number of thermometer sales on a given
day in the region.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:1834–1856
DOI: 10.1002/sim



1848 H. ROLKA ET AL.

Population Risk Factors

Person Model

Population-Wide Evidence

Person Model Person Model Person Model

Population Disease Factors

Figure 2. A schematic for representing how a non-contagious disease can influence individuals in the popu-
lation, which in turn can affect population-wide evidence. Each rectangle in this diagram denotes a Bayesian
sub-network and each arrow denotes one or more Bayesian-network arcs between the sub-networks.

Figure 3. The person sub-network used by PANDA to model disease that is due to inhalational anthrax.
This network corresponds to one of the Person Models in Figure 2.

Figure 3 shows the person sub-network that PANDA currently uses to model the effect of
inhalational anthrax disease on an individual. A more detailed discussion of this model is in Wong
et al. [66]. We provide here a selected summary of points that are needed in the current report.
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Space constraints permit us to discuss selected structural aspects of the model, but not any details
about the parameters used in the model.

At the top left, Time of Release and Location of Release are PDF nodes. Time of Release ranges
over the values today, yesterday and day-before-yesterday, which model when anthrax spores are
hypothesized to have been released out-of-doors within the region, plus the value never, which
denotes no release of inhalational anthrax. Location of Release has values corresponding to one of
approximately 100 ZIP codes in the county-wide region being modelled, plus the value nowhere.

The nodes in the middle portion of Figure 3 represent that respiratory disease, as well as a
possible ED admission for it, may be due to either inhalational anthrax infection or some other
disease (or both). The chance that a person has an anthrax infection is influenced by when and
where the release occurred (if ever) and where the person lives (Home Zip).

The nodes at the far right indicate that the status of Acute Respiratory Infection in the person
influences whether she makes (or has made for her) a Daily OTC Purchase of cough medication
for each of the previous three days, which in turn influences whether such an OTC purchase was
made on any of the previous three days (Last 3 Days OTC Purchase). The OTC Sales for Region
node, which represents a count, is part of the population-wide evidence layer. Although in Figure 3
this node is shown with input only from a single person model, it actually has arcs from all person
models, in the same way that the Population-Wide Evidence node in Figure 2 has arcs from all the
person models.

Combining multiple data streams

We use a specific example to illustrate a general approach to combining multiple data streams in
performing biosurveillance. In particular, we show how PANDA combines OTC and ED data in
deriving a posterior probability for inhalational anthrax disease in the population. For simplicity,
we assume a model in which the population risk factor (see Figure 2) is just the presence of the
outbreak disease itself in the population, which we represent with the binary variable T for the
target node. The prior probability distribution over T represents the risk of a release of outdoor
inhalational anthrax in the region being monitored. In the BN model, T has arcs into the Time of
Release and the Location of Release nodes, which constitute the PDFs (Figure 2).∗∗ Let e represent
the union of the evidence about specific individuals in the population. For those people who have
recently visited the ED, we assume we know the states of the following nodes in Figure 3: Age
Decile, Gender, Home Zip code, ED Admission (= yes), and Respiratory Chief Complaint When
Admitted (= yes or no). For people who have not recently visited the ED, we only know the states
for the nodes Age Decile, Gender, and Home Zip from U.S. Census data. Let o represent the node
OTC Sales for Region, which denotes the total number of OTC sales of cough medications during
the three previous days in the entire geographic region being modelled. We assume that OTC sales
in the region are due to (and only due to) purchases by people in that region.

Equation (2) shows the posterior probability of the target node on the left and its derivation via
Bayes rule on the right

P(T | o, e) = P(o, e | T ) · P(T )∑
T P(o, e | T ) · P(T )

(2)

∗∗In an extended model, other factors could profitably be included, such as the amount of the release and the weather
conditions at the time of the release.
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A key term in equation (2) is derived in equation (3) by summing over all the joint values of the
two variables in the PDF set, which for brevity we denote as I in equation (3). We can derive the
term P(I | T ) in equation (3) using BN inference

P(o, e | T ) =∑
I
P(o, e | I) · P(I | T ) (3)

We can derive the remaining term in equation (3) using the following equation:

P(o, e | I) = P(o | e, I) · P(e | I) (4)

We can derive the term P(e | I) in equation (4) using BN inference, as explained in [67]. In the
remainder of this section, we describe a method to derive the term P(o | e, I) in equation (4).
Consider a set of individuals who share a common set of values for the nodes represented by e.
Let Q j designate an arbitrary such set, let n j designate the number of individuals in Q j , let e j
designate their shared set of evidential values, let p j designate the probability distribution that an
individual in the set has made an OTC cough medication purchase within the previous 3 days, and
let o j be a random variable that represents the number of OTC purchases by the individuals in
Q j . Note that p j is a function of both e j and the state of I, as given by the network in Figure 3.
We will call Q j an equivalence class. Let � denote all such equivalence classes. The distribution
of o is just the distribution of the sum of the o j , each of which is a binomial variate. Since
there is no efficient way directly to derive the distribution over a sum of binomial variates, we
approximate the binomial distribution of each o j as a normal distribution with mean n j p j and
variance n j p j (1− p j ) [68]. The distribution of o is then a normal distribution with the following
mean and variance:

�= ∑
Q j∈�

n j p j and �2 = ∑
Q j∈�

n j p j (1 − p j )

Finally, the probability of observing a given value (count) for o is approximated as follows:

P(o | e, I) =
∫ o+0.5

o−0.5
N(x; �, �2) dx

In our implementation, we took the single-region approach described above and generalized it to
model approximately 100 Zip code regions. We then performed a preliminary evaluation of the
computational run time when processing semi-synthetic data from a 1.4 million person region (see
[66] for details). The system required 210 s to initialize, and then it used about 94 s of CPU time
in monitoring 24 h worth of ED and OTC data. Thus, the system’s run time was significantly faster
than real time.

We can generalize the above technique by using multinomial distributions to represent the
probability distribution that each person in an equivalence class will make an OTC purchase
in each of the possible Zip codes. We also can generalize the above approximation by using
multivariate normal distributions to approximate multinomial distributions [69, p. 87]. In addition,
it is possible to represent more than one type of OTC purchase.

Summary and challenges

The Bayesian method described in this section appears promising as an approach to combining
some of the multiple data streams that appear useful for biosurveillance. A preliminary evaluation
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suggests that the approach is computationally feasible when given realistic amounts of data to
monitor. Nevertheless, a number of challenges remain. In general, many potential outbreak diseases
of concern (e.g. inhalational anthrax and smallpox) are rare. Thus, it is challenging to model how
the diseases present in individuals and how those individuals will behave (e.g. when and what
OTC medications they will purchase and when they will seek medical care). A Bayesian approach
does at least provide us with the capability of modelling such events under uncertainty. Thus,
our detection models can in principle be as informed as possible, relative to the best existing
knowledge from experts and the literature.

We need to investigate more thoroughly the quality of the normal distribution approximations
of binomial distributions for the current application, and by extension the multivariate normal
approximations of multinomial distributions. Since the counts in the equivalence classes can be
small, the quality of the approximations may suffer.

Another challenge is to develop models of contagious diseases (e.g. Ebola and Smallpox) and
tractable inference algorithms for applying those models for biosurveillance.

Finally, a general challenge for all biosurveillance research is to develop improved methods for
evaluating detection algorithms in light of the fact that we have little data about outbreaks of many
potential diseases that are of concern.

CONCLUSIONS AND RESEARCH AGENDA DISCUSSION

We can characterize the core challenges in public health surveillance for BT as (1) quick access to
useful information from data when it is needed for a yet unknown reason (i.e. situational awareness)
and (2) anomaly detection in heterogeneous, multivariate, spatially referenced, time series (i.e. event
detection). Reports continue to appear in the Statistics literature concerning change-point detection
in univariate time series. Methodology for the multivariate setting remains incomplete at best and
many research questions present themselves. Here we consider some particular questions that we
believe are of importance.

Visualization

Analytic surveillance data monitors need effective visualization tools for multivariate heterogeneous
time series. The spatial aspect of the data makes problem even harder and much work remains
to be done. The need to include all available evidence with appropriate weighting (clinical versus
non-clinical, diagnostic versus syndromic) requires data reduction so that health monitors will not
be overwhelmed by tables and plots. Algorithms tracking all possible combinations of data streams
and covariates would be prohibitively resource-intensive; decisions regarding which data streams
and combinations to track and how to weight them should have a solid statistical basis informed
by surveillance data analysis and epidemiological considerations.

Data

Successful research on analytic methods for multivariate surveillance requires ready access to
large-scale ‘real’ data. The current absence of such publicly available data represents a key barrier
to progress. For the immediate future, surveillance systems that combine univariate analyses pro-
vide the most practical solution. Nonetheless, even within the univariate setting, several research
challenges remain open including anomaly detection with non-standard data types (e.g. emergency
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room chief complaints) and development of a (univariate) decision-theoretic approach that con-
siders the costs of various errors. We described two combination approaches above—Bonferroni
adjustment for multiple tests and multivariate scan statistics that sum log-likelihoods. Further
investigation is certainly warranted. Practical algorithms to address the alignment problem we
described above are also needed. In the longer term, model-based approaches offer considerable
promise. The general framework can harness prior knowledge in a natural fashion and combine
this knowledge with data. Furthermore, decision-theoretic extensions are, at least conceptually,
straightforward. With respect to either timeframe, rapid progress towards these research goals will
require public release of data to the research community.

Alignment

Following a BT event such as a deliberate anthrax release, signals will present themselves at
different times in different data sources. For example, OTC medication sales will probably rise
before emergency room visit numbers. Aligning these time series to detect the single signal source
represents a non-trivial statistical and algorithmic challenge.

Multiple testing

One approach to multivariate anomaly detection conducts statistical tests in a univariate setting and
combines these tests with some appropriate multiplicity adjustment. This topic has a rich history in
Statistics. The ‘FDR’ approach of Benjamini and Hochberg [18] has attracted particular attention
in recent years and a number of generalizations and specializations now exist [70]. In the context
of public health surveillance for BT, classical approaches such as Bonferroni may prove adequate,
but characterization of optimal approaches with respect to various criteria would certainly be of
value.

Record linkage

Unlinked data sources provide a further challenge, especially to surveillance approaches based
on statistical tests. For example, a particular geographic region may present 100 emergency room
visits for a respiratory syndrome and, in the same time period, 100 sales of OTC cough medication.
Absent any form of record linkage, this could represent anywhere from 100 to 200 individuals. Since
privacy concerns essentially rule out accurate linkage, statistical methods need to acknowledge
and account for the added uncertainty that this problem introduces.

Model-based approaches

The model-based approach to surveillance typically attempts to model the data generating mech-
anism under normal circumstances in the hope of being able to recognize a future abnormality.
Some models, such as Cooper et al.’s PANDA model, also include components that describe the
expected impact of a BT event. The available data can inform the part of the model that describes
normal circumstances, but the part that concerns effects of a BT event necessarily draws only on
prior knowledge. Several research challenges present themselves:

• While much progress has been made in recent years, modelling the complex spatio-temporal
variability of routine public health data under normal circumstances remains challenging.
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• Models such as PANDA that include individual-level sub-models can present significant
computational challenges, especially in the presence of contagions.

• Absent a BT event, model checking and critiquing remains a subjective undertaking;
establishing the operational characteristics of models and algorithms relies on high-fidelity
simulations that are hard to develop and hard to check.

• Computer-based explanations of alerts represent an important area for future research. Once
an alert is raised, it would be helpful to explain to the public-health officials in terms that
are meaningful to their responsibilities the reason why the surveillance system raised it.

• The hidden Markov model framework may prove useful in surveillance applications and
avoid some of the complexities of individual-level models [71]. However, the operational
characteristics of the approach remain unknown.

Decision theoretic surveillance

Extension of alerting systems to decision-analysis-based tools is another important area for future
research. Such tools could recommend actions to take, including when/where to gather addi-
tional information, who/where/how to treat subpopulations, and who/where to quarantine. Again,
explanation for why these recommendations are being made would likely be critical, including
making clear the assumptions underlying the recommendations, such as the cost functions involved.
Ultimately, a sequential decision-making approach will be appropriate where decision-theoretic
considerations guide the information gathering sequence.

Theory

The mathematical study of traditional one-dimensional surveillance methods such as the Shewhart
method or CUSUM has reached a high level of sophistication [72]. Much work remains to better
understand more complex kinds of spatio-temporal surveillance algorithms.

Dual-use

The US is making significant investments in large-scale public health surveillance systems in the
hope of detecting a future BT attack and providing situational awareness to minimize adverse public
health effects. Consideration of the likely nature of such an attack informs much of the current
work in a very dissociative fashion and indeed much of the current activity seems to focus at least
implicitly on anthrax. Characterizing the types of BT events that a particular surveillance system
could have a reasonable chance of detecting is an important research question. Security questions
also arise; if the range of detectable BT events is public knowledge, how does this affect the
probability of such an event occurring? Furthermore, we all hope that a BT event never occurs and
in fact some public health practitioners contend that the systems now being built may never detect
a BT event. However, the impact of surveillance systems on our understanding of public health is
potentially significant, important, and certainly worthy of study. The usage of surveillance systems
for monitoring both routine health vents and unlikely bioterrorist attacks brings the dilemma of
whether to treat customary seasonal outbreaks as signal or noise. It seems unlikely that public
health monitors will continue to use a system designed to detect only scenario-based point-source
outbreaks. A viable dual-use system must include multiple algorithms and/or data models to detect
both natural and deliberate events and must support the user’s ability to discriminate between them.
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Consideration of the broader objectives of public health surveillance must ultimately guide
research and development of analytic methods for surveillance. Traditional public health concerns
as well as security concerns and the need for situational awareness and early detection of potential
BT threats provide a complex backdrop. We believe this is an exciting area for statistical research.
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