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Abstract 

Classification algorithms typically induce population-wide models 
that are trained to perform well on average on expected future 
instances. We introduce a Bayesian framework for learning 
instance-specific models from data that are optimized to predict 
well for a particular instance. Based on this framework, we present 
a lazy instance-specific algorithm called ISA that performs 
selective model averaging over a restricted class of Bayesian 
networks. On experimental evaluation, this algorithm shows 
superior performance over model selection. We intend to apply 
such instance-specific algorithms to improve the performance of 
patient-specific predictive models induced from medical data. 

1 Introduct ion 

Commonly used classification algorithms, such as neural networks, decision trees, 
Bayesian networks and support vector machines, typically induce a single model 
from a training set of instances, with the intent of applying it to all future instances. 
We call such a model a population-wide model because it is intended to be applied 
to an entire population of future instances. A population-wide model is optimized to 
predict well on average when applied to expected future instances. In contrast, an 
instance-specific model is one that is constructed specifically for a particular 
instance. The structure and parameters of an instance-specific model are specialized 
to the particular features of an instance, so that it is optimized to predict especially 
well for that instance.  

Usually, methods that induce population-wide models employ eager learning in 
which the model is induced from the training data before the test instance is 
encountered. In contrast, lazy learning defers most or all processing until a response 
to a test instance is required. Learners that induce instance-specific models are 
necessarily lazy in nature since they take advantage of the information in the test 
instance. An example of a lazy instance-specific method is the lazy Bayesian rule 
(LBR) learner, implemented by Zheng and Webb [1], which induces rules in a lazy 
fashion from examples in the neighborhood of the test instance. A rule generated by 
LBR consists of a conjunction of the attribute-value pairs present in the test instance 



 

 

as the antecedent and a local simple (naïve) Bayes classifier as the consequent. The 
structure of the local simple Bayes classifier consists of the attribute of interest as 
the parent of all other attributes that do not appear in the antecedent, and the 
parameters of the classifier are estimated from the subset of training instances that 
satisfy the antecedent. A greedy step-forward search selects the optimal LBR rule 
for a test instance to be classified. When evaluated on 29 UCI datasets, LBR had the 
lowest average error rate when compared to several eager learning methods [1]. 

Typically, both eager and lazy algorithms select a single model from some model 
space, ignoring the uncertainty in model selection. Bayesian model averaging is a 
coherent approach to dealing with the uncertainty in model selection, and it has 
been shown to improve the predictive performance of classifiers [2]. However, since 
the number of models in practically useful model spaces is enormous, exact model 
averaging over the entire model space is usually not feasible. In this paper, we 
describe a lazy instance-specific averaging (ISA) algorithm for classification that 
approximates Bayesian model averaging in an instance-sensitive manner. ISA 
extends LBR by adding Bayesian model averaging to an instance-specific model 
selection algorithm. 

While the ISA algorithm is currently able to directly handle only discrete variables 
and is computationally more intensive than comparable eager algorithms, the results 
in this paper show that it performs well. In medicine, such lazy instance-specific 
algorithms can be applied to patient-specific modeling for improving the accuracy 
of diagnosis, prognosis and risk assessment.  

The rest of this paper is structured as follows. Section 2 introduces a Bayesian 
framework for instance-specific learning. Section 3 describes the implementation of 
ISA. In Section 4, we evaluate ISA and compare its performance to that of LBR. 
Finally, in Section 5 we discuss the results of the comparison. 

2 Decision Theoret ic  Framework 

We use the following notation. Capital letters like X, Z, denote random variables 
and corresponding lower case letters, x, z, denote specific values assigned to them. 
Thus, X = x denotes that variable X is assigned the value x. Bold upper case letters, 
such as X, Z, represent sets of variables or random vectors and their realization is 
denoted by the corresponding bold lower case letters, x, z. Hence, X = x denotes that 
the variables in X have the states given by x. In addition, Z denotes the target 
variable being predicted, X denotes the set of attribute variables, M denotes a model, 
D denotes the training dataset, and <Xt, Zt> denotes a generic test instance that is 
not in D. 

We now characterize population-wide and instance-specific model selection in 
decision theoretic terms. Given training data D and a separate generic test instance 
<Xt, Zt>, the Bayes optimal prediction for Zt is obtained by combining the 
predictions of all models weighted by their posterior probabilities, as follows: 
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The optimal population-wide model for predicting Zt is as follows: 
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where the function U gives the utility of approximating the Bayes optimal estimate 
P(Zt | Xt, D), with the estimate P(Zt | Xt, M) obtained from model M. The term  
P(X | D) is given by: 
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The optimal instance-specific model for predicting Zt is as follows: 
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where xt are the values of the attributes of the test instance Xt for which we want to 
predict Zt. The Bayes optimal estimate P(Zt | Xt = xt, D), in Equation 4 is derived 
using Equation 1, for the special case in which Xt = xt. 

The difference between the population-wide and the instance-specific models can be 
noted by comparing Equations 2 and 4. Equation 2 for the population-wide model 
selects the model that on average will have the greatest utility. Equation 4 for the 
instance-specific model, however, selects the model that will have the greatest 
expected utility for the specific instance Xt = xt. For predicting Zt in a given instance 
Xt = xt, the model selected using Equation 2 can never have an expected utility 
greater than the model selected using Equation 4. This observation provides support 
for developing instance-specific models. 

Equations 2 and 4 represent theoretical ideals for population-wide and instance-
specific model selection, respectively; we are not suggesting they are practical to 
compute. The current paper focuses on model averaging, rather than model 
selection. Ideal Bayesian model averaging is given by Equation 1. Model averaging 
has previously been applied using population-wide models. Studies have shown that 
approximate Bayesian model averaging using population-wide models can improve 
predictive performance over population-wide model selection [2]. The current paper 
concentrates on investigating the predictive performance of approximate Bayesian 
model averaging using instance-specific models. 

3 Instance-Specific  Algorithm 

We present the implementation of the lazy instance-specific algorithm based on the 
above framework. ISA searches the space of a restricted class of Bayesian networks 
to select a subset of the models over which to derive a weighted (averaged) 
posterior of the target variable Zt. A key characteristic of the search is the use of a 
heuristic to select models that will have a significant influence on the weighted 
posterior. We introduce Bayesian networks briefly and then describe ISA in detail.  

3 . 1 B aye s i an Ne twork s  

A Bayesian network is a probabilistic model that combines a graphical 
representation (the Bayesian network structure) with quantitative information (the 
parameters of the Bayesian network) to represent the joint probability distribution 
over a set of random variables [3]. Specifically, a Bayesian network M representing 
the set of variables X consists of a pair (G, ΘG). G is a directed acyclic graph that 
contains a node for every variable in X and an arc between every pair of nodes if the 
corresponding variables are directly probabilistically dependent. Conversely, the 
absence of an arc between a pair of nodes denotes probabilistic independence 
between the corresponding variables. ΘG represents the parameterization of the 
model.  



 

 

In a Bayesian network M, the immediate predecessors of a node Xi in X are called 
the parents of Xi and the successors, both immediate and remote, of Xi in X are 
called the descendants of Xi. The immediate successors of Xi are called the children 
of Xi. For each node Xi there is a local probability distribution (that may be discrete 
or continuous) on that node given the state of its parents. The complete joint 
probability distribution over X, represented by the parameterization ΘG, can be 
factored into a product of local probability distributions defined on each node in the 
network. This factorization is determined by the independences captured by the 
structure of the Bayesian network and is formalized in the Bayesian network 
Markov condition: A node (representing a variable) is independent of its non-
descendants given just its parents. According to this Markov condition, the joint 
probability distribution on model variables X = (X1, X2, …, Xn) can be factored as 
follows: 
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where parents(Xi) denotes the set of nodes that are the parents of Xi. If Xi has no 
parents, then the set parents(Xi) is empty and P(Xi | parents(Xi)) is just P(Xi). 

3 . 2 ISA M ode l s  

The LBR models of Zheng and Webb [1] can be represented as members of a 
restricted class of Bayesian networks (see Figure 1). We use the same class of 
Bayesian networks for the ISA models, to facilitate comparison between the two 
algorithms. In Figure 1, all nodes represent attributes that are discrete. Each node in 
X has either an outgoing arc into target node, Z, or receives an arc from Z. That is, 
each node is either a parent or a child of Z. Thus, X is partitioned into two sets: the 
first containing nodes (X1, …, Xj in Figure 1) each of which is a parent of Z and 
every node in the second set, and the second containing nodes (Xj+1, …, Xk in Figure 
1) that have as parents the node Z and every node in the first set. The nodes in the 
first set are instantiated to the corresponding values in the test instance for which Zt 
is to be predicted. Thus, the first set of nodes represents the antecedent of the LBR 
rule and the second set of nodes represents the consequent. 

Figure 1: An example of a Bayesian network LBR model with target
node Z and k attribute nodes of which X1, …, Xj are instantiated to 
values x1, …, xj in xt. X1, …, Xj are present in the antecedent of the LBR 
rule and Z, Xj+1, …, Xk (that form the local simple Bayes classifier) are 
present in the consequent. The indices need not be ordered as shown,
but are presented in this example for convenience of exposition. 
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3 . 3 M ode l  Ave r ag i ng  

For Bayesian networks, Equation 1 can be evaluated as follows: 

∑=
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with M being a Bayesian network comprised of structure G and parameters ΘG. The 
probability distribution of interest is a weighted average of the posterior distribution 
over all possible Bayesian networks where the weight is the probability of the 
Bayesian network given the data. Since exhaustive enumeration of all possible 
models is not feasible, even for this class of simple Bayesian networks, we 
approximate exact model averaging with selective model averaging. Let R be the set 
of models selected by the search procedure from all possible models in the model 
space, as described in the next section. Then, with selective model averaging,  
P(Zt | xt, D) is estimated as: 
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Assuming uniform prior belief over all possible models, the model posterior  
P(M | D) in Equation 7 can be replaced by the marginal likelihood P(D | M), to 
obtain the following equation: 
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The (unconditional) marginal likelihood P(D | M) in Equation 8, is a measure of the 
goodness of fit of the model to the data and is also known as the model score. While 
this score is suitable for assessing the model’s fit to the joint probability 
distribution, it is not necessarily appropriate for assessing the goodness of fit to a 
conditional probability distribution which is the focus in prediction and 
classification tasks, as is the case here. A more suitable score in this situation is a 
conditional model score that is computed from training data D of d instances as: 

∏
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This score is computed in a predictive and sequential fashion: for the pth training 
instance the probability of predicting the observed value zp for the target variable is 
computed based on the values of all the variables in the preceding p-1 training 
instances and the values xp of the attributes in the pth instance. One limitation of this 
score is that its value depends on the ordering of the data. Despite this limitation, it 
has been shown to be an effective scoring criterion for classification models [4]. 

The parameters of the Bayesian network M, used in the above computations, are 
defined as follows: 
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where (i) Nijk is the number of instances in the training dataset D where variable Xi 
has value k and the parents of Xi are in state j, (ii) ∑= k ijkij NN , (iii) αi jk is a 



 

 

parameter prior that can be interpreted as the belief equivalent of having previously 
observed αi jk instances in which variable Xi has value k and the parents of Xi are in 
state j, and (iv) ∑= k ijkij αα . 

3 . 4 M ode l  Se arc h 

We use a two-phase best-first heuristic search to sample the model space. The first 
phase ignores the evidence xt in the test instance while searching for models that 
have high scores as given by Equation 9. This is followed by the second phase that 
searches for models having the greatest impact on the prediction of Zt for the test 
instance, which we formalize below. 

The first phase searches for models that predict Z in the training data very well; 
these are the models that have high conditional model scores. The initial model is 
the simple Bayes network that includes all the attributes in X as children of Z. A 
succeeding model is derived from a current model by reversing the arc of a child 
node in the current model, adding new outgoing arcs from it to Z and the remaining 
children, and instantiating this node to the value in the test instance. This process is 
performed for each child in the current model. An incoming arc of a child node is 
considered for reversal only if the node’s value is not missing in the test instance. 
The newly derived models are added to a priority queue, Q. During each iteration of 
the search, the model with the highest score (given by Equation 9) is removed from 
Q and placed in a set R, following which new models are generated as described just 
above, scored and added to Q. The first phase terminates after a user-specified 
number of models have accumulated in R.  

The second phase searches for models that change the current model-averaged 
estimate of P(Zt | xt, D) the most. The idea here is to find viable competing models 
for making this posterior probability prediction. When no competitive models can 
be found, the prediction becomes stable. During each iteration of the search, the 
highest ranked model M* is removed from Q and added to R. The ranking is based 
on how much the model changes the current estimate of P(Zt | xt, D). More change is 
better. In particular, M* is the model in Q that maximizes the following function: 
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where for a set of models S, the function g(S) computes the approximate model 
averaged prediction for Zt, as follows: 
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The second phase terminates when no new model can be found that has a value (as 
given by Equation 11) that is greater than a user-specified minimum threshold T. 
The final distribution of Zt is then computed from the models in R using Equation 8. 

4 Evaluat ion 

We evaluated ISA on the 29 UCI datasets that Zheng and Webb used for the 
evaluation of LBR. On the same datasets, we also evaluated a simple Bayes 
classifier (SB) and LBR. For SB and LBR, we used the Weka implementations 
(Weka v3.3.6, http://www.cs.waikato.ac.nz/ml/weka/) with default settings [5]. We 
implemented the ISA algorithm as a standalone application in Java. The following 



 

 

settings were used for ISA: a maximum of 100 phase-1 models, a threshold T of 
0.001 in phase-2, and an upper limit of 500 models in R. For the parameter priors in 
Equation 10, all αi jk were set to 1. 

All error rates were obtained by averaging the results from two stratified 10-fold 
cross-validation (20 trials total) similar to that used by Zheng and Webb. Since, 
both LBR and ISA can handle only discrete attributes, all numeric attributes were 
discretized in a pre-processing step using the entropy based discretization method 
described in [6]. For each pair of training and test folds, the discretization intervals 
were first estimated from the training fold and then applied to both folds. The error 
rates of two algorithms on a dataset were compared with a paired t-test carried out at 
the 5% significance level on the error rate statistics obtained from the 20 trials. 

The results are shown in Table 1. Compared to SB, ISA has significantly fewer 
errors on 9 datasets and significantly more errors on one dataset. Compared to LBR, 
ISA has significantly fewer errors on 7 datasets and significantly more errors on two 
datasets. On two datasets, chess and tic-tac-toe, ISA shows considerable 
improvement in performance over both SB and LBR. With respect to computation 

Percent error rate Dataset Size No. of 
classes 

Num. 
Attrib. 

Nom. 
Attrib. SB LBR ISA 

Annealing 898 6 6  32   3.5 -   2.7 -   1.9  
Audiology 226 24 0  69 29.6 29.4 30.9 
Breast (W) 699 2 9    0   2.9 +   2.8 +   3.7 
Chess (KR-KP) 3169 2 0  36 12.1 -   3.0 -   1.1 
Credit (A) 690 2 6    9 13.8 14.0 13.9 
Echocardiogram 131 2 6    1 33.2 34.0 35.9 
Glass 214 6 9    0 26.9 27.8 29.0 
Heart (C) 303 2 13    0 16.2 16.2 17.5 
Hepatitis 155 2 6  13 14.2 - 14.2 - 11.3 
Horse colic 368 2 7  15 20.2 16.0 17.8 
House votes 84 435 2 0  16 10.1 -   7.0 -   5.1 
Hypothyroid 3163 2 7  18   1.4 -   0.9   0.9 
Iris 150 3 4    0   6.0   6.0   5.3 
Labor 57 2 8    8   8.8   6.1   7.0 
LED 24 200 10 0  24 40.5 40.5 40.3 
Liver disorders 345 2 6 0 36.8 36.8 36.8 
Lung cancer 32 3 0 56 56.3 56.3 56.3 
Lymphography 148 4 0 18 15.5 - 15.5 - 13.2 
Pima 768 2 8 0 21.8 22.0 22.3 
Postoperative 90 3 1 7 33.3 33.3 33.3 
Primary tumor 339 22 0 17 54.4 53.5 54.2 
Promoters 106 2 0 57   7.5   7.5   7.5 
Solar flare 1389 2 0 10 20.2 18.3 + 19.4 
Sonar 208 2 60 0 15.4 15.6 15.9 
Soybean 683 19 0 35   7.9 -   7.1   7.2 
Splice junction 3177 3 0 60   4.7   4.3   4.4 
Tic-Tac-Toe 958 2 0 9 30.3 - 13.7 - 10.3 
Wine 178 3 13 0   1.1   1.1   1.1 
Zoo 101 7 0 16   8.4 -   8.4 -   6.4 

Table 1: Percent error rates of simple Bayes (SB), Lazy Bayesian Rule (LBR) 
and Instance-Specific Averaging (ISA). A - indicates that the ISA error rate is 
statistically significantly lower than the marked SB or LBR error rate. A +
indicates that the ISA error rate is statistically significantly higher.                  



 

 

times, ISA took 6 times longer to run than LBR on average for a single test instance 
on a desktop computer with a 2 GHz Pentium 4 processor and 3 GB of RAM. 

5 Conclusions and Future Research 

We have introduced a Bayesian framework for instance-specific model averaging 
and presented ISA as one example of a classification algorithm based on this 
framework. An instance-specific algorithm like LBR that does model selection has 
been shown by Zheng and Webb to perform classification better than several eager 
algorithms [1]. Our results show that ISA, which extends LBR by adding Bayesian 
model averaging, improves overall on LBR, which provides support that we can 
obtain additional prediction improvement by performing instance-specific model 
averaging rather than just instance-specific model selection.  

In future work, we plan to explore further the behavior of ISA with respect to the 
number of models being averaged and the effect of the number of models selected in 
each of the two phases of the search. We will also investigate methods to improve 
the computational efficiency of ISA. In addition, we plan to examine other 
heuristics for model search as well as more general model spaces such as 
unrestricted Bayesian networks. 

The instance-specific framework is not restricted to the Bayesian network models 
that we have used in this investigation. In the future, we plan to explore other 
models using this framework. Our ultimate interest is to apply these instance-
specific algorithms to improve patient-specific predictions (for diagnosis, therapy 
selection, and prognosis) and thereby to improve patient care. 
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