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Abstract 

Suermondt, H.J. and G.F. Cooper, Initialization for the method of conditioning in Bayesian 
belief networks (Research Note), Artificial Intelligence 50 (1991) 83-94. 

The method of conditioning allows us to use Pearl's probabilistic-inference algorithm in 
multiply connected belief networks by instantiating a subset of the nodes in the network, the 
loop cutset. To use the method of conditioning, we must calculate the joint prior 
probabilities of the nodes of the loop cutset. We present a method that lets us compute 
these joint priors by instantiating the loop-cutset nodes sequentially. 

1. Introduction 

Pearl [2-4] developed the method of conditioning to apply his polytree 
algorithm for probabilistic inference to multiply connected belief networks. 
The method uses a loop cutset, a subset of the nodes in the network that 
prevents incorrect calculations and cycling of probabilistic propagation mes- 
sages by rendering the belief network singly connected. In inference, the nodes 
of the loop cutset must be instantiated to each of their possible values to 
determine the effects of evidence on the marginal probability distributions of 
the nodes in the network. After evidence is propagated through the network 

* Present address: Section of Medical Informatics, University of Pittsburgh, Pittsburgh, PA 
15261, USA 

0004-3702/91/$03.50 © 1991 - -  Elsevier Science Publishers B.V. 



84 H.J. Suerrnondt, G,F. Cooper 

for every possible combination of instantiations of the loop-cutset nodes, the 
results, weighted by the posterior probabilities of the loop-cutset nodes, are 
averaged [5, pp. 204-210]. 

For a loop cutset consisting of nodes C ~ , . . . ,  C n, and evidence set E, we 
need to have available the loop-cutset nodes' joint posterior probabilities 
P(c~.. .  c~ I E) for each possible combination of values, c 1 . . . . .  c~, of 
C ~ , . . . ,  C,,. Pearl provides an uncomplicated scheme to derive these poste- 
riors from the loop-cutset nodes' prior joint probabilities P(c l . . .  cn) [2]. This 
scheme, however, requires that we know these prior joint probabilities. In this 
paper, we discuss the problem of calculating these prior probabilities, 
e ( c , . . ,  c,,). 

We cannot calculate the prior joint probabilities simply by applying Pearl's 
polytree algorithm to the network, since we cannot use Pearl's polytree 
algorithm in a multiply connected belief network unless the loop-cutset nodes 
are already instantiated to fixed values and their prior joint probabilities are 
known. Therefore, we need to find the joint probabilities by another method. 
This alternative method, which consists of instantiating the loop-cutset nodes 
sequentially, wilt be described in Section 2. 

After we have obtained the joint probabilities of the loop-cutset nodes, we 
can calculate the prior marginal distribution for each node by summing the 
probabilities for that node conditioned on each possible combination of values 
of the loop-cutset nodes. Thus, the prior probability of value x of node X is 

[P (x ]c , . . .  c,~)P(c,.., c,,)]. (1) 
c I . . . t '  n 

Furthermore, after we introduce evidence E, we can calculate the posterior 
probabilities, P(x[E).  In particular, if E consists of only a single evidence 
node, 

P ( x I E ) =  ~ [P(xlE, c i . . . c , , ) P ( c , . . . c , , ] E ) ] .  (2) 
c I ' ' • c n  

If E consists of multiple evidence nodes, we obtain P(x ] E) by instantiating the 
single evidence nodes of E in sequence, conditioning on C ~ , . . . ,  C,,, as 
described in detail in [5, p. 206]. 

In equation (2), the new weight of each loop-cutset instance after a single 
evidence node E, P(c~.. .  c,, I E), is derived from the prior weight P(c~...  cn) 
as follows [5, p. 206]: 

P(c , . . .  c, I E) = ~ P(EI c , . . .  c~)P(cl . . ,  cn), (3) 

where c~ is a constant, the value of which we obtain by normalizing over all 
loop-cutset instances: 

1 1 

c~- P ( E ~ -  ~ P(Elc~ . . . c , , )P(c~ . . . c , , )  (4) 
¢ ' I "  • " c n  
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Note that P(x I Cl. • • c~) in equation (1) is the marginal probability of value x 
of node X in the instance of the network where C 1 , . . . ,  C~ have values 
c I . . . . .  c n. This marginal probability is calculated directly by the initialization 
procedure described in the remainder of this paper. Similarly, if E consists of a 
single element, P(E[Cl... c~) in equations (3) and (4) is available directly after 
initialization. The analogous procedure for multiple-element E is described in 
detail in [5, p. 206]. In equation (2), we can calculate P(x I E, c 1. . .  Cn) readily 
by propagating E using Pearl's polytree algorithm [3] because all the loop- 
cutset nodes have been instantiated to fixed values. 

We refer to the belief network in which the loop-cutset nodes have been 
assigned a particular combination of values as an instance of the loop cutset. 
The remainder of this paper concerns the calculation of the prior probability 
P(Cl . . .  cn) for each of the possible loop-cutset instances. 

2. Network initialization 

In this discussion, for the sake of clarity, we shall follow the notation used by 
Pearl [3; 5, p. 152]: All nodes have a conditional-probability matrix P; for a 
node with one or more parents (immediate predecessors), the matrix P 
describes the dependency between the node and its parent nodes; for a node 
without parents, the matrix P gives the node's prior probability distribution. In 
addition, we follow Pearl in referring to the marginal probability distribution 
for a node, conditioned on all available evidence, as the belief vector of that 
node, denoted by BEL. The marginal belief for value x of node X is denoted 
by BEL(x). As we shall see in Section 2.1, we derive the values of the belief 
vectors from the conditional-probability matrices and from the values of the 
instantiated nodes in the network. 

In initializing the network, we first order all nodes according to the belief- 
network predecessor relationship: If X~ precedes Xj in the ordering, there exists 
no directed path from X / t o  X i. For simplicity, we assume that the labeling 
X ~ , . . . ,  X n represents the nodes ordered by the predecessor relationship. 
Because a belief network is a directed acyclic graph, the predecessor relation- 
ship induces a partial ordering [1, pp. 29-30]. For efficiency, the loop-cutset 
nodes should appear as late in the ordering as possible. Thus, if node Xj is the 
first loop-cutset node in the ordering, then each of nodes Xj+I . . . . .  Xn either 
belongs to the loop cutset or has a predecessor in the loop cutset. 

The calculation of the joint priors of the loop-cutset nodes consists of two 
passes through the network in order of the predecessor relationship. In the first 
pass, we calculate initial belief assignments for all nodes that do not have 
predecessors in the loop cutset. In the second pass, we instantiate the nodes of 
the loop cutset sequentially, and update the belief assignments for all other 
nodes. 
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2. 1. Initial belief assignments 

In the first pass through the ordered nodes of the network, we determine the 
prior probabilities of the nodes that do not have any predecessors that are 
members of the loop cutset. In the ordering X ~ , . . . ,  X n, these are the nodes 
that appear before the first loop-cutset node. We assign initial beliefs to these 
nodes as follows. If a node does not have any predecessors, we set its belief 
vector equal to its prior-probability matrix, since the probability distribution 
for such a node is not conditioned on that of any other nodes. If a node has 
one or more parents, we multiply the conditional-probability matrix of the 
node by the belief vectors of each of its parents to obtain the initial belief 
assignment for the node; for example, for a node C with parent nodes A and 
B, we get 

BEL(c) = ~ P(c I A, B) BEL(A) BEL(B) .  
A , B  

We will have calculated already the initial beliefs for the parents--BEL(A) and 
BEL(B)- -because  we are processing the nodes in order of the predecessor 
relationship. Appendix A contains a proof that this initial belief assignment is 
equal to the prior probability distribution for each node that does not have 
loop-cutset predecessors. 

Let S represent the set of nodes without loop-cutset predecessors. Let Vx~ 
represent the set of possible values that node X~ can have. We can summarize 
the initial belief assignment as follows: 

begin InitialBeliefs 
for X i E S  do 

if node Xi has no parents then 
for x ~ E Vx, do 

BEL(&) : :  P(x,) 
end for 

else {assume node has parents M 1 . . . . .  M~} 
for x i E Vxi do 

BEL(xi) 

: =  Z [ e ( x i  [ M 1 ,  . . . , M n ) BEL(M 1)-. .  BEL(M n)] 
M I . . . . .  M n 

end for (5) 
end if 

end for 
end InitialBeliefs; 

Note that we may calculate the initial belief assignments for only those nodes 
that do not have any predecessors in the loop cutset. The reason for this is the 
following. Expression (5) requires that BEL(M~) . . . . .  BEL(Mn) are marginal- 
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Fig. 1. Network structure in which the parents of node C, nodes A and B, share a common 
predecessor, node D. 

ly independent. We cannot guarantee such independence if a node-has a 
predecessor that is a member of the loop cutset, since there may be a loop 
among the predecessors of such node. For example, if two parent nodes share 
a common predecessor, as illustrated in Fig. 1 for nodes A and B, the initial 
belief of their common child (C), as would be assigned by procedure Initial- 
Beliefs, may differ from that node's prior marginal probability [6] since A and 
B are not marginally independent. For such nodes that do have predecessors in 
the loop cutset, the belief vectors will be calculated in the second phase of 
initialization, during which the members of the loop cutset will be instantiated. 

2.2. Calculation of  the joint probabilities of  the loop-cutset nodes 

We have not yet assigned specific values to the loop-cutset members during 
the first part of the initialization procedure, the calculation of the initial belief 
assignments. Therefore, the initial-belief-assignment calculation is identical for 
each loop-cutset instance and has to be executed only once. The second part of 
initialization consists of instantiating the loop-cutset nodes to the specific values 
they have for each instance, and obtaining the joint probabilities of these 
values. This part has to be calculated separately for each loop-cutset instance. 

Let us assume that, for the loop-cutset instance under consideration, we 
want to instantiate loop-cutset nodes C t , . . . ,  C n to values c 1 . . . .  , c n. We shall 
calculate P(Cl. . .  Cn) by instantiating the loop-cutset nodes sequentially and 
propagating the effects by Pearl's polytree algorithm through this particular 
instance of the network. 

In propagating probabilistic messages through the network, we make sure 
that we enforce all blocking conditions [5, pp. 116-118] as though the entire 
loop cutset has been instantiated. Due to the blocking conditions, we know 
that, during the calculation of P(c~...  Cn), 

• Loop-cutset nodes do not pass messages from their parents to their 
children or from their children to their parents. 

• Loop-cutset nodes do not pass messages from one child to any other 
children. 

• Nodes that are not in the loop cutset and that do not have any successors 
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that are in the loop cutset do not pass messages from one parent to any 
other parents. 

The blocking conditions are based on conditional independence among parts 
of a belief network. By observing these blocking conditions, we shall prevent 
cycling of messages through loops in the network. In addition, these conditions 
play a role in preventing propagation of probabilistic messages to sections of 
the network where the belief assignments cannot be calculated without consid- 
ering the still uninstantiated loop-cutset nodes, as illustrated by the following 
example. 

Consider the network in Fig. 2, where the loop cutset consists of nodes A 
and B. Before we instantiate node A, the initial belief assignments to the 
successors of node A have not yet been calculated. When we instantiate node 
A, we propagate this instantiation to the successors of node A. The loop 
among the predecessors of node B is now cut, rendering B's parents marginally 
independent. As a result, we can calculate B's marginal probability dis- 
tribution, conditioned on the instantiated value of node A. However, since 
node B is still uninstantiated, B's children are not yet marginally independent. 
Therefore, we cannot yet compute the marginal probability distributions of B's 
successors, in particular, of node C. During the instantiation of node A, node 
B, as a loop-cutset member, blocks propagation of messages to these succes- 
sors. When we instantiate node B, its children become marginally independent, 
and propagation reaches node C, computing its probability distribution con- 
ditioned on the instantiated values of nodes A and B. 

As we shall show later in this section, we need to know a loop-cutset node's 
belief vector at the time of such a node's instantiation. By instantiating the 
loop-cutset nodes in order of the predecessor relationship, we can ensure that 
no loop-cutset node is instantiated until its belief vector has been calculated. 
We do not instantiate node B before node A, because the belief vector of node 
B cannot be computed until after node A has been instantiated. This considera- 
tion forms the primary motivation for instantiating the ioop-cutset nodes in 
order of the predecessor relationship. 

In the remainder of this section, we shall present a procedure, GetJoint, by 
which we compute the joint probability of the instantiated values of the 
loop-cutset nodes. Taking note of the blocking conditions, we instantiate the 

Fig. 2. Example illustrating why the loop-cutset nodes should be instantiated in order of the 
predecessor relationship. In this example, the loop cutset consists of nodes A and B. 



Initialization for the method of conditioning 89 

loop-cutset nodes and compute their joint probability using Pearl's polytree 
algorithm. Assume that there are n nodes in the loop cutset, and that the nodes 
of the loop cutset are also ordered by the predecessor relationship; that is, for 
loop-cutset nodes C~ and Cj, if i < j, then there exists no directed path from Cj 
to C e. We calculate the joint prior probability by chaining conditional prob- 
abilities: 

P(c 1. . . c , ) = P ( c l ) P ( c 2 ] c , ) e ( c 3 l c l ,  c2 ) . . . P ( c ,  l c l . . . c , _ l ) .  (6) 

In terms of the details of Pearl's polytree algorithm [2-5], before any 
loop-cutset members are instantiated, we set the 7r-vectors (containing infor- 
mation from parents to children) of nodes that have no loop-cutset pre- 
decessors equal to the initial BEL-vectors, calculated by procedure Initial- 
Beliefs; all A-vectors (containing information from children to parents) are 
initially uniformly distributed. As we instantiate loop-cutset members, we 
adjust the A- and 7r-vectors to include probabilistic information about the 
values of the instantiated loop-cutset nodes. Thus, after i loop-cutset members 
have been instantiated, for any node Xj in the network such that all the 
loop-cutset predecessors of Xj have been instantiated, 

BEL(xj) = P(xjl C 1.  • • Ci) f o r  all xj E V x .  

We can summarize the calculation of the joint prior probability P(Cl.. .  %) 
as the following procedure: 

begin Get Joint 
Z := 1.0; 
for i :=  1 to n do 

Z := Z * B E L ( c i ) ;  
instantiate node Ci to value c i 
propagate using Pearl's polytree algorithm 

end for; 
P (c l . . .  c . ) : =  Z; 

end Get Joint; 

As we instantiate sequentially the loop-cutset nodes to their respective 
values, we maintain the current joint probability Z of those loop-cutset nodes 
already instantiated. Initially, we let Z = P(c t )=  BEL(Cl) and we propagate 
the instantiation of node C 1. When we reach loop-cutset node C i, 

BEL(ci) = P(c i I Cl . . .  ci_l) , 

because we have already propagated the instantiation of nodes C 1 . . . .  , Ci_ 1. 
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We multiply the current joint Z by BEL(ci). After this multiplication, Z = 
P(c~. . .  ci). Next, we instantiate node C i to ci, and we propagate this instantia- 
tion by sending probabilistic messages through the remainder of the network to 
update the probability distributions of the remainder of the loop-cutset nodes. 

After we have instantiated all loop-cutset nodes, we have thus computed the 
joint probability of the values to which these nodes have been instantiated: 
Z = P(cl. • • c,,). In addition, by propagating the instantiation of each loop- 
cutset node, we have conditioned the belief vectors of all other nodes in the 
network on these values of the loop-cutset nodes. Thus, once all loop-cutset 
instances have been processed, we can obtain the marginal probability dis- 
tribution on any node in the network by applying equation (1). 

3. Computational time complexity 

We can calculate the joint probability of the loop-cutset nodes in a particular 
instance by first setting prior beliefs on each node in the network in a single 
pass through the network, and then instantiating the loop-cutset node sequen- 
tially. Once the joint probabilities of the loop-cutset nodes have been calcu- 
lated for each instance, they can be updated incrementally as new evidence 
arrives. 

The worst-case computational complexity of this initialization depends on 
the total number of nodes in the network, on the maximal number of parents 
of any node in the network and the number of values of each of these parents, 
on the number of nodes in the loop cutset, and on the number of values of 
each of these loop-cutset nodes. The initial ordering of all the nodes is O(n2), 
where n is the number of nodes in the network. This step consists of ordering 
all the nodes, including the cutset nodes, by the predecessor relationship. 

Once we have completed this preparatory step, we first calculate our initial 
belief assignments. The worst-case computational time complexity of proce- 
dure InitialBeliefs, given the initial ordering of all the nodes, is O(Trn), where 
7r is the maximal product of the number of possible values of any node and the 
number of possible values of each of its parents. 

After computing initial belief assignments for the nodes that have no 
loop-cutset predecessors, we must propagate the desired value of each loop- 
cutset node. A single propagation is O(Trn). The size of the loop cutset, in the 
worst case, is O(n), and for each member of the loop cutset we have to 
perform a single propagation, so the time complexity of propagation of 
instantiated values of all the loop-cutset nodes is O(~rn) 2. Therefore, for a 
single loop-cutset instance, calculation of P (c l . . .  cn) has worst-case time 
complexity O(~rn2). 

We need to consider each possible combination of values of the loop-cutset 
nodes, however, as there are that many instances. Let L designate the product 
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of the number of possible values of every node in the loop cutset. The number 
of instances is equal to L. Clearly, the value of L is exponentially related to the 
size of the loop cutset. The worst-case time complexity of calculation of the 
joint probabilities of the loop-cutset nodes for all instances is O(LTrn2). The 
time complexity of the entire initialization process is therefore O(n2)+ 
O(Trn) + O(LTrn2), which is O(L'trn2).  Therefore, for a Bayesian belief net- 
work with a loop cutset that has L instances, an upper bound on the time 
complexity of initialization is O(L'n'n2). 

Appendix A 

In the appendix, we show that the algorithm described in Sections 2.1 and 
2.2 correctly calculates the joint prior probabilities of the loop-cutset nodes. 
We shall first prove that procedure InitialBeliefs described in Section 2.1 
correctly calculates the prior probability of the first loop-cutset node, and, by 
analogy, of any other node without loop-cutset predecessors. Then, we show 
that the procedure described in Section 2.2 calculates the joint prior probability 
of the remaining loop-cutset nodes. 

We define the predecessor set of a node X, denoted as A(X), as the set of 
nodes consisting of X and its predecessors. Formally, a node Y belongs to the 
predecessor set of X if (1) Y is equal to X, or (2) Y belongs to the predecessor 
set of a parent of X. 

Now, we shall show that the prior probability of the first loop-cutset node, 
C~, is correctly calculated by top-down propagation. First, we show that the 
parents of C l are marginally independent. Next, we use induction on nodes 
with marginally independent parents to prove that InitialBeliefs computes the 
prior probability distribution of C i properly. 

Recall that the loop-cutset nodes are ordered according to the predecessor 
relationship; therefore, the set A(C1)- C 1 does not contain any loop-cutset 
nodes. We know that every loop in the network must contain at least one 
loop-cutset node such that this loop-cutset node has no more than one parent 
in the same loop [6]. Therefore, the subnetwork consisting of A(C~) contains 
no loops and is singly connected. 

The fact that A(C~) is singly connected is important because it implies that 
for any node YEA(C1), the probability distributions of the parents 
M ~ , . . . ,  M n of Y are marginally independent of one another. Since A(C~) is 
singly connected, for any two parents M i and Mj of Y, M i is not a predecessor 
of Mj or vice versa. Also, Mi and Mj do not share any common predecessors. 
Therefore, any possible path P between Mi and M/includes at least one node 
W such that W has two parents in P (that is, the arcs of P leading into node W 
are head-to-head). Since we know that at the time of calculation of the prior of 
C~, no nodes in the network have been instantiated, node W blocks the path 
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between M i and Mj [5, pp. 116-118]. As a result, M~ and Mj are marginally 
independent. 

We now show by induction that InitialBeliefs correctly calculates the prior 
marginal probability distribution of any node in A(C~). The same proof holds 
for any node that does not have any loop-cutset predecessors, since the 
subnetwork formed by such a node and its predecessor set is singly connected. 
Consider any node X E A(CI)  that does not have any parents; for such a node, 
the prior probability of any value x of node X is given by P(x), which is stored 
in the conditional-probability tables. In procedure InitialBeliefs, we set BEL(x) 
to P(x). Now consider any node Y E A(C~) such that for each of the parents M, 
of Y, the prior marginal probability has been calculated so that BEL(m~)= 
P(mi) for each value m i of M i. Since the parents M 1 . . . .  , M,, of Y are 
marginally independent, the joint probability of any combination of values of 
M~ . . . . .  M,,, P(m~.. .  m,,), can be calculated by multiplying the marginal 
probabilities of each of M~ . . . . .  M,,: 

P (ml . . .  m,,) = P ( m , ) P ( m 2 ) . . . P ( m , ,  ) 

= BEL(m, )BEL(m2) • • • BEL(m,, ) . 

Therefore, procedure InitialBeliefs correctly calculates the prior marginal of 
node Y: 

P ( y ) =  
M 1 . . . M n 

= E 
M l . . . M n 

-- E 
M I . . . M n 

-- E 
M I . . . M n 

= BEL(y)  (as calculated by InitialBeliefs). 

After procedure InitialBeliefs has processed each of the nodes in A(C1), for 
each value c I of node C 1, BEL(cl)  is equal to the prior probability P(Cl). 
Analogously, InitialBeliefs computes the prior probability distribution for each 
node that has no loop-cutset predecessors. 

We calculate the joint probability of the loop-cutset nodes by sequential 
instantiation of these nodes, as discussed in Section 2.2. Initially, we set the 
joint probability, Z, to the prior probability of node C~, as determined by 
procedure InitialBeliefs. 

When we reach node C,+~ in procedure GetJoint, we will have propagated 
the instantiation of nodes C1 . . . .  , C i to their respective values, c ~ , . . . ,  ci. We 
now show that propagation of the instantiation of C~ . . . .  , C i to node C~+~ 

P(y, M~. . .  M,,) 

P(Y I M , . . .  M n)P(M1..,  g , , )  

P(y [ M~.. .  Mn)P(M, )P(M2) . . .  P(Mn) 

P ( y ] M , . . .  M~)BEL(MI)BEL(M2) .  . . BEL(M~) 



Initialization for the method of conditioning 93 

involves only members of the joint predecessor set A(C1.. .  Ci+l) of nodes 
C ~ , . . .  , C~+~, where A(CI . . .  Ci+~) is defined as 

i+1 

A(C, . . .  C~+I)= U A(Cj). 
j=l 

Consider an arbitrary path T from one of C 1 , . . .  , C i to Ci+~; assume that T 
includes at least one node X such that X is not a member of A(C 1. . .  Ci+l). 
Since only nodes C 1 , . . . ,  Ci have been instantiated, node X has no in- 
stantiated successors. Node X is not a predecessor of any member of 
C 1 , . . . ,  Ci+1; therefore, either X has two parents in T (the arcs of T linking X 
to its neighbors in T are head-to-head), or some successor W of X has two 
parents in T. In the former case, node X blocks propagation of evidence 
messages along path T; in the latter case, node W blocks T, since node W, a 
successor of node X, does not have any instantiated successors. Therefore, any 
path T from one of C 1 ,  . . . , C i tO C~.~ such that T contains a node that is not 
in A(C 1. .. C~+1) is blocked. In computing P ( c ~ ÷ ~  I c l .  • • ci), we must consider 
evidence propagation only in the subnetwork consisting of A(C1.. .  Ci+~). 

Due to the ordering of the loop-cutset nodes, A(CI . . .  C~÷1) contains no 
uninstantiated loop-cutset nodes other than C,÷~, so all loops in A(CI . . .  C~÷~) 
have been cut when we reach node C~+1. Therefore, evidence can be prop- 
agated in the subnetwork consisting of A(C1.. .  C~.~) by Pearl's polytree 
algorithm. A proof that marginal probabilities calculated by Pearl's polytree 
algorithm are correct is given in [5]. Propagation of the instantiation of 
C ~ , . . . ,  Ci to their respective values by Pearl's polytree algorithm results in 
B E L ( c i + I )  =P(Ci+llCl... ci) for each value ci+ 1 of node Ci+x. Thus, the 
chaining of probabilities in procedure Get Joint results in the correct calculation 
of Z = P ( Q . . .  c~). 
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