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Improving the Prediction of
Clinical Outcomes from Genomic Data
Using Multiresolution Analysis

Pablo H. Hennings-Yeomans and Gregory F. Cooper

Abstract—The prediction of patient’s future clinical outcome, such as Alzheimer's and cardiac disease, using only genomic
information is an open problem. In cases when genome-wide association studies (GWASs) are able to find strong associations
between genomic predictors (e.g., SNPs) and disease, pattern recognition methods may be able to predict the disease well.
Furthermore, by using signal processing methods, we can capitalize on latent multivariate interactions of genomic predictors. Such an
approach to genomic pattern recognition for prediction of clinical outcomes is investigated in this work. In particular, we show how
multiresolution transforms can be applied to genomic data to extract cues of multivariate interactions and, in some cases, improve on
the predictive performance of clinical outcomes of standard classification methods. Our results show, for example, that an
improvement of about 6 percent increase of the area under the ROC curve can be achieved using multiresolution spaces to train
logistic regression to predict late-onset Alzheimer’s disease (LOAD) compared to logistic regression applied directly on SNP data.

Index Terms—Human genome, single nucleotide polymorphisms, multiresolution, pattern recognition, wavelets, prediction, clinical

outcomes, genomics, SNPs.

1 INTRODUCTION

SING genomic information to estimate individual’s risk

for disease is an important objective of personalized
medicine. Related objectives include diagnosis and the
estimation of an individual’s response to medication.
Genome-wide sequencing platforms have advanced signifi-
cantly during the last decade, which increases the opportu-
nities for risk prediction and related objectives. Today, it is
possible to measure millions of DNA loci (base pairs) within
hours for a few hundred dollars. Such developments have
led to genome-wide association studies (GWASs) which
have discovered a variety of loci associated to common
diseases, such as heart disease and late onset Alzheimer’s
disease (LOAD). These loci can be used as biomarkers to
predict the disease risk of individuals. Most research has
focused on searching for single loci that predict disease [1].
The search for sets of interacting multiple loci has been less
explored [2], [3], [4], [5].

The current paper describes a multivariate approach for
genomic pattern recognition. In particular, we treat the
genome as a one-dimensional signal, such as voice, music,
and ECGs, to which we apply multiresolution analysis. Our
goal is to extract genomic features from sequences of single
nucleotide polymorphisms (SNPs), which are the genomic
variants that represent most of the variations in DNA.
Instead of working directly with the input space of SNPs, we
use multiresolution analysis to decompose the genome into
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multiresolution spaces, where we aim to find better features
for prediction.

The main contribution of this paper is to propose that
genomic feature extraction or selection be carried out in a
multiresolution domain instead of the input SNP domain,
which can lead to improve predictions of clinical outcomes.
This approach has been used with success before in other
fields of research, such as biometric recognition and
bioimaging [6], [7], [8]. In genomics, the work of Hutter
et al. [9] applies multiresolution analysis in the process of
computing statistics from DNA sequence polymorphisms at
the genome-wide level, but it does not train a model for the
prediction of clinical outcomes from multiresolution fea-
tures, as we propose here. To our knowledge, the current
paper is the first investigation of multiresolution analysis
with genomic data for the prediction of clinical outcomes.

The following section briefly explains background for
this work. Section 3 describes the multiresolution classifica-
tion framework applied here for prediction. Section 4 details
the experimental setup and results. Section 5 discusses key
points, and Section 6 provides conclusions.

2 BACKGROUND

2.1 Genome-Wide Association Studies

With the discovery that polymorphic DNA sequences can be
used as a reference to genetic markers [10], it is now possible
to represent the human genome as a localized 1D sequence
that can be read uniformly across populations. The most
widely used polymorphisms today are single nucleotide
polymorphisms.

Before the International HapMap Project [11], methods for
detection of DNA polymorphisms produced few samples at
a high cost. However, relatively recent developments in
genomic technology allow the measurement of millions of
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SNPs per individual for a few hundred dollars. An overview
of genotyping technologies can be found in [12].

Genome-wide association studies aim to find disease-
gene associations by mining the dense SNPs sequences of
large groups of people. The studies often follow a case-
control design in which a well-defined phenotype or clinical
outcome is established, and the study is performed using an
affected group (cases) and an unaffected group (controls).
The analysis focuses on finding differences in the SNP
sequences between these two groups.

Due to the large dimensionality of the input space, most
GWAS studies have focused on univariate analyses for
biomarker discovery. However, increasing effort is being
exerted on multivariate approaches [4], [5].

2.2 Genomic Pattern Recognition

Prediction of clinical outcomes is typically posed as a binary
classification problem. After quality control (QC) proce-
dures are performed, the usual pattern recognition frame-
work uses a feature extraction method to summarize the
data in a space that will improve classification.

We use the y? statistic as our ranking measure for feature
selection. In particular, we use p-values from a chi-square
analysis to rank the most univariately predictive SNPs, and
select the top K SNPs to define a K-dimensional feature
space, where K is found through cross-validation. One
could use principal component analysis, alternatively, or
other subspace methods as a way of feature extraction; we
found ranking using x? to give competitive results with
genomic data.

Once a feature space is defined, a classification algorithm,
such as logistic regression, random forests, or support vector
machines can be trained [13].

2.3 Multiresolution Transforms

Building on properties such as time resolution and
frequency localization, multiresolution transforms were
originally proposed as a mathematical tool to overcome
limitations of the Fourier transform. With Fourier trans-
forms, the time-frequency bins to represent signals (se-
quences) is fixed, while with multiresolution transforms we
can adapt the 2D inner tiling of this time-frequency plane to
better support the sequence at hand [14]. In practice, this
means that with multiresolution transforms, in most cases,
the coefficients that represent our sequences will capture
more precise information about our sequence than would
Fourier coefficients.

A thorough exposition of multiresolution analysis can be
found elsewhere [14], [15]. We cover here the discrete
wavelet transform (DWT) and a particular multiresolution
transform of the family of frames, named the undecimated
discrete wavelet transform (UDWT), also found under other
names, such as the shift invariant wavelet transform and the
stationary wavelet transform (SWT).

From the perspective of linear algebra, both of these
multiresolution transforms can be implemented as

u = Wx, (1)

where x is an N x 1 input vector. For the DWT, u is a vector
of wavelet coefficients also NV x 1, while for the UDWT it is
an (L + 1)N x 1 vector, where L is the number of levels (or
scales) in the decomposition. This is because frames are
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redundant, while proper wavelet transforms are not. Then,
for the DWT, W is N x N, and for the UDWT it is an (L +
1)N x N matrix. The matrix W consists of L+ 1 subma-
trices for both transforms

W=[W; W, ... W, WL+1]T7 (2)

however, for the DWT the dimensions of W}, are N/2F x N
for k={1,2,..., L} and N/2" x N for k = L + 1, while for
the UDWT all W are N x N. The columns of W, are
circularly shifted versions of the same vector. For k=1 to L
we obtain as output what are referred to as detail
coefficients, while for k=L +1 we obtain approximation
coefficients at the coarsest level of the decomposition. Every
W, implements an orthonormal projection of the input x
onto a multiresolution space, or subspace. These subspaces
are orhtonormal for the DWT, and there is a unique inverse
transform to recover the input x from the subspace
coefficients, u. For the UDWT, and for frames in general,
no unique inverse transform exists.

What makes multiresolution powerful for processing
signals, such as voice, images and in our case, the genome,
is that it can be implemented efficiently using filterbanks,
regardless of the dimensionality of the signal [14]. Applying
(1) directly takes O((L + 1)N) operations, however, using
fast algorithms we only need O(LN) computations.

From a digital signal processing perspective, (1) can be
implemented iterating a single two-channel filterbank
recursively. This unit filterbank implements a single-level
multiresolution decomposition of the input. For an L-level
multiresolution transform, the filterbank is applied L times
recursively on the output channel of the approximation
coefficients. The output u = {uy, uy,...,uz41} is the collec-
tion of detail coefficients from the filterbank branches
where it was not iterated, plus the approximation coeffi-
cients of the last iteration. These filterbank outputs are the
coefficients u;, = Wyx.

An important generalization of multiresolution trans-
forms comes from relaxing the requirement of iterating only
on the approximation channel of the filterbank. By iterating
on the detail channel we obtain more general multiresolu-
tion representations, which have been called wavelet packet
trees. If we iterate on every output channel possible up to
the Lth level, we have a full wavelet packet tree.

Wavelet transforms have been applied successfully in
signal compression and coding. On the other hand,
redundant multiresolution transforms, such as the UDWT,
have proven useful in areas that include denoising and
feature extraction. In this paper, we use multiresolution
transforms that are wavelet packet trees and undecimated.

3 MULTIRESOLUTION FRAMEWORK

The approach we use to predict clinical outcomes from
genomic data is shown in Fig. 1. It consists of expanding the
original SNP space into multiple multiresolution spaces, in
each of which a classifier is trained. A final decision rule
combines the individual output scores (probabilities) of the
multiresolution subspace classifiers into a final prediction
decision.
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Fig. 1. Top Panel: Typical pattern recognition workflow for predicting clinical outcomes from genomic data. Bottom Panel: Pattern recognition
workflow proposed to work with genomic data, using a multiresolution analysis block as a preprocessing step.

3.1 Training Algorithm

Define the genomic signal of an individual as a discrete set
of samples © = [z, x, ..., zy] having a total of N base pairs
or SNPs. For each loci, z;, we count the number of minor
alleles, i.e., z; € {0,1,2}. We refer to this N-dimensional
space as the SNP space, or original space. For every data
sequence x there is an outcome or class label, y € {0,1},
representing the membership of the sample to the un-
affected or affected classes, respectively. Thus, we have a
binary classification problem.

The training stage of the proposed approach is as
follows: first a multiresolution transform is applied to the
training set. We use a full decomposition transform and
every subspace is kept for training, including the original
SNP space. We have found that using a stationary wavelet
transform gives better results than using orthonormal
wavelets. In Section 5, we discuss our selection of a specific
basis and decomposition.

We then continue in each multiresolution subspace with
learning feature selection and training a classifier for each
subspace. That is, a feature selection and standard classifica-
tion algorithm are trained in each of the subspaces. The
feature selection method used here ranks features (SNPs for
the original space, but coefficients for the multiresolution
subspaces) based on the ? statistic [16]. In this way, we
reduce each space from an N-dimensional input space to 7-
dimensional feature space, where the constant 7' can be
learned by cross-validation. For each multiresolution sub-
space, a classifier is trained using its best 1" features. In this
paper, we use logistic regression and random forests as
classifiers [13], but any feature-extraction and classifier
pairing may be used.

A final step in training requires learning the method to
produce the final prediction probability or score by combing

decisions from the subspace classifiers available. In our
implementation we used a simple classifier combination
rule, where the maximum score of a subset of subspace
classifiers is output as the final prediction decision. To select
which classifiers will be part of the subset, we rank each
classifier using training cross-validation error, as measured
using the area under the ROC curve (AUC). A discussion
about the implementation of other classifier combination
methods can be found elsewhere [13].

3.2 Prediction

The prediction or testing stage consists, first, on evaluating
each subspace classifier as follows: for an input test sample,
we perform multiresolution analysis to obtain the set of
subspace coefficients necessary to test the subspace classi-
fiers learned during training. From each multiresolution
space, the corresponding T features are used to construct a
feature vector, which is then input to the classifier of that
subspace. The scores or probabilities of each of the subspace
classifiers are computed and the maximum probability is
output as the final decision and prediction score.

We compare this approach to the standard workflow of
using the input SNP space only to obtain a final prediction
score.

3.3 Computational Complexity

The computational cost of the multiresolution framework
increases linearly with the number of subspaces in the
multiresolution decomposition. We consider here costs for
using an undecimated wavelet transform (UWT), but if an
orthogonal discrete wavelet transform was to be used, costs
would be much reduced.

For a wavelet decomposition of L levels, the number of
subspaces is 2¢ with L typically a small constant for
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pattern recognition applications. For an input sequence of
N samples, the number of operations of the UWT can be
computed using a fast algorithm [15] requiring O(LN)
operations. We implement a full UWT decomposition,
requiring O(K N) operations, with K = Y>%_ 2" and 2" <«
N in our case. Since the computations of each multi-
resolution subspace can be computed independently from
the others, these can be efficiently computed in parallel.

Besides the cost of the multiresolution preprocessing, we
also need to consider the cost of implementing a classifier
in each multiresolution subspace, and the method for
combining the classifiers” decisions into a final prediction.
Note that our interest lies in comparing the classification
performance of an approach with multiresolution methods
to an approach without it (standard classification). Since
the multiresolution framework includes a classifier unit at
every multiresolution space, and because such a classifica-
tion process is the baseline of comparison, we can consider
the computational costs of the multiresolution framework
relative to the cost of such baseline classification process.

In training, let the process of learning feature selection
and the classifier take O(MP) time for a data set of
M participants. Then, the total number of operations for
K multiresolution spaces is O(KMP + KMN). As men-
tioned above, to this amount we need to add the computa-
tional cost of learning a classifier combination method. When
such combination method is a voting scheme or a simple
combination rule among a subset of subspace classifiers, the
process of selection or ranking of the classifiers will add
computations to training. While using metrics obtained
during training of the classifiers can save computations,
alternatively, one can use performance metrics obtained
using cross-validation. In either case, these computations can
be parallelized.

Finally, let the computations for testing a single patient
case using the predetermined classification process be O(q).
Then, prediction of the outcome for a single case using a
multiresolution decomposition, with K subspace classifiers
in which individual decisions are combined using a voting
scheme or a simple rule (as outlined in training), will be
O(Kq+ KN).

4 EXPERIMENTS AND RESULTS

4.1 Alzheimer’s Data Set

We used a the data set collected for the study of late-onset
Alzheimer’s disease, available from the Translational
Genomics Research Institute [17]. The data set contains
information on 1411 individuals, with 861 being affected
with LOAD (cases) and 550 being unaffected (controls).

An Affymetrix chip was used to genotype 502,627 SNPs
for each person, and after applying quality controls a total of
312,316 SNPs were retained for analysis [17]. To this data set,
two alleles were added for chromosome 19, namely,
rs429358 and rs7412, that encode the ¢4 APOE genotype.
These alleles have been shown to be associated with LOAD
[17], but for technical reasons they are difficult to measure
using SNP arrays.

The genetic influences on LOAD are not completely
understood, but strong association has been found to
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genetic factors. Specifically, the apolipoprotein E (APOE)
gene has been consistently identified as a genetic risk factor
for LOAD. From recent GWA studies, the ¢4 APOE
genotype, located in chromosome 19, has been associated
with increased risk of developing Alzheimer’s disease [17].
We, therefore, focused our use on chromosome 19 SNP
data. We refer to this subset as TGEN19.

Missing values were imputed using fastPhase [18] by
analysing nonoverlapping windows close to 1,000 SNPs
long, without haplotype estimation. PLINK [19] was used to
convert the genomic data to an additive genomic model.

4.2 Experiment Settings

In the proposed method, there are three parts that need
specification: the multiresolution transform (MR), the feature
extraction method for each subspace and the classification
method used. The latter is actually a two-stage process, in
which every subspace classifier produces a score or prob-
ability, and then these are combined to produce a final
outcome prediction.

The multiresolution transform we used is the stationary
wavelet transform [20], which we refer to as the undeci-
mated discrete wavelet transform, and we use the Haar basis
to perform multiresolution analysis. The feature selection
method we used is a ranking procedure applying the x*
statistic [21]. For each MR subspace, we select the top 10
SNPs according to this ranking, which defines our feature
space. Finally, a classifier is trained in each MR feature
space, and we report on using either logistic regression or
random forests as subspace classifiers. In this way, we have
an output probability for each MR subspace from testing a
single participant. As a classifier combination rule, the
maximum of these output probabilities is used as the final
classification score.

A variation to this algorithm is to include a multi-
resolution pruning algorithm that selects MR subspaces
according to how well a classifier can be trained on them, or
some measure of classifier performance. Instead of using all
MR subspaces or selecting a particular subset of MR
subspaces toward computing the final outcome score, we
show performance results as we increase the number of MR
subspaces that are included. The order on which these MR
spaces are included (or pruned from taking part on the final
classification decision) is learned through cross-validation
in training using the area under the ROC curve.

In these experiments we randomly held out about a
fifth of the TGEN19 data set for testing and used the rest
for training.

4.3 Results

We evaluate performance on the TGEN19 data set using the
area under the ROC curve (AUC) as a measure of
performance. In general, we have four types of experiments:
we explore training the proposed algorithm for two depths
or levels of MR decomposition, L = {3,5}, and we use
either logistic regression or random forests as a subspace
classifier. The effect of increasing the level of decomposition
is simply that this makes more MR subspaces available,
from which some may obtain better predictive performance
than their parents. These results are to be compared to the
case of standard classification on the original SNPs data.
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Fig. 2. AUCs obtained by the proposed MR algorithm when classifiers are trained in selected subspaces according to their rank, using an L-level full
MR decomposition (Haar basis). The MR subspace classifiers are ranked in training, including the classifier trained at the original SNPs space. See
Table 2 for a list of the MR subspaces ordered by their classifier’s rank.

Fig.2shows the AUCs obtained by the proposed algorithm
as more MR spaces are included in the final prediction
process. Figs. 2a, and 2b show results for the case of logistic
regression, when the MR level is L = 3 and L = 5, respec-
tively. Similarly, Figs. 2¢, and 2d, show results for the case of
random forests. In these figures, the z-axis is the number of

MR subspaces selected, from one to the total number of spaces
available in the full packet decomposition, in the order they
were ranked in training (using AUC performance of their
classifiers in a cross-validation setting), including the original
SNPs space. These rank orders are different for all the four
cases, and the list of subspaces for each case is shown in



HENNINGS-YEOMANS AND COOPER: IMPROVING THE PREDICTION OF CLINICAL OUTCOMES FROM

o
o
.

sensitivity
o
o

0.4t
0.31
0.2 1
1 ——MR (L=23)
0.1 ——MR (L=5)
No MR
O L L L L
0 0.2 0.4 0.6 0.8 1
1-specificity

Fig. 3. ROCs for the case of classification with logistic regression: (blue)
Proposed algorithm for the case of using a three-level decomposition
Haar frame. In this case, using the top 13 MR spaces ranked in training
gave the larger AUC. (red) Proposed algorithm for the case of using a
five-level decomposition Haar frame. In this case, using the top 45 MR
spaces ranked in training gave the larger AUC. (gray) Logistic
regression applied on the SNPs space (using no multiresolution).

Table 2—here we have used the common terminology of
naming the MR space by the sequence of unit-filterbank
branches applied to obtain it, namely, at each level one can
obtain either detail coefficients, applying an “H”-branch, or
approximation coefficients, applying an “L”-branch. The
original SNPs space has been labeled “SNPs.”

An important overall observation from these results is
that regardless of the number of subspaces that are used to
predict with the proposed algorithm, performance was the
same or better than the baseline of using logistic regression
or random forests trained on the original SNP space.
However, when logistic regression is used as a classifier,
the proposed algorithm is able to improve as more MR-
subspace classifiers are considered for a final classification
decision (based on ranking), for almost all subspaces.
Nevertheless, this trend is not observed with random forests;
the AUC performance does not increase after the first (rank-
1) subspace is included. The ROC curves for the cases when
we obtain best performance are shown in Fig. 3 for logistic
regression, and Fig. 4 for random forests.

The maximum classification performance was obtained
with an MR transform of 3-levels training logistic regression,
AUC = 0.759, while for the case for random forests we
obtain an AUC = 0.732. By comparison, with no multi-
resolution we have AUC = 0.700 when using logistic
regression, and an AUC = 0.698 when using random forests
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Fig. 4. ROCs for the case of classification with logistic regression: (blue)
Proposed algorithm for the case of using a three-level decomposition
Haar frame. In this case, using the top (rank-1) MR space, as ranked in
training, gave the larger AUC for both cases, selecting spaces over a 3-
level decomposition and a 5-level decomposition. (gray) Random forests
applied on the SNPs space (using no multiresolution).

(the difference between the latter baseline algorithms was
not found to be significant at the 0.05 level). Table 1 shows
relevant AUC comparisons and their statistical significance
using DeLong’s test [22].

5 DISCUSSION

5.1 Results

The MR framework with logistic regression achieved an
improvement in predictive performance as measured by the
area under the ROC curve (AUC). The difference between
using an MR framework and classifying on the original SNP
space is approximately a 6 percent increase in ROC area,
while with random forests this increase was of about
3 percent (see Table 1). For the case of logistic regression
MR classifiers, we are able to improve the performance
starting from the rank-1 space and then adding MR spaces;
however, this was not the case of random forests.

It is interesting that in the case of logistic regression the
AUC trend is almost always increasing. Since this may not
always be the case, as shown using random forests, this result
emphasizes the importance of the strategy that is used for
selecting MR spaces in the design of the algorithm.
Specifically, the ranking order of the multiresolution spaces
is performed in training (this order is shown in Table 2),
where they are ranked on the basis of training AUC using a
nested training cross-validation approach. It may be that

TABLE 1
Statistical Significance of AUC Difference of Main Results

Classifier | Description | AUC | ‘ Description | AUC | p-value
Logistic Regression | No MR (original SNPs space) | 0.700 | VS | MR 3-levels using top-13 ranked subspaces 0.759 | 0.00001824
Logistic Regression | MR 3-levels rank-1 subspace 0.700 | VS | MR 3-levels using top-13 ranked subspaces 0.759 | 0.00001824
Logistic Regression | No MR (original SNPs space) | 0.700 | VS | MR 5-levels using top-45 ranked subspaces 0.755 | 0.00006917
Logistic Regression | MR 5-levels rank-1 subspace 0.713 | VS | MR 5-levels using top-45 ranked subspaces 0.755 | 0.00035347

Random Forest No MR (original SNPs space) | 0.698 | VS | MR 3-levels and 5-levels using rank-1 subspace | 0.732 | 0.13870555
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TABLE 2
Top 50 Multiresolution Spaces as Ranked in Training

Rank | MR3LR | MR5LR [ MR3RF | MRS5RF

1 SNPs LHLHH LL LL
2 HH HHLLH HH LLHH
3 LHH LHHLH SNPs LHLLH
4 LL LHHHL LLL LHHLL
5 HLH HLLHH HHH HLLLH
6 HHL HLHLH L HLLHL
7 HHH HLHHL HLH HLHLL
8 H LHHLL HHL LHLHL
9 LLH HHLHL H HHLLL
10 LHL LHLLH LHH LLHHL
11 HLL HLLLH LLH HLHH
12 LLL HLLHL LHL HHLH
13 LH HLHLL HLL HHHL
14 HL LLHHH LH LLLHH
15 L HHHLL HL LLHHH
16 HHHHH LLHLH
17 LLHHL HHLLH
18 HHLLL LHLLL
19 LLLHH HLLLL
20 LHHH HHLHL
21 LLHLH HH
22 LHLHL LHHH
23 SNPs LHLL
24 HLHH SNPs
25 HHLH HHHLL
26 HHHL LLL
27 HLHHH HHHH
28 HHLHH LHLHH
29 HHHLH LLLH
30 HHHHL LLHL
31 HH HLLL
32 LHHHH LHHLH
33 LHH LHHHL
34 LLLL HLLHH
35 LL HLHLH
36 HLH HLHHL
37 HHL LHHL
38 LHHL HHHHH
39 HHLL LLLLH
40 HHH LLLHL
41 LLHH HHLL
42 HHHH LLLL
43 LHLH HHH
44 H LHLH
45 HLLH HLLH
46 HLHL HLHL
47 LHLLL LLHLL
48 HLLLL LLLLL
49 LLH L
50 LHL HLH

during this process of training cross-validation, the amount
of training data favored logistic regression over random
forest. This would translate into logistic regression having a
ranking of multiresolution spaces that is more representative
of the (unknown) true ranking as compared to random forest.
In general, when using SNP data sets, we have typically
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TABLE 3
Top 10 SNPs of TGEN19 Data Set
Rank | SNP ID x? D
1 SNP ApoFE1l 229.9371 ~0
2 SNP A-2236481 | 148.1748 ~0
3 SNP ApoE2 36.8921 | 9.7493e-09
4 SNP A-1816239 | 17.4409 | 1.6321e-04
5 SNP A-2086668 | 15.3019 | 4.7560e-04
6 SNP A-1874859 | 15.2830 | 4.8010e-04
7 SNP A-2005924 | 15.1791 | 5.0572e-04
8 SNP A-2223004 | 15.0070 | 5.5114e-04
9 SNP A-1783210 | 14.9589 | 5.6456e-04
10 SNP A-1961684 | 13.0982 | 1.4314e-03

observed that logistic regression fares the same or better than
random forest.

From Fig. 2 we also see that this trend is similar for both
transform level cases, namely, the 3-level decomposition
and the 5-level decomposition, for each classification
method. The maximum AUC achieved in each L-level
decomposition experiment was not significantly different
for that particular MR classifier. Therefore, to save compu-
tation time, a 3-level decomposition should be preferred
over the 5-level decomposition, for predicting LOAD using
this data set.

In summary, the proposed algorithm improved the AUC
by using better input-space representations than the original
SNPs. This is achieved by moving the feature space from the
SNP space to a multiresolution space. These multiresolution
spaces consist of multiresolution coefficients that encode the
interaction between neighboring SNPs, since the coefficients
are functions of SNPs. Using these coefficients, our algo-
rithm classifies using functions of the interactions of
neighboring SNPs, which happen to produce better predic-
tion than using the raw SNPs. Finally, note that neighbor
SNPs are usually highly correlated due to linkage disequili-
brium. Thus, linkage disequilibrium is inherently exploited
by the proposed algorithm. Our method shows that
functions of linkage disequilibrium, as implemented by
applying a multiresolution transform, can improve predic-
tive performance.

5.2 Genomic Markers

Using x” statistics of the original SNP data, Table 3 shows the
top 10 SNPs. The SNPs with strongest association among
these are ApoE1, A-2236481, and ApoE2. SNPs ApoEl and
ApoE2, also known as rs429358 and rs7412, respectively,
combine to define the ApoE4 variant of the ApoE gene,
which has been repeatedly reported to be associated with
high risk of LOAD [17].

The SNP A-2236481 (rs41377151/1s4420638), in the ad-
jacent gene known as ApoCl, has also been associated with
high risk of LOAD [23].

To the best of our knowledge, the remainder of the SNPs
in Table 3 have not been previously reported as being
significant predictors of LOAD.

5.3 Assumptions

There are several assumptions that we made to apply
multiresolution analysis to genomic data as available from
SNP data sets.
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In the treatment of the genome as a 1D signal, we used the
fact that SNPs are sampled sequentially using a 1D path (or as
if it was a linear path, later assembled) that can be untangled
into a discrete linear lattice. We assume that this linear
arrangement of subsequent SNPs is an important element of
the biology of the genome.

Also, SNPs are polymorphisms at loci that may not be
evenly spaced. This depends on the genotyping technology;
however most SNPs data sets now are genotyped using
tagging SNPs to maximize genomic coverage, and these loci
are not spatially uniform [24]. Moreover, due to quality
control procedures, some SNP loci may be discarded. In
this paper, we implicitly defined the SNP space after QC as
the input to multiresolution analysis. The study of the effect
of the nonuniform sampling of genotyping platforms is left
as future work.

When working with genomic data, a genomic model has
to be used to map each base pair to a number. Under an
additive genomic model, the presumed map can be written
as AA=0,AB =1, BB = 2, where A is the minor allele, and
B is the major allele [21].

Finally, the multiresolution transformation is applied to
all SNP data, person by person. From each multiresolution
subspace we have selected the top 10 coefficients as our
features for classification. There are as many classifiers as
there are multiresolution subspaces and a final classification
decision is obtained by taking the best classification score
among them, as described in Section 3.2. We set the same
number N = 10 for every space for simplicity and to show
the robustness of classifying with multiresolution features.
N = 10 worked best for both logistic regression and random
forest on SNP data, which are our baseline for comparisons.
An advanced version of the algorithm that we do not
address here could search for a best N for each subspace in
training, at an additional computational expense.

6 CONCLUSION

We have shown that expanding the original input SNPs space
using a multiresolution transform and combing decisions of
individual classifiers trained on subspace coefficients or
features can improve predictive performance of LOAD.

A significant improvement is shown when logistic
regression is trained to classify in every subspace as
compared with standard prediction using logistic regression
on the original SNPs space. When either logistic regression or
a random forest classification strategy is implemented in the
multiresolution framework, results show performance is
improved significantly and is at least as good as classifying
with no multiresolution.

The results in this paper support that multiresolution
methods are a promising approach for improving the
prediction of clinical outcomes from GWAS data. In future
work, it will be important to evaluate the multiresolution
framework using other GWAS data sets on a variety of
clinical and biological outcomes.
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