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Medical records can form the basis of retrospec-
tive studies, be used to evaluate hospital practices
and guidelines, and provide examples for teaching
medicine. Each of these tasks presumes the abil-
ity to accurately identify patient subgroups. We
describe a method for selecting patient subgroups
based on the text of their medical records and
demonstrate its effectiveness. We also describe a
modification of the basic system that does not as-
sume the existence of a preclassified training set,
and illustrate its effectiveness in one retrieval task.

INTRODUCTION

Hospital information systems can be invaluable to
research and education [1]. For instance, retro-
spective studies can be based on medical records
of patient subgroups, hospital practices and guide-
lines can be evaluated by examining the medi-
cal records of the affected patients, and historic
data can provide important examples for teach-
ing medicine. The ability to accurately and easily
identify patient subgroups is essential to each of
these applications. Many patient subgroups can
be identified by a simple boolean query of coded
data fields. However, currently many important
patient subgroups can only be identified using the
text portions of their medical records.

Simple Bayes' systems developed within the
Machine Learning community have been success-
fully used to classify text documents [2]. In this
paper we describe a Simple Bayes' system, re-
port the results of experiments that support its
effectiveness on medical records, and illustrate its
application to the problem of identifying patient
subgroups from text medical records. This work
was performed in the context of the MARS (Med-
ical ARchival System) at the University of Pitts-
burgh Medical Center [3]. MARS has been the
primary tool for identifying patient subgroups in
the UPMC research community; the present work
aims to increase its functionality, convenience, and
usage.
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TEXT SIMPLE BAYES'

In this section we describe our system, Text Sim-
ple Bayes' (TSB). TSB constructs a model from
a set of preclassified documents, then applies this
model to a set of previously unseen documents.
TSB can be used in either of two ways: it can
predict the most likely class of each document in
the test set, or it can rank the documents in the
test set according to their estimated probability of
being in a particular class.

Bayes' Rule underlies most modern AI systems
that compute probabilistic inference. Using the
notation of our domain, where P(CID) is the
probability that C is the class of document D,
P(DIC) is the probability that an item in class
C is expressed as document D, P(C) is the prior
probability that a document belongs to class C,
and P(D) is the probability that a randomly se-
lected document will be of interest to the user, we
can state Bayes' Rule as:

P(CID) = P(DIC)P(C)
'~''~ P(D)

(1)

We make two assumptions that will allow us to
convert Equation 1 into a useful form. First, we
assume that a document can be accurately in-
dexed and retrieved based solely on the unordered
set of words that occur in it. And second, we
assume that words occur in a document indepen-
dently, conditioned on the class of the document.
Of course, these assumptions are unlikely to hold
exactly. The first assumption essentially says that
word order and usage do not matter. The second
assumption says that patterns of co-occurrence do
not matter. Nonetheless, Simple Bayes' models
have been shown to perform well [1,4].

Suppose we have a document D that contains
words drawn from the vocabulary wl, . . ., w,,. For
each wi we construct a binary feature fi that indi-
cates whether or not wi appears in the document.

658



Under the assumptions above, we can derive a for-
mula for the maximum a posteriori (MAP) hy-
pothesis:

CMAP = argmaxP(C) P(filC) (2)
i

Thus, CMAP is the most probable class of the doc-
ument D as computed by Bayes' Rule under the
assumptions just stated. Using these assumptions,
we can also derive the probability that a document
belongs to a certain class:

P(CjD) = ZP(C,) i1 P(f4C)) (3)Ej(P(CD Hi P(fLAT))
where C is the class of interest (as specified by the
user) and Cj ranges over the set of classes.
Both Equation 2 and Equation 3 are useful be-

cause the probabilities on the right are easy to es-
timate from historical data and can be combined
to form a reliable estimate of the quantity on the
left. Specifically, given a set of previously classi-
fied documents, we estimate P(filC) by:

P(fAIC) t frequency (fi, C) + 1 (4)frequency(C) + 2

where frequency(fi,C) is the number of times
that fi and C co-occur in the training data and
frequency(C) is the number of times that C oc-
curs in the training data. Notice that P(filC)
approaches 1/2 for infrequent words and small
classes. We use this method because it smooths
the estimates for words that are rare and/or train-
ing sets that are small; other smoothing operations
are certainly possible. We also estimate P(C) by:

P(C) --frequency(C) + 1 (5)

where N is the total number of documents in the
training data and m is the number of states that C
can have. In general, these probability estimates
are simple, efficient to compute, and robust.
We use a simple form of feature selection. The

likelihood ratio of a word w for a class C is:

rw)- P(wIC)
r(w) P(wlnot-C)

We define the adjusted likelihood ratio by alr(w) =
lr(w) if lr(w) > 1, or alr(w) = 1/lr(w) otherwise.
Therefore, alr(w) is large if w correlates with the
class or its complement. Starting with W, the set
of words that occur in the entire training set, we
construct the set of words Wm,n by 1) eliminating

words from W that occur in fewer than m docu-
ments, 2) ordering the remaining words according
to air, and 3) taking the n words with the highest
air value. We can select values form and n by sub-
dividing the training set into a smaller train/test
partition and selecting m and n based on their
performance on this split, or we can select m and
n based on an entirely separate dataset, or we can
simply guess values based on our knowledge of the
domain.

THE EFFECTIVENESS OF TSB

In this section we describe experiments that in-
vestigate the effectiveness of TSB on the text of
medical records. We have conducted these exper-
iments using standard machine learning method-
ologies for two reasons. First, results established
in this manner usually generalize to other appli-
cations of the basic method. And second, we wish
to facilitate comparisons with other systems and
domains in the machine learning literature. In the
next section we describe a modification of the ba-
sic TSB system that performs well in more realistic
situations.
The first dataset consists of discharge sum-

maries of 2,060 patients admitted to two medi-
cal ICU's at the University of Pittsburgh Medical
Center, between January 1, 1993 and December
31, 1995. Of these patients, 80 were identified
as having venous thrombosis (VT) based on the
following ICD-9 codes at discharge: other venous
thrombosis (453), Budd-Chiari syndrome (453.0),
thrombophlebitis migrans (453.1), vena cava syn-
drome (453.2), renal vein thrombosis (453.3), ve-
nous thrombosis nec (453.8), and venous thrombo-
sis nos (453.9). (The vast majority of these cases
were deep venous thrombosis.) These records were
reviewed by an ICU specialist who verified that
the records support a VT diagnosis. Thus, the
dataset consists of 80 records in class VTand 1,980
records in class not- VT. All of the records are text.
The typical record contains about 1,500 words and
the entire dataset contains about 13,000 unique
words. We processed the text to remove numbers
and punctuation. As an additional layer of secu-
rity to protect confidentiality, we removed possible
patient identifiers from the text. This was done
by first removing sequences of capitalized words
that begin with a title (such as Mr., Ms., Mrs., or
Dr.), then removing capitalized words that do not
appear in the Unified Medical Language System.
This method is effective, although certainly not
perfect and does not replace other protections.
Our experiments with this dataset consisted of

the following steps:
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1. We randomly divided the records into two
sets, putting 60% of the records-in the Train
set, and 40% of the records in the Test set.
We balanced the fraction of VT and not-VT
records in these sets. Thus, Train consisted
of 48 VT records and 1188 not-VT records,
and Test consisted of 32 VT records and 792
not-VT records.

2. We further divided Train into TrainTrain and
TrainTest, putting 60% of Train in Train-
Train and the remaining 40% in TrainTest,
again balancing the fraction of VT and not-
VT records in each set.

3. We used the Trainalin/TrainTest split for
feature selection. Specifically, we searched for
values of m and n such that when TSB was

trained on TrainTrain using only the words
in Wm,n it performed best when tested on

Train Test.

4. We selected the set of words Wm,n from all of
Train using the values ofm and n determined
in the previous step, then calculated the prob-
abilities in Equation 4 and Equation 5 from
TRain using these words.

5. We used the probabilities from Step 4 to make
predictions for the records in Test.

The contingency table in Table 1 illustrates the
result of using the MAP hypotheses computed by
Equation 2 to predict the class of each record in
Test. Simple accuracy is easily computed from this
table to be 94%. However, this apparently high
number is misleading since the accuracy of always
making the default assumption (not- VT) for every
record in Test is 96%. We believe the MAP hy-
pothesis yielded an accuracy no higher than 94%
at least in part due to the small number of VT
cases in the training set. Importantly, however, we
do not expect the machine to autonomously select
medical records. In particular, we want the system
to rank records for review by the user such that
probable VT records are presented before proba-
ble not-VT records.

rue Class
Predicted Class VT not-VT

VT 21 37

not-VT | 11 7557
Table 1: Contingency table for VT.

We can use Equation 3 to rank records in Test
according to the probablity that they are in VT,

placing highly probable VT records near the be-
ginning of the ordering. When the user reviews
the records in order, they hopefully will encounter
a large number of hits (records of the type they
are seeking-here VT) early in the process, and
can simply stop when the frequency of hits gets
too low. Each VT case reviewed is a true-positive,
and each not-VT case reviewed is a false-positive.
A Receiver Operating Characteristic (ROC) curve

plots the true-positive rate (on the y-axis) against
the false-positive rate (on the x axis); we can mea-
sure the efficiency of a ranking by the area under
the ROC curve [5]. The area under the ROC curve
generated by Equation 3 on this dataset is 0.93.
(The area under the ROC curve generated by a
random ordering is about 0.50.)

Sj
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Figure 1: Density of VT hits.

We can also visualize the ordering with the den-
sity graph in Figure 1. This plots the ordering on
the x-axis (with the first record in the ordering on
the left) and density of hits (the fraction of hits in
a window of width 5) on the y-axis. As you can
see, the ordering contains a high density of hits
towards the beginning, and only a few stragglers
near the end. By reviewing cases in this order a

user can find VT cases very efficiently, and stop
when the density decreases below a level that jus-
tifies further search.
The second dataset we used consists of discharge

summaries of 168 patients who were seen at the
University of Pittsburgh Medical Center or a local
affiliate between January 1, 1995 and January 31,
1999 who had the term alteplase1 in their phar-
macy discharge summary. (The pharmacy dis-
charge summary is different than the general hos-
pital discharge summary.) Of these patients, 94
were identified as experiencing either acute, but
ill-defined, cerebrovascular disease, or acute my-

Alteplase is indicated for use in the management of
acute Ml and acute ischemic stroke in adults.
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ocardial infarction, based on ICD-9 codes in the
436 or 410 range or DRG codes 121, 122, 123, or
014. (The medical records of this combined set of
patients were requested by a MARS user for their
research.) Thus, the dataset consists of 94 records
in class CVA-MIand 74 records in class not-CVA-
MI. All of the records were text. The typical
record contained about 750 words and the entire
dataset contained about 5,000 unique words. We
processed the text to remove numbers, punctua-
tion, and proper names.

True Class
Predicted Class CVA-MI not-CVA-MI

CVA-MI 35 9
not-CVA-MI 3 21

Table 2: Contingency table for CVA-MI.

We derived the previous performance metrics
using this dataset. Here, the 168 records were
divided into a Train set consising of 100 records
(56 CVA-MI and 44 not-CVA-MI), and a Test set
consisting of 68 records (38 CVA-MI and 30 not-
CVA-MI). Train was further divided into Train-
Train and TrainTest for feature selection. The
resulting contingency table is shown in Table 2.
This has accuracy of 82%, which is considerably
better than always making the default conclusion
of CVA-MI with accuracy 56%. The ROC curve
has area 0.88, and the density graph is shown in
Figure 2.

a '0 150 - Ia ac a

Figure 2: Density of CVA-MI hits.

COMPUTER-ASSISTED SEARCH
FOR PATIENT SUBGROUPS

The experiments in the previous section were in-
tended to investigate whether Simple Bayes' mod-
eling is effective with the text of medical records.

There are a variety of ways in which the basic
TSB system described can be modified to fit the
needs of actual applications. We present one such
modification based on the work reported in [1].
This approach uses a two-stage method to iden-
tify the medical records of a patient subgroup.
First, an initial computer model is constructed to
rank patient records. Second, an iterative process
is started in which the current model is used to
rank patient records, the user examines and clas-
sifies the most likely hits according to this rank-
ing, a new model is built using the newly classified
records, and the process is repeated.
We do not always have a training set of preclas-

sified records available to build an initial model.
This is not a problem if the records the user is
looking for are common-he or she can simply
search through a sequence of records until enough
records of interest are accumulated to build an ini-
tial model; thereafter, TSB can be used to build
better models to locate records at an even faster
rate. However, if the target class is relatively rare,
this initial phase will be difficult and frustrating.
For instance, VT is present in less than 5% of the
records, so the user will need to examine at least
20 records for each hit.

In order to prime the process we can build an
initial model based on keywords specified by the
user. If the user specifies keywords wl,.. ., w,, and
class C, we can define an initial (artificial) train-
ing set that has one record in class C that consists
of exactly the words w, . - , wn, and one record in
class not-C that is empty. Using this initial train-
ing set, we compute the following initial probabil-
ities using Equation 4:

P(wi occurslC) = 2/3
P(wi does not occurIC) = 1/3

P(wi occurslnot-C) = 1/3
P(w* does not occurlnot-C) = 2/3

When records are ranked according to the proba-
bilities computed by Equation 3, these estimates
will cause records that contain all or most of the
keywords to be ranked before records that contain
few or none of the keywords.
The following algorithm starts with a set of key-

words supplied by the user and a set of unclassified
Test records. We assume the user would be willing
to examine on each iteration the 40 records that
the system rates as mostly likely to be hits.

1. Start with Train equal to the null set. Build
an initial model from keywords supplied by
the user as described above.
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2. Order the records in Test using the model.

3. The user reviews and classifies the first 40
records in the ordering, removes hits and
places them in TRain.

4. Build a new model with the new Train set.

5. Go to 2.

Thus, the user will classify 40 new records on each
iteration. Ideally, the ordering in Step 2 would
always start with 40 records from the target class
allowing the user to score 40 hits on each cycle.

Figure 3, '." of VT c a

Figrease asNumber notf VT candsesimulated.

the actions of a user examining records on each
iteration. The following keywords were used to
construct the initial model: doppler, deep, venous,
thrombosis, dvt, greenfield, filter, anticoagullation,
heparin. The iteration number is plotted on the
x-axis, and the cumulative number of VT cases
located is plotted on the y-axi. The top line is
the number of cases that would be located by an
ideal system (i.e., one that located 40 VT cases
on the first iteration, and the remaining 10 on the
next iteration), the middle line is the number of
cases located by TSB and the algorithm described
above, and the bottom line is the number of cases
that would be located by random selection.

DISCUSSION

We have presented data to support the claim
that Simple Bayes' can form the basis of effective
retrieval and classification systems for free-text

meia4eod,0ept h ssmtosmd

by Simple Bayes' systems. Furthermore, Simple
Bayes' systems avoid most of the problems asso-
ciated with natural language processing by rep-
resenting text with simple data structures. Fi-
nally, Simple Bayes' systems are efficient and ro-
bust, which is especially important for real-time
or interactive applications that model with a large
number of records.

However, while Simple Bayes' systems clearly
are useful now, and will be for quite a while, we
do not believe they represent the ultimate form
of text processing for information retrieval. Sim-
ple Bayes' and other bag-of-words approaches to
text processing cannot represent time, semantic
relationships, negations, or modalities, and their
range of applicability is limited. For the purpose
of patient subgroup identification, it remains to
be seen whether text-skimming methods will be
adequate, or if methods more closely akin to full
natural language understanding are necessary.
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