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Abstract 

As an initial step in the diagnostic process, human neurologists often use anatomical 
localization to constrain the set of diagnostic hypotheses deserving further consideration. We 
describe an automated system, INKBLOT-l, which uses anatomical localization in much the 
same way as human neurologists. Given a set of manifestations, INKBLOT-l generates a set 
of hypothetical localizations relative to a coordinate system of nested cubes and then uses 
these lsocalization(s) to explain the manifestations. We trace the reasoning mechanism utilized 
by INKBLOT-l for a particular set of symptoms and show how INKBLOT-l is able to 
generate novel hypotheses that explain the observed manifestations. In doing this, 
INKBLOT-l demonstrates capabilities not demonstrated by previously described systems. 
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1. Introduction 

Formulating medical diagnoses is often one of the most difficult tasks which a 
physician must perform, and the field of neurology in particular presents unique 
diagnostic challenges. Because of the close association between neurological struc- 
ture and function, neurologists often must draw upon a detailed knowledge of 
neuroanatomy to form hypotheses about the spatial localization of lesions as a first 
step in the diagnostic process. Hypothetical spatial localization(s) in turn constrain 
the set of diagnostic hypotheses deserving further consideration. This approach 
presupposes that lesions bearing no spatial proximity to each other are unlikely to 
be present, so that only diagnostic hypotheses consistent with localized lesions need 
come under further consideration. 

In this paper we describe INKBLOT-l (Integrated Neurological Knowledge Base 
and Localization Tool), a computer system which utilizes neuroanatomical knowl- 
edge in formulating differential diagnoses in the field of neurology. INKBLOT-l 
uses the SCAN (Symbolic Coordinate Anatomy for Neurology) neuroanatomical 
knowledge base which represents the locations of neuroanatomical structures with 
reference to a hierarchical coordinate system of nested cubes [3]. Mirroring the 
diagnostic process of human neurologists, INKBLOT-l first forms hypotheses 
about the potential coordinates of lesions within the coordinate system and then 
uses these hypothetical spatial localizations to generate irredundant sets of localized 
structures, damage to which could explain all observed manifestations. 

1.1. Background 

We will refer to a system designed to produce a differential diagnosis of 
neurological problems given a set of observable manifestations as a neurological 
medical diagnostic decision support (NMDDS) system. The ideal NMDDS system 
would meet a number of criteria. First, it would be accurate, producing ranked 
differential diagnoses closely approximating the differential diagnoses of expert 
clinicians. Second, it would be applicable to a broad domain, potentially covering 
the entire field of neurology, rather than being limited to a specific sub-domain, for 
example only to the diagnosis of strokes. Third, it would be able to generate novel 
diagnostic hypotheses by drawing upon a general knowledge base, rather than 
being limited to a pre-defined list of diagnoses. Fourth, it would represent causal, 
probabilistic, and spatial knowledge in a modular format familiar to and compre- 
hensible by human experts, making it easier to refine and extend the system using 
the knowledge base of human experts. Finally, it would provide output in an easily 
interpretable format and include an explanation facility. 

Researchers have been developing NMDDS systems at least since the early 1970s 
[l-.5,7-9,1 1- 191. Some of the earlier systems utilizing ad-hoc statistical [14], simple 
Bayesian [12], or hybrid statistical, model-based approaches [8,9] drew upon 
shallow knowledge bases and offered limited functionality. One of the first systems 
utilizing true anatomical knowledge to generate novel diagnoses for visual field 
defects was limited in its domain and not easily extended [7]. Systems based on 
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production rules [ 11,131 and the NEUREX system [ 191, based on semantic nets, had 
richer knowledge representation facilities spanning broader domains. However, 
despite their expressivity these formalisms proved ill-suited to the representation of 
anatomical knowledge and to probabilistic reasoning. NEUROLOGIST, an 
NMDDS system [4] making use of a broad knowledge base was unable to produce 
a ranked differential or to come up with diagnoses other than those pre-pro- 
grammed. LOCALIZE [5], a system containing an extensive knowledge base of 
thousands of nervous structures and their interconnections was limited to the 
peripheral nervous system, and another system using a Bayesian network to 
integrate knowledge of network structure with probabilistic knowledge was limited 
to just a few muscle groups [l]. The use of parsimonious covering theory to find 
minimal covering sets has also been explored, although the particular system 
described in Tuhrim et al., was limited to the domain of diagnosis of strokes [15,16]. 
More recent efforts have also explored the use of neural nets [17], which may in 
some (cases be able to learn patterns of manifestations and diagnoses but which do 
not contain embedded symbolic knowledge. 

In summary, no methodology and/or implementation has yet proven entirely 
successful in meeting the goal of developing an NMDDS system which generates 
accurate differential diagnoses under general conditions over a broad domain. We 
believe the INKBLOT-l system can address some of the shortcomings of these 
previously described systems. 

1.2. INKBLOT- 2 

Given a set of neurological manifestations, INKBLOT-l returns a ranked list of 
hypotheses in the form of groups of localized structures which explain all the 
observed manifestations. INKBLOT-l has been implemented in Common LISP. In 
the following section we will describe the SCAN knowledge base and the localiza- 
tion and hypothesis generation algorithms utilized by INKBLOT-l. To illustrate 
the operation of INKBLOT-l we will use the example of a patient presenting with 
the symptoms of achromatopia (loss of color vision) and decreased level of 
consciousness. These symptoms are not typical of any particular common neurolog- 
ical condition, but as we shall see INKBLOT-l is able to reason from first 
anatolmical principles to form hypotheses about the potential neurological basis of 
the observed manifestations. 

1.3. SCAN 

The neuroanatomical knowledge base used by INKBLOT-l is adapted from 
SCAN, a representation of neuroanatomical knowledge which represents the spatial 
orientations of neuroanatomical structures using a coordinate system of nested 
cubes [3]. By using this coordinate system, SCAN represents spatial relationships 
among neuroanatomical structures without needing to explicitly assert each rela- 
tionship, just as a map represents spatial relationships between streets in a city 
without needing to explicitly specify that ‘Main St. crosses Oak St.’ for every pair 
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of streets. By comparison to a standard Cartesian coordinate system, the nested 
coordinate system is more compact, since facts only need to be represented about 
the largest cubes of which they are true, and more tractable, since computational 
operations can often be performed on a relatively small number of large cubes 
rather than on each of the smallest cubes. 

The top level cube in the SCAN coordinate system represents a physical space 3 
meters on an edge, and is represented by the symbol BX. Each cube is divided into 
27 smaller cubes, represented by symbols formed by appending the letters A-Z or 
the punctuation mark @ to the name of the symbol of the parent cube. These 
symbols were chosen for convenience in the implementation language and have no 
other significance. Along with each cube is stored a list of anatomical structures 
contained or partially contained within that cube. As an example, the cube BXL 
contains the head and roughly 20 important tracts. The smallest cubes are 3 mm on 
an edge. As an example, the cube BXLL@WP contains portions of the frontal bone 
and integument. There are a total of 8896 non-empty cubes defined in the database. 
If a structure is contained within every sub-cube of a larger cube then it need only 
appear as being contained within the larger cube. For a given structure, if we were 
to imagine the cubes of various sizes listed as containing that structure displayed in 
three dimensions we would have an approximate three-dimensional representation 
of the structure, limited in resolution only by the edge length of the smallest cubes. 
Given such a representation of each structure it should be possible to answer any 
questions which can be answered by referring to a three-dimensional model or 
drawing of the structures. 

In addition, SCAN contains a list of neurological manifestations and for a 
number of these it contains logical ‘causal clauses’ specifying which structures or 
combinations of structures could, if damaged, cause the manifestation. Fig. 1 shows 
the causal clauses associated with the particular manifestations we shall consider in 
our example, achromatopia and decreased level of consciousness. 

An 
Rlh&XUS 
LlTl&nXE 

An 
RVaNuhs 
LVaNwkm 

Fig. 1. Causal clauses from the SCAN knowledge base indicating the combinations of structures damage 
to which can result in achromatopia or decreased level of consciousness. The terms ‘Any’ and ‘All 
correspond to logical ‘or’ and ‘and,’ respectively. The terms ‘Basilar’ and ‘L and R Posterior Cerebral’ 
refer to arteries. 
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function MINMALXIJBES (mmfemtiom) returns a set of coordinate boxes 

inputs: manifistotionf, a set of manifestations 
outputs: a set of caxdinate boxes, representing potential localiiations 

gad t conjunction of the causal clauses of every manifestation in manifestations 

crmdklates c- top level box 

minimal-boxes t 0 
loop do 

if cw&dates emm then 
return minimal-boxes 

else 

consider t POP(c~s) 

children c CHILDREN-OF(cokder) 
do loop 

child t PoP(childm) 
if SATISPIES(STRUCTURES-IN(ch&Q. goal) then 

camiidam c PUSH(child, candid&e) 
end 
if ma children were pushed onto cMdties then 

minimal-boxes c PUSH(consider, minihal-boxes) 
end 

Fig. 2. Pseudocode for the INKBLOT-l localization algorithm. The output represents potential 
localiitions relative to the hierarchical coordinate system. 

For example, decreased consciousness can be caused by damage to the reticular 
formation, the posterior hypothalamus, both the left and right thalamus, or both 
the left and right Va nuclei, and similarly for achromatopia. In making a diagnosis, 
our task is to identify a subset of these structures sufficient to explain both 
manifestations. One hypothesis might assqe damage to all of these structures, 
which would certainly explain the positive manifestations. However, such a hypoth- 
esis would be highly unlikely because it would assume damage to large sections of 
the nervous system. Our goal is to find a subset of the structures which not only 
explain the manifestations but are also as localized as possible. 

1.4. INKBLOT-I inference algorithm 

1.4.1. Localization algorithm 
Just as human neurologists first attempt to form hypotheses about the spatial 

localization of neurological lesions before proceeding to consider individual struc- 
tures, INKBLOT-1 first attempts to localize lesions to individual cube(s) within the 
SCAN coordinate system. Pseudocode for the localization algorithm is provided in 
Fig. 2. In this pseudocode, POP removes the first element from its argument and 
returns, the element, PUSH returns the result of adding its first argument to the end 
of its second argument, CHILDREN-OF returns the sub-cubes within a given cube, 
STRUCTURES-IN returns the structures within a given cube, and SATISFIES 
returns true if the variables in its first argument satisfy the clause in its second 
argument. 

Briefly, as can be seen from this pseudocode, MINIMAL-CUBES narrows its 
focus to successively smaller cubes until it finds that it cannot narrow its focus any 
further and still explain the observed manifestations. A given cube is included in the 
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output if and only if it both contains structures sufficient to explain all observed 
manifestations without considering structures not contained within the cube and 
contains no sub-cube(s) which individually contains structures sufficient to explain 
the manifestations. The hierarchical structure of the SCAN coordinate system 
allows this successive focusing to be computationally efficient. This algorithm is not 
unlike algorithms described in Genesereth [6] and Mozetic [lo] for the diagnosis of 
faulty electrical components, although in this case a spatial hierarchy takes the 
place of a functional hierarchy. Each of the cubes returned represents a potential 
localization to be used in generating diagnostic hypotheses in the form of sets of 
structures which could be damaged. 

In practice, when run with the given manifestations achromatopia and decreased 
level of consciousness this function returns (BXLLL BXLLMIM BXLLMIN 
BXLLMJO BXLLML), reflecting five potential localizations of varying specificity. 

It should be noted that this localization algorithm does not allow for the 
possibility of complex localizations involving multiple boxes. Consideration of 
localizations involving multiple boxes could be implemented by pushing onto the 
queue not only individual sub-boxes but, under certain conditions, pairs or larger 
sets of sub-boxes, although such a modification would add considerably to compu- 
tational requirements of the algorithm. For example, if all pairs of sub-boxes were 
considered instead of only individual boxes this would increase the time complexity 
by a factor equal to the branching factor of the coordinate system, 27 in the case 
of SCAN. We hope to address both of these limitations in the INKBLOT-2 system, 
a planned successor to INKBLOT-l. 

1.4.2. Hypothesis generation algorithm 
After a set of localizations has been generated by the localization algorithm, it is 

the job of the hypothesis generation algorithm to take these localizations and 
generate sets of structures contained within the localized regions and explaining the 
observed manifestations. Pseudocode for the hypothesis generation algorithm is 
provided in Fig. 3. 

In this pseudocode, the function POWER-SET returns the power set of its 
argument, STRUCTURES-REFERENCED returns the set of structures referenced 
by the causal clause in its argument, and the other functions are as previously 
described. Given the list of potential localizations generated by MINIMAL- 
CUBES, the MINIMAL-HYPOTHESES function iterates over each localization to 
generate a set of sets of specific structures contained within the localized regions 
and explaining the observed manifestations. For each localization, the power set of 
the intersection of the set of structures associated with the manifestations and the 
set of structures contained within the single cube is generated. Each member of the 
power set is tested to determine whether it explains the manifestations. This yields 
a set of hypotheses, each of which is a set of localized structures sufficient to explain 
the manifestations observed. 

Since each localization returned by MINIMAL-CUBES is chosen to con- 
tain structures which explain the observed manifestations, it is guaranteed that at 
least one hypothesis will be generated for each localization in the first loop of 
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MINI-MAL-HYPOTHESES, namely the element of the power set containing all 
the structures within the cube. However, it may be that there are smaller sets which 
explain the manifestations equally well, perhaps even sets containing a single 
structure. In the second loop of the MINIMAL-HYPOTHESES function, the set of 
hypotlheses generated in the first loop is pruned to eliminate hypotheses which are 
supersets of other hypotheses. This parsimony criteria eliminates redundant hy- 
potheses, defined as hypotheses containing structures which could be eliminated 
from the hypothesis without leaving any manifestations unexplained, since if a 
hypot:hesis were redundant the subset missing the redundant structure would also 
be in the set of hypotheses and the redundant hypothesis would be a superset and 
would therefore be eliminated. While it is possible that a redundant structure is in 
fact damaged, it would not alter the observations if it were, and consequently the 
combination of the observations and the causal component of the knowledge base 
lends no weight to the possibility of damage to a redundant structure. 

Note how restricting the hypothesis generation algorithm to consideration of sets 
of localized structures greatly limits the number of hypotheses generated. If there 
were IZ structures implicated by a complicated set of manifestations, consideration 
of every possible combination would require consideration of 2” sets, clearly an 
intractable number for large n. However, if these structures could be grouped by 
location into m sets of n/m, each consistent with a single localization, the number 
of hypotheses for consideration would drop to m . (2”/“), a potentially much more 
tracta.ble number. 

function MINIMAL-HYPOTHESES (manifesfatims) returns a set of sets of structures 

inputs: mmifesrations, a set of manifestations 
outputs: a set of sets of structures 

goal c conjunction of all causal clauses in mifestafiom 

[ocal~ons c h0XMAL-CUJ3ES(man~estatior~$ 

good-hypotheses c 0 

minimal-hypotheses c 0 

loop do until localizafiom empty 

cube t POP(localiultionr) 

hypotheses t POWER-SET (INTERSECTION 
(STRUCTURES-IN(cube)) 
(STRUCTURES-REFERENCED f&d))) 

loop do until hyporheses empty 

hypothesis t POP(hypotheses) 
if SATISFIES(hypothesis, goal) then 

good-hypotheses c PUSH(hypothesis, good-hypotheses) 
end 

end 

loop do until good-hypotheses empty 
hypothesis c POP(good-hypotheses) 
if hypothesis is not a superset of any member of good-hypotheses then 

end 
minimal-hypotheses t PUSH(hypofhesis. minimal-hypotheses) 

return minimal-hypotheses 

Fig. 3. Pseudocode for the INKBLOT-l hypothesis generation algorithm. The first loop generates 
hypotheses consistent with the localizations and the second loop prunes redundant hypotheses. 
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Fig. 4. Sample output of the INKBLOT-l program. Each set of structures is sufficient to explain the 
observed manifestations and represents a diagnostic hypothesis sufficient to explain the evidence. 

A limitation of this algorithm is that it does not take into account the potential 
for negative findings. Even if a set of structures is sufficient to explain positive 
manifestations, we might exclude it if it contains structures damage to which would 
predict manifestations not observed. Consideration of negative findings could be 
accommodated by testing each potential hypothesis for consistency with negative 
findings. In addition, the algorithm as described does not utilize knowledge of 
network structure, which is particularly important in the peripheral nervous system. 
Some knowledge of network structure is contained within SCAN, although it is 
incomplete. It would be conceptually straightforward to modify the SATISFIES 
function to allow parents of structures to substitute for their children, and the 
function was originally written to do this, but it was found that searching for 
potential proximal lesions in this way caused the algorithm to run slowly. 

1.4.3. Parsimony metric 
Following the generation of hypotheses, an ad-hoc parsimony metric is applied to 

each hypothesis and the hypotheses are sorted by score. The score assigned by the 
parsimony metric is equal to the sum of the third power of the level of the smallest 
coordinate cube containing all the structures assumed by the hypothesis and the 
second power of one less than the number of structures assumed. The smallest 
cubes are assigned level 0, so the minimum score is 0 and a smaller score is better, 
representing a more parsimonious hypothesis. Thus, both highly localized hypothe- 
ses and hypotheses containing few structures are favored. 

Fig. 4 contains the output produced by INKBLOT-l for the example we have 
been considering. It concludes that the most likely explanation is a lesion in the 
basilar artery, followed by three other less likely hypotheses. Each set of structures 
within parentheses represents a conjunction of structures all of which would need to 
be damaged to explain the observed manifestations. 

It should be noted that, while this parsimony metric provides a way of ordering 
hypotheses according to a rough measure of plausibility, it is not based on any 
formal probability model and the scores produced cannot be interpreted quantita- 
tively. For example, a hypothesis receiving a score of 1 is probably not 17 times as 
likely as a hypothesis receiving a score of 17. An hypothesis with a lower score than 
another hypothesis may be more likely, but it is difficult to draw any quantitative 
conclusions or even to have confidence that hypotheses have been ranked correctly. 
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We hope to address this limitation in the INKBLOT-2 system, which will use a 
formal probability model. 

In summary, by using localization as a heuristic to limit the search space of 
possible hypotheses, INKBLOT-l mimics to some degree the diagnostic process 
that human neurologists appear to use in formulating neurological differential 
diagnoses. INKBLOT-l is potentially able to formulate diagnoses over a broad 
domain and can easily be extended with new knowledge. INKBLOT-l does not 
consider complex localizations involving multiple cubes, negative findings, or 
efficiently consider network structure, but these features could be addressed given 
sufficient computational capacity. INKBLOT-l also does not incorporate a formal 
probability model or provide explanations for its conclusions. These are more basic 
limitations which we plan to address in INKBLOT-2. 

2. Discussion and conclusions 

While the present SCAN knowledge base contains a fairly comprehensive set of 
over 1000 neuroanatomical structures, it contains relatively few associations be- 
tween structures and manifestations. Consequently, extensive testing on real clinical 
cases is not practical at this time. However, as the example we have presented 
illustrates, INKBLOT-l is able to perform diagnostic inference from first anatomi- 
cal principles. In identifying specific sets of structures which explain the presence of 
the given manifestations, and in ranking these sets of structures, the program 
produced a result using knowledge present in its own database but not known to 
the author of the program, who is not an expert in neurology. Based on these 
results, we believe that by extending the knowledge base available to INKBLOT-l 
and by enhancing the inference algorithm, we will be able to develop a system 
capable of performing more flexible inference over a broader domain. 

There are also additional sources of knowledge currently available or likely to 
become available which could be integrated into a future version of the INKBLOT 
system, such as the Visible Human data set being developed by the National 
Library of Medicine. The Visible Human project has sectioned complete male and 
female cadavers into 1 mm and 0.33 mm sections, respectively, and obtained MRI, 
CT, and photographic images of each section at a resolution of 0.33 mm in the 
horizontal and vertical dimensions. Segmentation and classification of this data set, 
so that each voxel is associated with a named structure in the Unified Medical 
Language System (UMLS), is currently under way and is expected to be complete 
within the next 2 years. Once this has been done, the Visible Human data set can 
be automatically recoded according to a nested cube coordinate system, such as 
that utilized by SCAN. Because INKBLOT makes use of anatomical knowledge in 
a modular format, it is our hope that it will be possible to integrate this high quality 
data set with a future version. 

We also hope to utilize the National Library of Medicine’s UMLS, a controlled 
medical vocabulary incorporating many existing medical vocabularies within a 
single framework. The Metathesaurus draws upon a number of vocabularies with 
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either specific applicability to neurology and neuroanatomy, such as the Neu- 
ronames vocabulary developed at the University of Washington, or incorporation 
of neurological and neuroanatomical terms, such as the SNOMED vocabulary 
developed by the College of American Pathologists. The Metathesaurus represents 
relationships between concepts taken from the source vocabularies, for example 
parent and child relationships. We hope to make use of these relationships to 
enhance the completeness of our knowledge base as well as to provide standardiza- 
tion which will enhance the portability and expandability of the system. 

In summary, while much development and testing of the INKBLOT system 
remains to be done before its effectiveness under clinical conditions can be 
objectively assessed, the results we have obtained thus far lead us to be hopeful 
these efforts will be successful. 
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