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Abstract

KNET is an environment for constructing probabilistic, knowledge-intensive
systems within the axiomatic framework of decision theory. The KNET archi-
tecture defines a complete separation between the hypermedia user interface
on the one hand, and the representation and management of expert opinion
on the other. KNET offers a choice of algorithms for probabilistic infer-
ence. My coworkers and I have used KNET to build consultation systems
for lymph-node pathology, bone-marrow transplantation therapy, clinical epi-
demiology, and alarm management in the intensive-care unit.

Most important, KNET contains a randomized approximation scheme
(ras) for the difficult and almost certainly intractable problem of Bayesian
inference. My algorithm can, in many circumstances, perform efficient ap-

proximate inference in large and richly interconnected models of medical
diagnosis. In this article, I describe the architecture of KNET, construct
a randomized algorithm for probabilistic inference, and analyze the algo-
rithm's performance. Finally, I characterize my algorithm's empiric behavior
and explore its potential for parallel speedups. From design to implementa-
tion, then, KNET demonstrates the crucial interaction between theoretical
computer science and medical informatics.

Introduction

Within the discipline of medical informatics, many researchers have
studied methodologies for encoding the knowledge of expert clinicians
as computational artifacts. KNET is a general-purpose environment for
constructing probabilistic, knowledge-intensive systems based on belief
networks and decision networks [15]. Such networks serve as graphical
representations for decision models, in which the knowledge engineer
must define clearly the alternatives, states, preferences, and relation-
ships that constitute a decision basis. KNET differs from other tools for
expert-system construction in that it combines a direct-manipulation
visual interface with a normative, probabilistic scheme for the manage-

ment of uncertain information and inference. The KNET architecture
defines a complete separation between the hypermedia user interface
on the one hand, and the representation and management of expert
opinion on the other.

My coworkers and I have used KNET to build consultation systems
for lymph-node pathology [10,4], bone-marrow transplantation therapy,
clinical epidemiology [13], and alarm management in the intensive-care
unit (ICU) [1]. KNET imposes few restrictions on the interface design.
Indeed, we have rapidly prototyped several direct-manipulation inter-
faces that use graphics, buttons, menus, text, and icons to organize the
display of static and inferred knowledge. The underlying normative
representation of knowledge remains constant.

Early workers in the field of medical informatics observed that, in
the absence of strong and often unrealistic simplifying assumptions, full
Bayesian inference requires computation time exponential in the num-

ber of diagnostic variables [3]. With few exceptions, the early Bayesian
information-processing systems never found widespread clinical accep-

tance. The difficulty of building Bayesian models, and the complexity
of probabilistic inference with the algorithms and hardware available
at the time, severely limited the usefulness of the approach.
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Traditional rule-based expert systems, which appeared in the early
1970s, circumvented the computational intractability of exact proba-
bilistic reasoning by proposing ad hoc schemes for managing uncer-
tainty. Those schemes conflict with the classic theory of probability
and draw erroneous conclusions in many circumstances. More recently,
the emergence of powerful graphics, personal workstations, and inex-
pensive hardware demands a reconsideration of formalisms that seemed
intractable 20 years ago.

Once again embracing probability theory as the epistemological
groundwork of expert reasoning, I present a new algorithm, based on
previous work in the Monte Carlo simulation of belief networks [16],
that performs efficient approximate probabilistic inference. My algo-
rithm, unlike the heuristic approaches to expert reasoning, specifies pre-
cise a priori bounds that describe the accuracy of its results as a function
of computing time. The algorithm, which can perform probabilistic in-
ference in very large KNET models, combines Monte Carlo simulation,
area-estimation strategies, and convergence analysis for time-reversible
Markov chains.

For arbitrarily complex diagnostic problems, my randomized ap-
proximation scheme currently offers the only computationally tractable
methodology for probabilistic inference with a priori guarantees of con-
vergence. In addition, the algorithm lends itself to full parallelization:
For a given level of accuracy, n parallel processors, each connected to a
central node, can compute a probabilistic inference in 1/n of the time
required by a single sequential machine. The ras is not a panacea, how-
ever; for inference problems with deterministic or nearly deterministic
subgroups, the approximate scheme's performance may still degrade ex-
ponentially. Even so, the ras extends the applicability of Bayesian tech-
niques to large knowledge-intensive models once deemed intractable.

KNET proves the feasibility of knowledge-intensive probabilistic
systems that run on low-cost hardware and that fully develop the
ergonomics of modern graphics displays. In this paper, I briefly de-
scribe the architecture of KNET, and emphasize the complete separa-
tion of knowledge representation from inference and user interface. I
describe an. algorithm for efficient approximate probabilistic inference,
and sketch a proof of its computational complexity. (The details ap-
pear in [5].) I analyze the performance of my algorithm on DxNet, an
81-node belief network that partially captures an expert's knowledge of
ventilation management in the ICU. Finally, I describe the application
of my algorithm to QMR-DT, the decision-theoretic reformulation of
QMR, a classic medical artificial-intelligence (AI) system for diagnosis
in internal medicine [14].

Methods and Procedures

The KNET project grew out of my interest in the discipline of medical
informatics. Broadly defined, medical informatics addresses the prob-
lems of information storage, management, and utilization in health
care. The complexity and heterogeneity of the domain pose specific
challenges that lie beyond the purview of traditional computer science.
Those challenges demand new solutions that integrate clinical practice,
knowledge engineering, and decision support.
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Previous Work

KNET has its foundation in a decade of research on expert systems. In
addition, KNET adheres to rigorous principles of modularity and ab-
straction in software engineering. More important, KNET unifies two
parallel lines of research: automated reasoning and human-machine in-
terfaces. I now place KNET in the context of previous work on knowl-
edge engineering and interface design by briefly comparing and con-
trasting it with existing systems.

Designers of previous expert-system shells have attempted to acco-
modate all the requirements of an interface designer. EMYCIN, one
of the earliest shells, offers one kind of interface: a linear list of ques-
tions, formulated by the computer and answered by the human user
[3]. Most knowledge engineers find that they must carefully craft in-
terlocking rules with multiple premise clauses in order to control the
line of questioning. EMYCIN therefore enforces a tight coupling be-
tween the knowledge representation and the human-machine interface.
KNET, on the other hand, consistently and clearly separates interface
from representation and inference.

The Nexpert shell is a reasoning and representation system with a
direct-manipulation graphical interface. It contains a rule-based infer-
ence engine, an object-oriented frame system, and an interface to the C
programming language. Nexpert supports bidirectional rule-based rea-
soning, from evidence to hypotheses and from goals to acquired data.
Nexpert, however, offers no calculus for computing with uncertain,
incomplete, and contradictory evidence. Its inference engine reasons
categorically. KNET, on the other hand, replaces Nexpert's tree of
categorical rules with a normative belief network that consistently rep-
resents probabilistic information. KNET makes no distinction between
forward and backward chaining; rather, the user offers evidence and
KNET updates all hypotheses accordingly.

RACHEL, the first instance of an intelligent decision system, codi-
fies a large portion of what is commonly known as the art of decision
analysis [9]. RACHEL merges rule-based expert systems for capturing
the expertise of professional decision analysts, with decision-theoretic
domain models. Intelligent decision systems hold three distinct advan-
tages over more traditional expert systems: normative power, ease of
representation and use of uncertainty, and clarity in the acquisition
of knowledge. Although KNET and RACHEL share the underlying,
unifying technology of decision networks, they address distinct aspects
of the knowledge-representation problem. Whereas RACHEL encodes
the hypothetico-deductive processes of decision analysts in a rule-based
framework, KNET supports the presentation graphics and tractable in-
ference that ultimately make intelligent decision systems acceptable to
the user.

Specifically, the knowledge kernel of KNET contains an ras that
can, in many cases, perform approximate probabilistic inference on very
large networks. By definition, an ras computes approximate answers
that, with probability greater than 1 - 6, differ from the true answer
by a relative error of no more than E; in addition, the ras requires
computing time that is a polynomial in 1/c, 1/log6, and the size of
the input. RACHEL, on the other hand, rolls back the decision tree
with a brute-force algorithm equivalent to calculation of the full joint
distribution [17]. RACHEL, therefore, must use extensive deterministic
senstivity analysis (as encoded by the rule-based component) to reduce
the decision model to a small and manageable size by exploiting the
particular characteristics of the current context.

The KNET Architecture
To investigate belief networks as a knowledge representation for diffi-
cult problems in medical diagnosis, I have designed and implemented
the KNET environment for building probabilistic, knowledge-intensive
expert systems [4,13]. Such systems

* Manage large quantities of extensively cross-referenced informa-
tion

* Emphasize clarity in acquiring, storing, and displaying expert
knowledge

The KNET Architecture

Specific HyperCards: Specific HyperCards:
knowledge acquisition user consultations

Generic HyperCards: Generic HyperCards:
knowledge acquisition user consultations

HyperTalk extensions for probabilistic systems
HyperCa-rd-

Dual-ported objects
Hypercard/KNET Algorithms for making

communications channel inferences and decisions

WYSIWYG editor for decision networks

Persistent Object Storage System (POSS)
MacApp, the generic application

Macintosh Toolbox

Object Pascal

Figure 1: This figure defines the virtual machines that together con-
stitute the KNET architecture. At each horizontal boundary, KNET
defines a protocol for the flow of information across the boundary. Vir-
tual machines communicate exclusively by passing messages across the
interfaces with their immediate neighbors.

* Incorporate tools for building hypertext user interfaces
* Make normatively correct decisions and diagnoses in the face of

uncertain, incomplete, and contradictory information
* Draw inferences from knowledge bases large enough to model sig-

nificant, real-world medical domains, and do so in polynomial
time on low-cost hardware

The challenges of medicine have guided this work toward its present
form. The disciplines of AI, classical computer science, and decision
analysis provide the theoretical framework and the arsenal of applied
techniques for building knowledge-intensive systems that help to man-
age information in medical care.

The KNET architecture integrates HyperCard, a hypertext author-
ing tool, with a suite of knowledge-engineering modules written in Ob-
ject Pascal. The design of KNET places a premium on the precise
separation of user interface from knowledge-engineering kernel. KNET
requires that the designer represent his domain as a diagnosis prob-
lem (with belief networks) or as a decision problem (with decision net-
works). KNET provides a WYSIWYG (What You See Is What You
Get) module for drawing networks on a high-resolution bitmapped dis-
play. Those networks, in turn, precisely and intuitively capture the
causal-associational relationships of Bayesian diagnostic models.

Figure 1 defines the KNET architecture precisely. Each layer in the
figure represents a software-engineering abstraction known as a virtual
machine. At each interface between a virtual machine at level i and
a machine at level i + 1, KNET defines a communications protocol
for the bidirectional flow of information across the boundary. Virtual
machines never inspect the hidden variables or call the hidden methods
of machines at lower levels in the hierarchy; rather, they access the
services of inferior machines by passing messages across the boundary.
The virtual-machine abstraction facilitates the design, development,
and maintenance of large software systems.

The entire KNET environment runs on low-cost, general-purpose
hardware. Using HyperTalk, HyperCard's object-oriented authoring
language, knowledge engineers and even relatively naive users can in-
corporate sound, synthesized speech, videodisc images, and animation
in their knowledge-intensive applications. My experience, corroborated
by my coworkers [4], indicates that we can prototype, debug, and re-
fine different hypertext presentations of the knowledge captured by a
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Figure 2: This figure contains a screen bitmap from a knowledge-engineering session with KNET on the ALARM network for ventilation management
in the intensive-care unit. By selecting the node corresponding to KR-EKG (heart rate as measured by the EKG), the knowledge engineer selects a
HyperCard for defining the conditional probability of HR-EKG contingent on HR-EKG's parent nodes, HR (true heart rate) and Cauterization. In
particular: The probability of a high heart rate as measured by the EKG, given a true heart in the normal range and the presence of cauterization,
is 0.34.

probabilistic model in a single session. Other workers in the field have
observed that powerful and understandable user interfaces can absorb
as much as two-thirds of a project's design and implementation cycle
[2]. KNET alters the software-engineering balance: With HyperCard
as the front end, development of an appropriate user interface expends
fewer human resources than were heretofore required.

The KNET kernel does not change across applications. But the
packaging and presentation of a specific knowledge-intensive system can
vary according to the requirements of the target audience. The KNET
environment offers a number of possible user interfaces that the knowl-
edge engineer can tailor to the problem at hand. The prefabricated
interfaces encompass a wide range of paradigms for human-machine
interaction. Whether the designer chooses to tailor an existing user
interface or to build a new one from scratch, KNET defines a single
consistent protocol for interacting with the knowledge kernel.

Figure 2 shows a fragment of the ALARM belief network for ventila,
tion management in the ICU [1]. The figure also displays a HyperCard
window corresponding to the chance node HR-EKG, which represents
the patient's heart rate as determined by an electrocardiogram (EKG)
monitor.

The KNET architecture specifies extensions to HyperTalk for up-
dating beliefs, recording observations, storing consultations, calculating
optimal decisions, and computing the expected value of perfect informa-
tion. From the perspective of an interface designer, KNET's facilities
for managing probabilistic information appear as transparent exten-
sions of HyperCard's object-oriented universe. The interface designer
uses those tools to construct a visual representation, which the user
manipulates directly, of the underlying knowledge base.

Computation on Belief Networks

Belief networks provide high-level graphical representations of expert
opinion. More precisely, a belief network is a directed acyclic graph
wherein nodes represent domain variables and edges represent causal
or associational relationships [15]. For each orphan node (a domain
variable that lacks incoming arcs or preconditioning influences), the
network designer must specify a prior-probability distribution. For all

other nodes, the expert must assess a probability mass function (pmf)
conditioned on the node's parents. In general, the size of a node's pmf
increases exponentially with the number of incoming arcs. PIBNET
(Probabilistic Inference in Belief NETworks) is the problem of calcu-
lating posterior probabilities for the outcomes of a domain variable,
given evidence about other variables in the network. In the ALARM
network, for instance, I wish to calculate the probability of a pulmonary
embolus given physiologic evidence about the patient's ventilation sta-
tus.

Every belief network represents ajoint-probability space. Belief net-
works also capture intuitive notions of conditional independence. Those
explicitly represented independence assumptions can greatly reduce the
complexity of recovering the complete joint pmf over all the variables in
the network. For modeling problems that specify singly connected be-
lief networks (otherwise known as causal polytrees), the exact methods
compute a probability assignment for all nodes in time proportional to
the diameter of the network on parallel machines, and in O(n) time
on sequential machines, where n denotes the number of nodes. In the
worst case, however, PIBNET seems to require exponential time. More
specifically, all known exact algorithms for inference on multiply con-
nected networks operate in exponential time with respect to the size of
the network [18].

Figure 3 contains a simple belief network from the domain of
medicine. The probability that a patient has a primary brain tumor
(that is, event C) given that he has metastatic cancer (that is, A) is 20
percent, in this example. The absence of an arc from B to C implies
the conditional independence of increased total serum calcium and brain
tumor given metastatic cancer, that is, P(BCIA) = P(BIA) * P(CIA)
or P(BICA) = P(BIA). Given a network topology, the appropriate
conditional probabilities, and a set of evidence, PIBNET computes the
posterior marginal probabilities for each of the uninstantiated nodes.

Let P denote the class of problems that can be solved in polynomial
time on a Turing machine. JVP is the class of problems that can be
solved nondeterministically in polynomial time on a Turing machine
that can compute along multiple paths simultaneously. Equivalently,
K?P contains those problems for which a Turing machine can guess
a solution and then verify the solution's correctness in deterministic
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P(D IBO = 0.1
P(D IB-' = 0.01
P(D -'B = 0.05
P(D -'B-'C) = 0.00001

P(E IQ = 0.4
P(E -'0 = 0.002

Figure 3: This belief network captures information about metastatic
carcinoma and serum calcium. It has been greatly simplified for pur-
poses of illustration, and does not convey a realistic representation of
the causal-associational relationships.

polynomial time.
Let A be a problem that belongs to a class C of problems. I say

that A is complete for C if there exists a construction that reduces
every instance of every problem in C to an instance of A using space
that is logarithmic in the size of the instance. In some sense, then, A
captures the maximal complexity of the class C; A is at least as difficult
to decide, for arbitrary problem instances, as is any other problem in
the class. If every problem in C is reducible to A, but A is not known
to belong to C, we say that A is hard for C.

The hardest problems in PJIP, known as P(P-complete, probably
do not admit polynomial-time deterministic algorithms [7]. If any of
the P/P-complete problems admits a polynomial-time deterministic al-
gorithm, then P = P/P, and all problems in P/P can be solved in
polynomial time. The vast majority of theoreticians believe, however,
that P/P properly contains P, and that polynomial-time algorithms for
P/P-complete problems do not exist. P/P-hard problems are at least
as difficult to answer as are the P/P-complete problems, if not more so.

The probabilistic inference problem for belief networks is hard for
P/P [6]. The classification of PIBNET as P/P-hard has prompted a shift
in focus away from deterministic algorithms and toward approximate
methods, heuristics, and analyses of average-case behavior.

I now offer a complexity-theoretic treatment of approximate prob-
abilistic inference. I use methods drawn from the analysis of ergodic
Markov chains and randomized complexity theory to build an algo-
rithm that efficiently approximates the solutions of inference problems
for many belief networks to within arbitrary precision. I slightly alter
the standard straight-simulation scheme [16] so as to render an analysis
of its computational characteristics. I give the full derivation in [5], and
present only the salient results here.

Suppose that I wish to compute all posterior probabilities in the net-
work to within absolute error a. Suppose, in addition, that I am willing
to tolerate a small probability 6 that the algorithm fails to converge
within the a bound. The detailed argument [5], based on Chebyshev's
inequality and the scheme of Karp and Luby [12], reveals that

N > 1/(4ba2)

guarantees the convergence criteria, where N is the total number of
trials.

I have predicated my analysis on the existence of a trial genera-
tor that accurately produces states of the network according to their
true probabilities, contingent upon the available evidence. The original

straight-simulation generator presented in the literature [16] depends
on the initial state (that is, it lacks ergodicity). Moreover, the standard
generator offers no guarantees about its convergence properties.

Given any belief network, I show how to construct an ergodic
Markov chain that has the property of time reversibility. That is, the
chain looks the same whether time flows forward or backward. (Once
again, [5] presents the details of the construction.) In the limit of in-
finity, after the Markov chain has reached its stationary distribution, it
generates states according to their true probabilities, for Karp-Luby
scoring. I cannot afford, however, to let the chain reach equilibrium at
infinity. In practice, I wish to know how well the chain has converged
after I have let it run for only a finite number t of time steps. An
analysis of chain conductance (intuitively, the chain's tendency to flow
around the state space [11]) and a combinatoric path-counting argu-
ment show that the ergodic Markov generator for belief-network states
s requires

log7 + log 11
- log(l - p'/8)

time steps to reach a relative error of 7, where po is the smallest tran-
sition probability in the network and II is the joint probability of the
least likely state.

Combining the convergence analysis with the Karp-Luby scoring
strategy, my algorithm computes posterior probability estimators Y
that satisfy the constraint

Pr[el] .< y < (1 + y)Pr[eI(] + a
(1 +7)0

with probability greater than 1 - 6. To do so, the algorithm must
perform

4(1+7)] (12f-logl+1) logy + log II

3U0 1 g log(1-p2/8)
cycles, where each cycle corresponds to a transition of the underlying
Markov chain. I can then use those posterior probability estimators to
rank the leading diagnoses. My algorithm, therefore, efficiently com-
putes approximate inferences without sacrificing the elegant normative
framework of probability theory.

Results
A close inspection of the bound on t reveals that the value of po dom-
inates the performance of the algorithm. For po on the order of 0.1,
the Markov chain reaches the stationary state quite rapidly. For very
small po, however, the bound t approaches infinity. Figure 4 graphically
illustrates the number of transitions needed to guarantee various levels
7 of rapid mixing for the Markov chain. My detailed analysis of the
randomized approximation scheme sets an agenda for further investiga-
tion: Focus not on more sophisticated scoring schemes, but rather on
state generators that converge rapidly to their stationary distributions.

Note that small probabilities po do not entail the failure of the
approximation scheme; they merely suggest that the analytic bounds
cannot guarantee efficient computation. The analysis of complexity
clarifies the underlying computational properties of the algorithm, but
it says little about the method's performance on examples drawn from
the real world.

I have studied the performance of my algorithm in great detail on
the 81-node DxNet model (Figure 5). Figure 6 illustrates the most
crucial insight of this empiric study. With 100 trials and 5000 Markov
transitions per trial, my algorithm achieves an average error of 0.035
after 76 seconds of computation on a Sun-4 processor. Taking more
than 100 samples hardly decreases the error; taking more transitions
per trial, however, greatly improves accuracy at the expense of increas-
ing computing time. The convergence depends not so much on the
number of tabulated trials, but rather on the quality of those trials. In
other words, if I had an ideal trial generator, I could expect very rapid
convergence; inasmuch as the raw Markov chain reaches the stationary
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Figure 4: This graph illustrates the crucial relationship between po,
the smallest transition probability in the Markov chain derived from
the network, the number of transitions t required to guarantee that the
t-step transition probability differs from the stationary distribution by
a relative error of y or less. Notice that t depends on y only slightly.
I expect the ras to perform best on belief networks with conditional
probabilities bounded away from 0 and 1.

distribution only after many thousands of transitions, however, trial
generation in DxNet poses the greatest difficulty.

The shift of focus away from obtaining more samples and toward
improving the accuracy of the sampling stream follows directly from my
detailed analysis of the algortihm. The complexity calculation yields
insight into the deep structure of approximate probabilistic inference.
Thus, my analytic framework for analyzing inference, although useful
as an end in itself, has important pragmatic consequences for the design
and delivery of efficient probabilistic systems.

For chains with large transition probabilities, I expect rapid conver-
gence. For other networks, there is yet hope: My algorithm, in contrast
to the exact methods, requires time linear in the number of nodes and
outcomes, in the worst case. The known deterministic algorithms all
require exponential time in the worst case [18]. The theoretical analysis
of my algorithm, however, indicates that the latter remains insensitive
to network topology in the worst case, and degrades only as the smallest
transition probability approaches 0.

Perhaps more important, the ras lends itself to full parallelization.
As low-cost parallel processors become more widely available, I expect
performance that compares favorably with the deterministic approaches
on networks of moderate size. For large and complex networks, the ras
offers the only polynomial-time approach.

To study the parallelization of the ras, I computed the prior-
probability distribution for every node in DxNet to within a maximum
absolute error of 0.25 on an Intel iPSC 32-node Hypercube. Although
the Sun-4 far outdistances the performance of individual nodes in the
cube, the availability of multiple processors renders my ras particularly
efficient. As Figure 7 demonstrates, I can almost exactly halve the
running time by doubling the number of processors. The performance
enhancement continues as I add processors. After 16 processors, how-
ever, the initial loading time (which depends on the bandwidth of the
data path that connects the host to the nodes) dominates the compu-
tation.

Having analyzed performance data for the serial Sun-4 processor
and for the Hypercube, I make the following prediction: An array with
256 processors, each equivalent in floating-point operations per second
(FLOPs) to a Sun-4, can compute probabilities for DxNet to within a

DxNet: Average error vs. trials
0.300
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, 0.200
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Number of trtals (N)

Figure 6: This graph plots the average error over all nodes against the
number of trials, for different values of t, the number of transitions per
trial. Observe that t, and therefore the rate of mixing for the Markov
chain, almost completely determine the convergence of the algorithm.
After a few hundred trials, more computation may serve to guarantee
the failure probability 6 on the absolute error, but otherwise appears
to be useless for DxNet.

maximum error of 0.05 in 4 seconds. Inasmuch as DxNet contains many
probabilities close to 0 and therefore has poor conductance, I present
DxNet as a realistic model for networks encountered in practice. At
some crossover point in the near future, therefore, I expect the ras
to deliver performance that compares favorably with the deterministic
approaches on networks of moderate size.

My empirical and theoretical results together suggest that the
amount of computation required to guarantee a certain absolute error
for probabilistic inference depends critically on the smallest transition
probability in the network, and on little else. In testing the ras on net-
works whose sizes differ, but whose transition probabilities are nearly
identical, I expect to observe nearly constant CPU times for achieving
a given average or maximum absolute error.

Trivial modifications of the ras will support the calculation of ap-
proximate probabilistic inferences in QMRDT [8], our laboratory's
decision-theoretic reformulation of Internist/QMR [14], an expert sys-
tem (developed at the University of Pittsburgh) with almost 600 dis-
eases and over 4000 manifestations. The fastest known deterministic
algorithm for inference over the two-level QMRDT belief network re-
quires time exponential in the number of findings, and cannot currently
handle more than about 20 findings. Extrapolating from the results of
this paper, which show that the smallest transition probability domi-
nates convergence of the Markov chain to the stationary distribution,
I expect that inference in QMRDT will require about the same time
as does inference in DxNet, which also has small transition probabili-
ties. On a 256-node multiprocessor, where each node has the computing
power of a Sun-4, I expect to rank the leading diagnoses in less than 4
seconds. More important, the running time of the ras can only improve
as the number of physical findings increases.

Conclusions
KNET demonstrates the feasibility of normative techniques for the
management of uncertain information in medical expert systems. Per-
haps more important, KNET's existence shows that probabilistic expert
systems can exploit the full expressive power of hypermedia for desig-
ining interfaces to knowledge-intensive medical applications. KNET
supports backward chaining, forward chaining, visual explanation, and
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Figure 5: This 81-node network captures an expert anesthesiologist's knowledge of the ICU domain. Solid nodes represent diagnostic outcomes; shaded
nodes represent physiologic parameters for which estimates from ICU sensors are available; transparent nodes signify intermediate pathophysiologic
concepts; and the small nodes represent error and noise in the sensor data. CO: cardiac output, CVP: central venous pressure, LVED Volume:
left ventricular end-diastolic volume, LV Failure: left ventricular failure, MV: minute ventilation, PA Sat: pulmonary artery oxygen saturation,
PAP: pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, Pres: breathing pressure, RR: respiratory rate, TPR: total peripheral
resistance, TV: tidal volume.
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Figure 7: This graph shows the advantage of parallel computation for the PIBNET ras. I calculate the prior-probability distribution of DxNet on a
32-node Intel iPSC Hypercube.
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decision making within a single framework for the representation and
computation of probabilistic knowledge.

KNET incorporates a novel randomized algorithm that performs
approximate probabilistic inference efficiently-that is, in polynomial
time. Unlike ad hoc and heuristic schemes for managing uncertainty,
my algorithm does not sacrifice the axiomatic foundation of probability
theory. Unlike all known exact algorithms for probabilistic inference,
the ras requires time linear in the problem size, for arbitrary belief
networks, with transition probabilities held constant. And in contrast
to other schemes for stochastic simulation, my algorithm states precise
a priori criteria for its accuracy.

My theoretical analysis shows that the generation of good trials for
the Monte Carlo estimation, and not the generation of many trials,
dominates the convergence of the randomized algorithm. I corroborate
that insight with a detailed study of DxNet, an actual belief network
of significant size. In addition, an implementation of my algorithm
on a 32-node Hypercube demonstrates full parallelization. As parallel
machines become increasingly widespread, my algorithm will provide
a tractable and efficient mechanism for probabilistic inference in do-
mains such as internal medicine. My work, therefore, demonstrates the
fruitful application of precise theoretical techniques to the design and
implementation of a new environment for building large, probabilistic,
knowledge-intensive systems in medicine.
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