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Utilizing Bayesian beliefnetworks as a model of
causality, we examined medical students'
ability to discover causal relationships from
observational data. Nine sets ofpatient cases
were generatedfrom relatively simple causal
beliefnetworks by stochastic simulation.
Twenty participants examined the data sets and
attempted to discover the underlying causal
relafionships. Performance was poor in
general, except at discovering the absence ofa
causal relationship. This work supports the
potentialfor combining human and computer
methods for causal discovery.

INTRODUCTION
Given observational data about the presence and
absence of a side effect after administering or not
administering a drug in a population of patients,
how do workers in the health fields decide
whether the side effect is caused by the dmg?
How accurate is such unaided human causal
inference? In this paper, we report an
experimental study that begins to address such
questions by examining medical students' causal
inference from observational data.

While there is still no universally accepted
account for what constitutes normative causal
inference, the probabilistic account has been
receiving more attention in recent decades [1, 2].
Roughly, this account says that a cause is that
which alters one's probability of the effect. The
contingency paradigm [3-7, 15] that
psychologists have used to study human causal
inference is based upon this account.

In recent years, a more developed account of
probabilistic causal inference based on a causal
interretation of Bayesian belief networks has
been emerging [e.g., 8-10]. Causal belief
networks (CBNs) are directed acycic graphs
whose arcs denote direct causal influences. Mhe
arcs are parameterized with a conditional
probability distribution [11]. Nodes with no
incoming arcs are given a prior probability
distribution over values. Because of the recency
of this account, little psychological research has
been done to examine human causal inference
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when using Bayesian belief networks as a model
of causality [but see 12]. One objective of the
present study is to begin to fill this gap. This
may provide better understanding of clinicians'
cognition and suggest ways to augment human
judgment of causality with automated causal
discovery methods.

RELATED WORK
A typical study in the contingency paradigm asks
participants to determine whether a drug causes a
side effect. The information usually given to
participants to aid them in answering this
question [4, 6] consists of four values, which for
the drug and side effect example would be: (a) the
number of people who took the drug and had the
side effect, (b) the number of people who took
the ding and did not have the side effect, (c) the
number of people who did not take the drug and
had the side effect, and (d) the number ofpeople
who did not take the drug and did not have the
side effect. In some studies, ratios are given
instead of absolute numbers. Different models
have been proposed to relate the participants'
causal judgment to some or all of a, b, c and d.
For example, Allan [13] proposed a/(a+b) -

c/(c+d) as a psychological model that captures
the degree to which a person will believe that the
drug causes the side effect. A variant of this
model, the probabilistic contrast model, was
advocated by Cheng and Novick [3].

A key problem in contingency paradigm studies
is that they examine covariation, which, as
acknowledged by contingency paradigm
researchers [14], is an insufficient criterion for
causal inference. The study we are reporting
attempts to correct this by using causal belief
networks as a model of causality -- a model that
arguably makes explicit the necessary and
sufficient conditions of normative causal
inference from observational data [16, 8, 10].
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METHOD

Participants
Twenty 2nd- and 3rd-year medical students at the
University of Pittsburgh School of Medicine
were recruited for the experiment. They were
compensated $12 each.

Design
Our working assumption in this study is that
CBNs defme a set of causal processes from which
we generate data. We generate sets of patient
cases from CBNs and then test if, and how,
participants can discover the causal relationships
among measured variables from examining the
cases. For our purpose, a "case" is a set
consisting of a value for every variable in the
CBN.
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Figure 1. The nine causal belief networks used in
the experiment.

We started by constructing nine relatively simple
CBNs (see Figure 1), each containing either two
or three binary nodes. In every CBN, the causal
relationship of interest is that between DiseaseB
and DiseaseC. The CBNs are divided into three
groups, each consisting of three CBNs:

Group 1. CBNs consisting of two
nodes only: DiseaseB and DiseaseC. The causal
relationship of interest is from DiseaseB to
DiseaseC, from DiseaseC to DiseaseB, or
absent.

Group 2. CBNs consisting of three
nodes: DiseaseA, DiseaseB, and DiseaseC.
The only difference from Group 1 above is that
DiseaseA causally influences DiseaseB. The
participants were not provided with this
information.

Group 3. CBNs consisting of three
nodes: Gender, DiseaseB, and DiseaseC. The
only difference from Group 1 above is that
Gender causally influences DiseaseB. The
participants were not provided with this
information. They may, however, infer that
while Gender may causally influence DiseaseB
or DiseaseC, it cannot be causally influenced by
either of them.

The probability distributions for the CBN nodes
in Figure 1 are as follows:
- The prior probability of any node is 0.5.
- The posterior probabilities of a node x (such as
DiseaseB in CBN5) that has one parent y are:

P (x=present y=present) = 0.75
P (x=present y=absent) = 0.25

- The posterior probabilities of a node x (such as
DiseaseB in CBN6) that has two parents yl and
y2 are:

P (x yl =present, andy2=present) = 0.8
P (x yl =absent, and y2=present) = 0.6
P (x yl =present, and y2=absent) = 0.4
P (x yl =absent, and y2=absent) = 0.2

These probabilities define distributions with high
variances; thus, the covariation among causally
connected nodes is made more apparent, which
may help the participants to discover causal
relationships.

Using stochastic simulation [17], we generated
nine unbiased data sets from the CBNs in Figure
1, each consisting of 1,000 cases. An example
of a case generated for CBN7 is Gender=female,
DiseaseB=-absent, and DiseaseC=present.
Participants were asked to view the nine data
sets, one after the other, using a computer
program designed for this experiment. The
presentation order of the data sets was
randomized, but data sets generated from Group 3
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were presented last to avoid transferring the
semantic information of Gender in Group 3 to
DiseaseA in Group 2. Unique sequential
integers were appended to the Disease variable
names (replacing the letters A, B, and C in
DiseaseA, DiseaseB and DiseaseC) to
minimize anchoring and interference effects.

The screen of the computer program used in the
experiment consists of 3 main sections:

The data manipulation section allows
participants to view the frequencies for any
variable's value given any (or no) value(s) for
other variables in the data set. For a data set
generated from Group 3, the participants may
choose, for example, to view the probability of
DiseaseC=absent given that Gender=male and
DiseaseB=present.

The questions section prompts
participants to enter their subjective degrees of
belief that each of the following states holds:
DiseaseB causally influences DiseaseC,
DiseaseC causally influences DiseaseB, and
DiseaseB and DiseaseC are not directly causally
related. Each one of these three degrees of belief
is a probability expressed as a percentage ranging
from 0 to 100. A note on the screen reminds
participants that the three entered numbers must
add up to 100; the program does not accept the
input if they do not.

The assumptions section informs
participants that there are no cycles or feedback
mechanisms underlying the relationships among
the presented variables, and that the presented
variables are not influenced by any "hidden"
variables (i.e., unmeasured confounders).

Under the assumptions made in this study, it has
been shown that causal relationships can be
recovered from probabilistic dependencies [8-10,
18]. The gold standard (GS) we used to evaluate
the participants' responses is the probabilities for
causal relationships that a machine-learning
algorithm [10] generates from the same sets of
cases presented to participants. This GS is more
appropriate for evaluation than the underlying
CBN stmcture for two reasons: a) data sets
generated stochastically may exhibit noise or
sampling variation that complicate the process of
infening the underlying CBN strcture; and b)
some data sets are consistent with more than one
underlying CBN structure. The GS provides the
best possible answers given the data sets and the

study assumptions. The number of variables in
the data sets is small enough to jusfify
exhaustive search over all possible stmctures
(three for Group 1 data sets, 25 for Group 2, and
23 for Group 3 where there cannot be arcs from
DiseaseB or DiseaseC to Gender). We
assumed uniform priors over all structures. We
used the likelihood equivalence scoring metric,
assuming an equivalent sample size of one [18].

Procedure
Participants first receive a brief verbal description
of the task and a demonstration on using the
program. The program starts with an instruction
screen followed by a practice session. The data
sets are then displayed one after the other, with
no possibility for viewing or modifying answers
for previous sets. The program keeps track of all
the activity the participants engage in to answer
the questions. At the end of the experimental
session, the program asks participants to enter
comments on the strategy they used to answer
the questions and on their definition of causality.

Material
The program used in this experiment runs on a
Macintosh computer with 17" monitor.
Participants were provided with a book of 9
blank, numbered sheets for optional use as
scratch paper. The computer program prompts
participants to turn to a new sheet at the end of
every data set. Participants were instructed not to
use a calculator.

RESULTS
From among.the three answers the participants
gave for every data set, we considered for analysis
the answer to the question about the type of
causal relationship between DiseaseB and
DiseaseC that matched the structure of the CBN
used in generating the data set. Thus, for CBN6
(see Figure 1), we considered for analysis the
answers to the question about the degree of belief
that DiseaseC causally influences DiseaseB.
The percentages provided by participants were
converted back to probabilities before analysis.
Figure 2 shows the participants' mean answers
along with the GS answers.

One hypothesis we examined is that the
participants' answers are not different from the
normative GS answers. A one-group t-test
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showed that the difference between the observed
and GS answers is significant at the 0.05 level
for seven CBNs, and at the 0.06 level for eight.
The participants' answers for CBN6 are not
significantly different from GS.

Figure 2. Mean answers of participants vs. GS.

Another hypothesis of interest is that the
participants' answers are not different from
answers generated by random guessing. We
tested this hypothesis indirectly by first
computing the expectation for the mean absolute
difference between GS and a uniforn random
process assuming a uniform prior distribution
between 0 and 1. This expectation, GS2 - GS +

1/2, was then compared using a one-group t-test
to the absolute difference between participants'
answers and GS. The difference is significant at
the 0.05 level for six CBNs, and at the 0.06 level
for seven. It is not significant for CBN5 and
CBN8. Figure 3 shows the differences from GS
that were compared.

Figure 3. Mean absolute difference from GS:
Participants vs. random guessing.

DISCUSSION
The results reported above support two
conclusions. Participants' answers are generally
significantly different from the normative

answers and from random guessing. Further, the

participants' answers are closer to GS than is
randomn guessing when there is no causal
relationship (CBNI, CBN4, CBN7) or when
there are only two variables (CBN2, CBN3).

Note that, under our working assumptions, the
direction of the causal relationship in CBN2 and
CBN3 cannot be recovered from the data alone. A
third variable is needed to untangle this direction
[8]. The task in these networks is one of
discovering statistical association more than

causal relation. It can be said, then, that the
participants' perfornance at discovering causal
relationships is poor except at discovering the
absence of such relationships (CBN1, CBN4,
CBN7), which amounts to inferring the absence
of a correlation.

We notice that the participants' answers for
CBN6 are not significantly different from the
normative answer. We attribute this to a

sampling problem in generating the cases from
CBN6 that led to poor performance by the
machine-learning algorithm used as GS. We
verified that the GS would be higher, thus
possibly significantly different from the
participants' answers, whenusing a different or
larger sample of cases. This sampling problem
gives further support to choosing GS for
evaluating participants' answers.

We also notice that the participants' answers for
CBN5, CBN8 and CBN9 are slightly worse
(further from GS) than random guessing,
significantly so in the case of CBN9. We
attribute this to the participants' failure to utilize
infonnation about DiseaseA and Gender when
answering questions concerning the causal
relationship between DiseaseB and DiseaseC.
In response to the question "How would you
define the word causality?", the participants'
answers were almost always formulated in tenms
of only two variables. Thus it seems that, unlike
the machine-leaming algoritih, participants
answer questions about the causal relationship
between two variables without considering
information available about other variables.

In this exploratory study we did not control for
testing of multiple hypotheses. In addition to
such control in fture studies, it would be of
interest to do experiments using concrete real data
ofknown drug side effects obtained from
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randomized clinical trials. It would also be
interesting to see if a different mode of presenting
the data (such as sequential presentation of cases),
some pnor tutoring on CBNs, or studying a
different population such as expert physicians,
would influence the results. The current results
seem to suggest that humans are not as adept at
using only abstract data to infer causality while
machines seem relatively good at this task.
Hulmansc' strengths may be more in expressing
prior probabilities for likely causal relationships,
based on the domain-specific meaning of the
nodes. Investigating, developing, and testing
methods for combining clinician and computer
methods for causal discoveiy is an area that
appears worth pursuing.
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