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Abstract. This paper describes a novel method for explaining
Bayesian network (BN) inference when the network is modeling a
population of conditionally independent agents, each of which is
modeled as a subnetwork. For example, consider disease-outbreak
detection, in which the agents are patients who are modeled as inde-
pendent, conditioned on the factors that cause disease spread. Given
evidence about these patients, such as their symptoms, suppose that
the BN system infers that a respiratory anthrax outbreak is highly
likely. A public-health official who received such a report would
generally want to know why anthrax is being given a high posterior
probability. This paper describes the design of a system that explains
such inferences. The explanation approach is applicable in general
to inference in BNs that model conditionally independent agents; it
complements previous approaches for explaining inference on BNs
that model a single agent (e.g., explaining the diagnostic inference
for a single patient using a BN that models just that patient).

1 Introduction

The importance of an explanation facility in intelligent systems was
recognized early on. There are several studies that experimentally
confirmed the positive impact of explanation on learning [2, 22, 11],
on user perception of the system [33], and on the accuracy of deci-
sion making [2, 31]. Only one experimental study has evaluated the
impact of explanation of inference in Bayesian networks on decision
making [31]. It showed that appropriate explanation can improve de-
cision making.

Developments in Bayesian network (BN) research in the 1980s
and 1990s [5, 18] made BNs one of the most powerful tools for mod-
eling of uncertainty in AI. Today, there are applications of BNs in
various domains: tutoring systems [27], user interfaces [17], informa-
tion retrieval [12], locomotive diagnostics [26], financial operational
risk assessment [23], ecology [34], genetics [3], biosurveillance [6]
and medical diagnosis [20].

There are methods for explanation of inference that were designed
for general BNs [7, 31, 15, 32] or for special BNs [29, 28, 21, 4].
Some explanation methods have been successfully applied to BNs
for real world applications [19, 31]. However, current explanation
methods may not be feasible for very large networks.

BNs can become huge in size when they model a large population
of agents by representing each agent with an individual subnetwork.
We refer to these networks as Bayesian Networks with a Population
of Agents (BNPA). These networks are useful in situations in which
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we want to learn something about a population based on informa-
tion about the agents in the population. In disease-outbreak detection
(aka biosurveillance), for example, the agents are often people who
are reporting their symptoms when admitted to the hospital. Another
type of agent could be a sensor that periodically measures and re-
ports information about air quality at a given location in a city. An
example of an agent-based BN in the military domain is the collec-
tion of intelligence from soldiers engaged in combat about the size
and nature of an enemy force in order to derive an estimate of the
enemy’s military capabilities.

Agents in a population will be independent of one another, if we
condition on all those factors that make them dependent, which are
shown as interface nodes (I) in Figure 1. We refer to such networks
as Bayesian Networks with a Population of Independent Agents (BN-
PIA). In detecting non-contagious infectious diseases, for example,
we can model and condition on all the significant factors that cause a
person to acquire the disease, such as the amount, location, and tim-
ing of the source of the disease. This paper describes a new approach,
the hierarchical explanation method (HEM), for explaining inference
in a BNPIA. Unlike previous explanation methods, the HEM exploits
the modular character of a BNPIA.

2 Background

A BN is a framework for efficient representation of joint probabil-
ity distribution over a set of random variables. A Bayesian network
has two main components: a graph and local probability distributions
[25]. The graph is the qualitative component of a BN, locally repre-
senting the relationships among domain variables. The graph of a BN
is a directed acyclic graph (DAG), which means that it cannot con-
tain cycles, that is, closed loops of directed links. It consists of nodes
that represent random variables and directed arcs connecting nodes.
We use the term node and variable interchangeably in the text. The
arcs are directed from parents to children. An arc expresses the de-
pendency of a child node on a parent node. Every node is associated
with a conditional probability distribution (CPD). In general, a BN
network can contain continuous variables, discrete variables or both.

An outcome of inference in a BN is a posterior probability dis-
tribution of variables as an effect of observed evidence. Hence the
explanation of inference in Bayesian network is focused on the pos-
terior distribution of a node of interest. Methods that explain BN in-
ference try to clarify why and how a certain posterior probability was
obtained given observed evidence.

The posterior probability that we want to explain results from a
combination of several factors: the evidence, the BN structure (vari-
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Figure 1. General representation of a Bayesian Networks with a
Population of Independent Agents. The closed regions represent Bayesian
subnetworks. The circles on the edge of the networks denote nodes that are
connected by arcs that bridge subnetworks. Only two such “I/O” nodes are

shown per subnetwork, but in general there could be any number. The arrows
between subnetworks show the direction in which the Bayesian-network arcs

are oriented between the subnetworks. The braces show which nodes can
possibly be connected by arcs. Interface nodes I are the “I/O” nodes in the

common subnetwork that connect common subnetworks with the agent
subnetworks.

ables and arcs), the BN parameters (local conditional probabilities),
and inference. Complete information about these factors could be in-
cluded in the explanation. The calculation of posterior probability,
however, involves many calculations with many numbers. Moreover,
the evidence can consist of many findings. An explanation that sim-
ply lists all this information is unlikely to be very useful. Gregor and
Benbasat [13] concluded that explanations which require less cog-
nitive effort to access and understand will be used more often and
will have larger positive effect on the performance, learning, or user
perception.

Therefore, many explanation methods start construction of expla-
nation with the selection of a subset of the most important findings
from the set of all findings [31, 14, 4]. These methods use some
quality of the explanation measure to evaluate the set of selected
findings, which is usually based on a distance measure that measures
the distance between the desired posterior probability obtained us-
ing complete evidence and the posterior probability obtained using
the selected subset of findings. The smaller the distance, the bet-
ter the selected subset represents the complete evidence. In the next
step, explanation methods select paths between the selected subset
of findings and the node of interest (NOI). Further simplification of
explanation is achieved by examining which components of network
structure (nodes and arcs) are important for propagation of evidence
from the selected evidence nodes to the node of interest. Basically, if
the removal of a node or arc does not appreciably change the poste-
rior probability distribution of some node of interest, the node or arc
is removed for the purpose of providing an explanation. INSITE, the
explanation method proposed by Suermondt [30, 31], was the first
comprehensive work based on this approach.

There are several variations of explanation methods. Madigan et
al. [21] proposed an explanation method that provided explanation of
inference in graphical form. Henrion and Druzdzel [16, 10] explained
inference in Bayesian networks by means of qualitative explana-
tions. Sember, Zukerman, and Wiegerink [28, 32] proposed meth-
ods that explain inference in BNs in terms of messages defined by

Pearl’s [24] belief propagation algorithm. Scenario-based explana-
tion [11] provides explanation in the form of a list containing the
most probable scenarios that are consistent with hypothesis and ev-
idence. Some of these methods can be combined with the two-step
method sketched in the previous paragraph. The proposed HEM in-
troduced in this paper is closely related to INSITE [31] and to an
explanation method based on analysis of evidence in naive Bayes
networks, where weight of evidence is used to determine the influ-
ence of each piece of evidence (a finding) on the selected diagnosis
[9].

3 Agent-based Bayesian networks

An agent-based BN (Figure 1) consists of several parts: a subnet-
work that represents the whole population (the common part) and
subnetworks that represent agents in the population individually (the
agent part). The common part of the BN is connected with the agent
parts of the BNPIA via the common part nodes that we call inter-
face nodes (I). The size of the population can be very large. For ex-
ample, a Bayesian model for biosurveillance called PANDA-CDCA
[8] was tested using a population of 423,000 agents. PANDA-CDCA
(Figure 2) is a BNPIA for diagnosing outbreaks of CDC (Center for
Disease Control and Prevention) Category A diseases [1], which in-
clude anthrax, tularemia, plague, and several other serious infectious
diseases. In this paper we use PANDA-CDCA as an example of an
agent-based BN with independent agents. Agents in PANDA-CDCA
are modeled as not interacting directly with each other in contracting
disease, and hence, there are no directed arcs connecting variables in
different agent subnetworks. Therefore, the agents are conditionally
independent if we condition on the nodes Outbreak Disease in Popu-
lation and Fraction of Population with Outbreak Disease. This inde-
pendence assumption seems reasonable for non-contagious disease
outbreaks. In case of non-contagious diseases due to bioterrorism,
for example, the main increase in infected individuals in the popu-
lation is due to a release of some biological agent for which we can
assume non-transmission of the disease among individuals (agents)
in the population.
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Figure 2. Example of Bayesian Networks with a Population of
Independent Agents: PANDA-CDCA [8].



PANDA-CDCA takes as input chief complaints observed at an
emergency department (ED) during the previous 24-hour period, and
it outputs the posterior probability of CDC Category A diseases (plus
a few other diseases, including influenza). The common part (G) for
the PANDA-CDCA BN model is made up of the nodes that represent
features common to the whole population, and an agent part (A) that
consists of subnetworks A = {A1, . . . , An} of all n individuals in
the population, where Ai is subnetwork of ith agent. Nodes in the
common subnetwork are Outbreak, Outbreak Disease in Population,
and Fraction of Population with Outbreak Disease. The Outbreak
node represents the presence or absence of an outbreak. The node
Outbreak Disease represents 12 explicitly modeled diseases. Frac-
tion of Population represents the population that has an outbreak dis-
ease and has come to the ED within the previous 24 hours. The Frac-
tion of Population and Outbreak Disease create an interface between
the other global node (Outbreak node) and the agent subnetworks. In
PANDA-CDCA all individuals (agents) are represented by identical
subnetworks, although in general they could differ. An agent’s sub-
network consists of the nodes Outbreak Disease State of Patient and
Chief Complaint Finding. The node Outbreak Disease State of Pa-
tient represents diseases that each person can have according to the
model. The CDC category A diseases and influenza, cryptosporid-
iosis, hepatitis A and asthma are modeled explicitly; any other dis-
ease which the patient may have is represented by the state “other”,
meaning some other disease. PANDA-CDCA was tested using semi-
synthetic and real data with encouraging results [8].

4 Hierarchical explanation method

Unlike previously existing explanation methods for Bayesian net-
works, the hierarchical explanation method takes advantage of the
modularity in BNPIAs. The structure of a BNPIA allows us to iden-
tify those agents that are most important for obtaining inference re-
sults (Figure 2). When HEM selects evidence for explanation it se-
lects all evidence of the agent and, hence, the agent’s subnetwork.
Figure 3 shows how HEM is applied using PANDA-CDCA. Since
in PANDA-CDCA all agents have the same subnetwork, it does not
represent the most general example of BNPIA. However it provides
an apropriately complex model for demonstrating HEM. HEM builds
up explanation hierarchically using three levels. The information col-
lected is represented by the schema in Figure 3. The tree structure in
the figure represents variables (ellipses) at each level of the explana-
tion and the instantiation of these variables (rectangles) are ranked
and sorted from most important to least important for use in explana-
tion. The instantiations of the nodes are ranked with respect to instan-
tiations selected on the previous level and the evidence. HEM starts
explanation with the node of interest (NOI), whose probability we
want to explain. NOI constitutes the top explanation level in Figure
3. HEM assumes that the NOI is in the common part of BNPIA. For
PANDA-CDCA it is the Outbreak (O) node. The lowest level repre-
sents patient models (subnetworks), each with its respective set of ev-
idence. People modeled in PANDA-CDCA correspond to the agents
of a BNPIA. Explanation can be simplified by creating groups of
patients with the same model and evidence (model-evidence equiv-
alence groups). As PANDA-CDCA uses the same subnetwork for
all agents, we can simplify explanation by grouping agents with the
same evidence. Therefore the explanation in PANDA-CDCA is con-
structed based on groups of agents with identical evidence rather than
on individual agents. We will refer to groups of agents as evidence
equivalence groups. Although, the HEM does not require agents to
have identical subnetworks, it makes the grouping of the agents more

efficient. The middle level consists of interface nodes; conditioning
on them renders the agents independent of each other. In PANDA-
CDCA, there are two interface nodes: Outbreak Disease in Popula-
tion and Fraction of Population with Outbreak Disease. In order to
keep the example simple, we assume in Figure 3 that there is only
one interface node, namely, Outbreak Disease in Population.

Having introduced the three levels, we now summarize how ex-
planation is performed using them. At the first level, all possible
states t1, t2, . . . , tj , . . . , tNT of the NOI, T , are ranked using the
posterior probability P (tj |e), where e is the evidence for all indi-
viduals in the population. Since there is no higher level, this pos-
terior probability is conditioned only on evidence observed for the
individuals. In this way we select the most probable instantiation
of the NOI for the subsequent analysis. Alternatively, the user can
select the state of NOI that he is interested in having explained.
Suppose the selected instantiation of the NOI is t3. At the middle
level of the explanation tree in Figure 3, the instantiations of the
states i1, i2, . . . , ij , . . . , iNI of nodes I are ranked using the pos-
terior probability P (ij | t3, e). Suppose that i7 is the instantiation
with the highest posterior probability. At the lowest level of the ex-
planation tree, we identify those individuals that most contributed to
a high posterior probability of i7, when compared to other possible
instantiations of I: ¬i7 = i1 ∨ . . . ∨ i6 ∨ i8 ∨ iNI . Recall that
individuals with identical evidence are considered as one evidence
equivalence group. Let ej be the total evidence of the jth group.
The relative support of i7 by the jth evidence equivalence group is
measured using the conditional likelihood ratio (LR) given by Equa-
tion 1.

L (i7 : ej |t3, e1, . . . , ej−1) =

=
p (ej | i7, t3, e1, . . . , ej−1)

p (ej | ¬i7, t3, e1, . . . , ej−1)
, (1)

The denominator in Equation 1 is derived as follows:

p (ej | ¬i7, t3, e1, . . . , ej−1) =

∑NI
k 6=7 p (e1, . . . , ej | ik) p (ik | t3)∑NI

k 6=7 p (e1, . . . , ej−1 | ik) p (ik | t3)
.

We have to use a conditional LR since in general

p (e1 | ¬i7, t3, ) p (e2 | ¬i7, t3) 6= p (e1, e2 | ¬i7, t3) .

The likelihood ratio in Equation 1 allows us to decompose the pos-
terior odds of i7 into contribution of each evidence equivalence group
ej (Equation 2).

p(i7|e,t3)
p(¬i7|e,t3)

=

p(i7|t3)
p(¬i7|t3)

∏NG
j=1 L (i7 : ej | t3, e1, . . . , ej−1) , (2)

where Ng is number of evidence groups. Let Bj−1 represent back-
ground information consisting of T = t3 and j − 1 already se-
lected equivalence evidence groups {e1, . . . , ej−1}. The LR allows
us to determine which evidence equivalence group is supporting and
which evidence equivalence group is contradicting the instantiation
i7, shown in Equation 3.
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Moreover, the LR in Equation 1 allows us say that instantiation
i7 is LR(i7 : ej |Bj−1) times more (or alternatively, less) sup-
ported by ej than ¬i7 given the background information Bj−1 if
LR(i7 : ej |Bj−1) > 0 (or alternatively, LR(i7 : ej |Bj−1) < 0).
The likelihood ratio given by Equation 1 depends on the order of
selected group evidence and only in the case of a binary I can the
LR be replaced by unconditional LRs, L (i7 : ej), in Equation 2. A
simple heuristic for ordering evidence in the case of an I with more
than two states is to initially select the evidence equivalence group
with the highest likelihood ratio. In this case, we select first the high-
ranked evidence equivalence group. The remaining evidence equiva-
lence groups are then sorted and applied similarly. This approach se-
lects evidence that is most supportive of the instantiation of i7 itself,
regardless of the interaction of the selected evidence with the rest of
the observed evidence. Once instantiations and evidence equivalence
groups are selected, HEM will select information for explanation us-
ing the scores calculated for each instantiation and evidence equiva-
lence group. Explanation presented to the user includes the score for
the selected information.

5 Example of hierarchical explanation

This section provides an example of applying the HEM methodology
to produce an explanation of inference for PANDA-CDCA. In par-
ticular, Figure 3 shows the scheme of HEM as applied to PANDA-
CDCA. The observed evidence for PANDA-CDCA, e, consists
of chief-complaint findings extracted from chief-complaint strings
recorded for each patient who comes to the emergency department.
Chief-complaint findings included in the model are fever, cough,
and headache, for example. Since Outbreak is the NOI, the poste-
rior probability of each possible instantiation of that node is derived
given the observed evidence on all individuals in the population. The
posterior probability of Outbreak = true is 0.9999 and posterior
probability of Outbreak = false is 0.0001. Assume we would
like to know why the posterior of Outbreak = true is so high.
HEM next identifies the instantiations of those intermediate nodes
that most support Outbreak = true. In this section, we will re-
fer to the node Outbreak Disease in Population simply as to Out-
break Disease. For simplicity of exposition, we will not include the
node Fraction of population with outbreak disease in the explanation
described here. All possible instantiations of the variable Outbreak
Disease are scored using the posterior of Outbreak Disease given
evidence e and Oubreak = true. Suppose that the top scoring in-
stantiation of Outbreak Disease is Outbreak Disease = botulism
(score = 0.998) and the second most highly scored instantia-
tion is Outbreak Disease = plague (0.001). Explanation fo-
cuses on the most important (highest scoring) instantiation, that is, in
oubreak disease = botulism (score = 0.998). As a final stage,

HEM searches for groups of individuals that provide the highest evi-
dential support for instantiation Outbreak Disease = botulism.
Equation 1 is used to quantify such support. The highest support
for Outbreak Disease = botulism given Outbreak = true
is provided by a group of 36 patients with the chief complaint of
difficulty swallowing. The second highest support is provided by a
group of patients with the chief complaint of slurred speech. Using
the information derived above, a simple verbal explanation can be
constructed, such as: “PANDA-CDCA detected an outbreak (Out-
break=true) with probability 0.9999. The most probable outbreak
disease is botulism with probability 0.998. Evidence that supports
botulism as the outbreak disease is a group of 36 patients with a chief
complaint of difficulty of swallowing. When 36 such patients come to
the emergency department, the probability of botulism increases with
respect to alternative outbreak diseases by a factor of 22”.
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Figure 3. Schema of hierarchical explanation for PANDA-CDCA. The
ellipses represent variables and the rectangles represent values. The numbers

in parentheses represent the number of patients in the corresponding
evidence group and the numbers on the edges represent the scores.

6 Summary and future research
This paper describes a novel method called HEM for explanation of
inference in BNs that model populations of conditionally indepen-
dent agents. HEM complements previous explanation methods that
focus on explaining inference for BN models of single individuals.
HEM exploits the modularity of BNPIA models to structure its ex-
planations.

We currently are completing the implementation of the HEM ex-
planation system. In the near future we plan to evaluate how effec-
tively the system provides human users with explanations of infer-
ence.
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