
Exact model averaging with naive Bayesian classifiers

Denver Dash ddash@sis.pitt.edu

Decision Systems Laboratory, Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15213 USA

Gregory F. Cooper gfc@cbmi.upmc.edu

Center for Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213 USA

Abstract

The naive classifier is a well-established
mathematical model whose simplicity, speed
and accuracy have made it a popular choice
for classification in AI and engineering. In
this paper we show that, given N features
of interest, it is possible to perform tractable
exact model averaging (MA) over all 2N pos-
sible feature-set models. In fact, we show
that it is possible to calculate parameters
for a single naive classifier C∗ such that C∗

produces predictions equivalent to those ob-
tained by the full model-averaging, and we
show that C∗ can be constructed using the
same time and space complexity required to
construct a single naive classifier with MAP
parameters. We present experimental results
which show that on average the MA classi-
fier typically outperforms the MAP classifier
on simulated data, and we characterize how
the relative performance varies with number
of variables, number of training records, and
complexity of the generating distribution. Fi-
nally, we examine the performance of the MA
naive model on the real-world ALARM and
HEPAR networks and show MA improved
classification here as well.

1. Introduction

The general supervised classification problem seeks
to create a model based on labelled data which can
be used to classify future vectors of features F =
{F1, F2, . . . , FN} into one of various classes of inter-
est. The naive classifier is a probabilistic model that
accomplishes this goal by making the assumption that
any feature Fi ∈ F is conditionally independent of any
other feature Fj ∈ F given the value of the class vari-

able C. The naive model can be represented by the
Bayes net shown in Figure 1.

C

F1 F2 F3 … FN

…

Figure 1. A naive network: C is the class node which can
take on one value for each possible class, and the Fi denote
features of interest.

Naive classifiers have several desirable features: First,
they are simple to construct, requiring very little do-
main background knowledge, as opposed to general
Bayesian networks which can require numerous inten-
sive sessions with experts to produce the true depen-
dence structure between features. Second, naive net-
works have very constrained space and time complex-
ity: If Nf is the largest number of states any feature
can take on, Nc is the number of class states, and N is
the total number of features, then constructing a net-
work requires the estimation of a set of O(N ·Nf ·Nc)
parameters. Each of which can be estimated from data
in time O(Nr), where Nr is the number of records in
the database. Given a completely specified naive net-
work, classification of a new feature vector F ′ can be
performed in time O(|F ′|), even if F ′ is an incom-
plete instantiation of features. Finally, despite their
naivety, these classifiers have been shown to perform
surprisingly well in practice, for example in (Domin-
gos & Pazzani, 1997; Friedman et al., 1997), compar-
ing favorably to state-of-the-art neural network clas-
sifiers and even to the much more complex learning
algorithms for general Bayes nets.

The construction of a single maximum a posteriori
(MAP) naive classifier given a set F of attributes re-
quires only two general steps: (1) Select the subset of
features F ′ ⊆ F judged to be relevant to classification,

and (2) Calculate the set θ̂ of MAP parameters. The
feature selection problem (1) is a difficult and central
problem in machine learning in general. In terms of
naive classifiers, the selection of the appropriate sub-
set F ′ has shown to be both important to classifica-
tion and non-trivial to perform in practice (Langley
& Sage, 1994; Kohavi & John, 1997; Friedman et al.,
1997). Obviously eliminating features that do not bear
on the classification is important, but also important
is the ability to minimize redundant features.

In this paper we take a strict Bayesian approach to fea-
ture selection and, rather than finding a single “good”
set F ′, we consider the problem of model averaging
predictions over all possible feature-set structures. For
example, the four possible structures of a naive clas-
sifier with two features are {C → F1, C → F2},
{C → F1}, {C → F2}, and ∅.
If there exist N total possible features then the num-
ber of possible naive structures is 2N ; nonetheless, we
show that the exact averaging over all structures can
be performed in time linear in N after construction of
a single naive classifier C∗ bearing an appropriate set
of parameters. Furthermore, we show that it is pos-
sible to construct C∗ in the same time and using the
same space required to calculate the MAP parameters
of a single naive network over all N features.

Approximate techniques for model averaging with
graphical models using pruning and stochastic Monte
Carlo techniques have been previously studied by
Madigan and Raftery (1994). Because of their gen-
erality, these approaches are both computationally ex-
pensive and not exact. Our approach, on the other
hand is specific to averaging over the space of naive
networks; however the solution is exact and efficient.

Friedman and Koller (2000) studied the ability to esti-
mate structural features of a network (for example the
probability of an arc from Xi to Xj) by performing a
MCMC search over orderings of nodes. The inner-loop
of their method calculated in closed-form the posterior
probability of a feature averaged over all networks con-
sistent with a fixed ordering, and their ability to aver-
age over a given ordering relied on a decomposition of
the posterior that is very similar in form to one that we
use. Their work differs from ours in two key respects:
(1) They perform model averaging only to calculate
the probabilities of structural features, explicitly not
for classification, and (2) their more general approach
does not capture the simple single-network (and thus
linear-time calculation efficiency) solution to the naive
model-averaging problem.

Similarly Meila and Jaakkola (2000) discuss the ability

to perform exact model averaging over all trees. Again
they use similar assumptions and similar decomposi-
tions that we use; however they also do not specialize
their technique to naive networks and thus do not cap-
ture the linear-time classification efficiency. They do
discuss the ability to build a single ensemble model to
represent the average over all trees; however for this
task they rely on the EM algorithm to estimate pa-
rameters of the ensemble model, a restriction which is
not required for our solution and one which will not in
general reproduce the exact calculation.

Our primary contributions in this paper are as fol-
lows: (1) we demonstrate a factorization that can
be applied to the specialized task of classification
while model averaging over the restricted space of
naive Bayes nets, (2) we show that the exact model-
averaged calculations can be performed with a single
naive network which can be constructed efficiently, and
(3) we provide extensive experimental investigations
showing that model averaging under these conditions
produces more accurate classifications than the MAP
naive model.

In Section 2 we formally frame the problem and state
our assumptions and notation. In Section 3 we de-
rive the MA solution and show that the MA predic-
tions are equivalent to those of a single naive structure
bearing a particular set of parameters. In Section 4 we
present the experimental results of applying the tech-
nique to synthetic and benchmark networks and show
that on average the MA predictions almost always per-
form better than the MAP predictions. Finally, in
Section 5 we present our conclusions and future direc-
tions.

2. Assumptions and Notation

The general supervised classification problem can
be framed as follows: Given a set of features
F = {F1, F2, . . . , FN} and a set of classes C =
{C1, C2, . . . CNc}, letting Fi denote the range of the
ith feature, Fi ∈ Fi and letting F denote the joint
space of features F = F1 ⊗ F2 ⊗ . . . ⊗ FN , a classifi-
cation model M can be defined as a mapping from
F to the set of classes: M : F → C. A labelled
database is a set D = {D1, D2, . . . , DR} containing
records Di = {f i

1, f
i
2, . . . f

i
N , Ci}, where Ci ∈ C denotes

the class into which the feature vector {F1 = f i
1, F2 =

f i
2, . . . FN = f i

N} belongs. In these terms the super-
vised classification problem can be stated succinctly:
Given a labelled database D, construct a classification
model MD.

A Bayes net plus a set of threshold parameters can be

used to define a probabilistic classification model. For
example, when C is binary, given a Bayes net B and
a threshold parameter t ∈ [0, 1], a Bayes net classifica-
tion model MB can be defined as follows:

MB(f) =
{

C0 if P(C = C0 | F = f , B) > t
C1 otherwise (1)

We associate the nodes in the network with the index
i, using the convention that i = 0 refers to the class
node and that i 6= 0 refers to feature Fi. We may
use the notation Xi to refer to the nodes when we do
not care to distinguish between the class node and the
feature nodes; thus, Xi ≡ Fi and X0 ≡ C. We use X
to denote the collective set of nodes in the network,
and we use Pi to denote the parent set of Xi; for our
naive networks Pi ∈ {∅, {C}}.

Assumption 1 (Multinomial variables) We as-
sume that each node Xi is a discrete variable with ri

possible states.

We let qi denote the number of columns in the con-
ditional probability table (CPT) of node Xi. In the
naive case, if Pi = ∅ then qi = 1, and if Pi = {C}
then qi = Nc. In general when Qi is some quantity
associated with node Xi, we use Q∅i to denote Qi in
the graph where Pi = ∅ and QC

i to denote Qi in the
graph for which Pi = {C}; thus q∅i = 1 and qC

i = Nc.

We use θijk to denote the (jk) component of node Xi’s
CPT, the symbol θij to denote the entire probability
distribution function for the i-th node and the j-th col-
umn, and the symbol θ to denote the collective param-
eters of the network. In general we use the common
(ijk) coordinates notation to identify the k-th state
and the j-th column of the i-th node in the network.
We use the shorthand that if Qijk is some quantity as-
sociated with coordinates (ijk), then Qij ≡

∑
k Qijk.

Assumption 2 (Complete Labelled Training Data)
The training data set D contains no record
Dl ∈ D such that Dl is missing data:
Dl ∈ D ⇒ |Dl| = N + 1.

We take this assumption initially but will show how to
relax it in Section 5. We let Nijk denote the number of
times in the database that the node Xi achieved state
k when Pi was in the j-th configuration.

Assumption 3 (Dirichlet priors) The prior beliefs
over parameter values are given by a Dirichlet distri-
bution.

We let αijk denote the Dirichlet hyperparameters cor-
responding to the network parameter θijk. We assume

the existence of both complete sets of hyperparameters
α∅ijk and αC

ijk.

Assumption 4 (Parameter independence) For
any given network structure S, each probability dis-
tribution θij is independent of any other probability
distribution θi ′j ′ :

P(θ | S) =
N∏

i=0

qi∏

j=1

P(θij | S) (2)

Assumption 5 (Structure modularity) We as-
sume that the prior over structures, P (S), can be
factorized according to the network:

P(S) ∝
N∏

i=0

ps(Xi, Pi), (3)

where ps(Xi, Pi) is some function that depends only on
attributes of Xi and Pi.

This assumption was used in (Meila & Jaakkola, 2000)
and (Friedman & Koller, 2000) the latter introducing
the name “structure modularity”. We assume that
ps(Xi, Pi) can be calculated in time constant in N and
Nr. For example, any metric that scores P(S | K)
based on a difference in arcs between S and some prior
network (as suggested by (Heckerman et al., 1995))
will satisfy this condition. Another possibility is the
uniform distribution which is obviously O(1).

3. Theoretical Results

In this section we show how to efficiently calculate
the quantity P(X = x | D) averaged over all pos-
sible naive structures. From this quantity we can
readily calculate P(Ci | f , B) in O(Nc) time using
P(Ci | f , B) = P(Ci, f | B)/

∑
j P(Cj , f | B).

3.1 Fixed Network Structure

For a fixed network structure S and a fixed set of net-
work parameters θ, the quantity P(X = x | S, θ) can
be calculated in O(N) time:

P(X = x | S, θ) =
N∏

i=0

θiJK , (4)

where all (j, k) coordinates are fixed by the configura-
tion of X to the value (j, k) = (J,K).

When, rather than a fixed set of parameters, a
database D is given, from an ideal Bayesian perspec-
tive it is necessary to average over all possible config-

urations of the parameters θ:

P(X = x | S, D) =

∫
P(X = x | S,�) · P(� | S, D) · d�

=

∫ N∏
i=0

θiJK · P(� | S, D) · d�

where the second line follows from Equation 4. Given
the assumption of parameter independence and Dirich-
let priors, this quantity can be written just in terms
of sufficient statistics and Dirichlet hyperparameters
(Cooper & Herskovits, 1992; Heckerman et al., 1995):

P(X = x | S,D) =
N∏

i=0

αiJK + NiJK

αiJ + NiJ
(5)

Comparing this result to Equation 4 illustrates the
well-known result that a single network with a fixed
set of parameters θ̂ given by

θ̂ijk =
αijk + Nijk

αij + Nij
(6)

will produce predictions equivalent to those obtained
by averaging over all parameter configurations. Heck-
erman (1998) makes the claim that under a suitable
coordinate transformation these parameters represent
a maximum a posteriori (MAP) configuration.

3.2 Averaging over Structure

For the case when the structure S is not fixed, we must
not only integrate over all sets of parameters, but also
average over all possible network structures:

P(X = x | D)

=
∑

S

∫
P(X = x | S,�) · P(� | S, D) · P(S | D) · d�

=
∑

S

N∏
i=0

θ̂iJK · P(S | D)

which according to Bayes’ rule can be written as:

P(X = x | D) = κ
∑

S

N∏
i=0

θ̂iJK · P(D | S) · P(S) (7)

where κ is a constant depending only on the data set
D.

Given the assumptions of complete data, multino-
mial variables, Dirichlet priors and parameter inde-
pendence, the marginal likelihood P(D | S) can also
be written just in terms of hyperparameters and suf-
ficient statistics (Cooper & Herskovits, 1992; Hecker-
man et al., 1995):

P(D | S) =

N∏

i=0

qi∏

j=1

Γ(αij)
Γ(αij + Nij)

·
ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

. (8)

Combining Equations 7 and 8 with Assumption 5
yields:

P(X = x | D) = κ
∑

S

N∏

i=0

ρiJK (9)

where the ρiJK functions are given by:

ρiJK = θ̂iJK · ps(Xi, Pi)·
qi∏

j=1

Γ(αij)
Γ(αij + Nij)

·
ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

(10)

Equation 9 includes a summation over 2N network
structures. Expanding the summation and using our
notation ρ∅ijk and ρC

ijk to denote ρijk when Pi = ∅ and
Pi = {C}, respectively, yields:

P(X = x | D) ∝
ρ0JK · ρ∅1JK · ρ∅2JK · . . . · ρ∅NJK

+ ρ0JK · ρC
1JK · ρ∅2JK · . . . · ρ∅NJK

...
...

+ ρ0JK · ρC
1JK · ρC

2JK · . . . · ρC
NJK

2N terms.

We define the symbol ΣJK
m to denote the structure sum

of the product up to and including the m-th node:

ΣJK
m ≡ ρ0JK · ρ∅1JK · ρ∅2JK · . . . · ρ∅mJK

+ ρ0JK · ρC
1JK · ρ∅2JK · . . . · ρ∅mJK

...
...

+ ρ0JK · ρC
1JK · ρC

2JK · . . . · ρC
mJK

Using this notation, ΣJK
N be written in terms of ΣJK

N−1:

ΣJK
N = ΣJK

N−1 · ρ∅NJK

+ ΣJK
N−1 · ρC

NJK

which yields the recurrence relations:

Σjk
i = Σjk

i−1 · (ρ∅ijk + ρC
ijk), Σjk

0 = ρ0jk

Finally, expanding out the recurrence relation yields
the expression for P(X = x | D):

P(X = x | D) = κ

N∏

i=0

(ρ∅iJK + ρC
iJK) (11)

Once the {ρ∅iJK , ρC
iJK} terms are calculated, the prod-

uct in Equation 11 can be performed in O(N) time.

Calculating the ρ terms themselves requires the cal-
culation of hyperparameters {α∅iJK , αC

iJK}, which are
assumed given, and statistics {N∅

iJK , NC
iJK}, which

can be calculated in O(Nr) time. To calculate the
complete set for all (j, k) combinations thus requires
O(Nr ·N ·Nf ·Nc) time and O(N ·Nf ·Nc) space, the
same as that required for calculating the parameters of
a single MAP naive network over all N features using
Equation 6.

The final observation we make about Equation 11 is
that, on comparison with Equation 4, it can be seen
that a single naive network over all N features bearing
parameters θ∗ defined by:

θ∗ijk =
1

κN
(ρ∅ijk + ρC

ijk) (12)

will produce predictions equivalent to those produced
by model averaging over all naive structures. These
θ∗ parameters can be calculated without direct evalu-
ation of the constant κ by using the normalization con-
dition on parameters:

∑
k θijk = 1. Thus, rather than

performing the calculation of the ρiJK for each case
X = x to be classified, we need only construct a single
naive model and use standard O(N) Bayes net infer-
ence for each case. This fact was verified empirically
for N = 10 by comparing model-averaged predictions
using brute-force enumeration to those produced by
the single network with the θ∗ parametrization. The
predictions were found to be identical.

By inspecting the definition of the ρ functions in Equa-
tion 10, the θ∗ijk parameters in Equation 12 can be
written as:

θ∗ijk ∝ θ̂∅ijk · f (∅ | D) + θ̂C
ijk · f (C | D) (13)

where f (∅ | D) and f (C | D) are proportional to the
local posterior probability of Pi = ∅ and Pi = {C},
respectively. Thus Equation 12 represents a structure-
based smoothing of MAP parameters where each MAP
parameter is weighted based on how likely an arc from
C to Fi is, given the data and the priors.

4. Experimental Tests

In this section we describe several experimental inves-
tigations that were meant to test the performance of
the MA technique described in Section 3.

4.1 Experimental Setup

Our experiments were aimed at characterizing the per-
formance of the model-averaged naive predictions ver-
sus the MAP naive predictions. We sought trends over
three experimental parameters: the number of nodes

N , the number of records Nr, and the maximum in-
degree Nk (maximum number of parents of any one
node) of the (not necessarily naive) generating net-
work.

For the initial set of experiments, networks were gen-
erated randomly from a uniform distribution over di-
rected acyclic graphs. Specifically, the network gener-
ation process was performed using the following pro-
cedure:

Procedure 1 (Random structure generation)
Given: N and Nk.
Do:
1. Create N + 1 nodes X1, X2, . . . , XN+1.

2. For each node Xi do:

(a) Let Npmax ≡ min(i− 1, Nk).
(b) Generate a random integer Npa ∈ [0, Npmax].
(c) Randomly pick Npa parents uniformly from

the list {X1, . . . , Xi−1}

Once a network structure had been generated, each
node distribution θij was sampled independently from
a uniform distribution over parameters. However, as
we were generating data with extremely dense net-
works (looking at maximum in-degrees up to 500), it
was necessary to employ a lazy-evaluation approach
whereby the individual θij columns were only gener-
ated if and when they were actually required during
the data generation process. Finally, once the gener-
ating network was constructed, we designated a class
node from {X1 . . . XN+1} uniformly at random.

We use M and M̂ to denote the naive and the MA
naive models, respectively. Using this network genera-
tion process, three general tests were performed. The
inner-loop of each test performed basically the same
procedure: Given the number of nodes N , number of
training records Nr, number of testing records Ntest,
maximum density of generating graphs Nk and a total
number of trials Ntrials, we did the following:

Procedure 2 (Basic testing loop)
Given: N , Nr, Ntest, Nk and Ntrials.
Do:
1. Generate Ntrials random graphs G(N,Nk).

2. For each graph G(N, Nk) do:

(a) Generate Nr training records and Ntest test
records.

(b) Train M and M̂ on the training records.

(c) Test M and M̂ on the test data, measuring
the ROC areas R and R̂ of each.

(d) Calculate the quantities ∆ROC = R̂−R
R and

δROC = R̂−R
T−R , where T is the ROC area of a

perfect classifier.

3. Average ∆ROC and δROC over all Ntrials.

∆ROC represents the fraction increase in ROC area
achieved by MA, and δROC represents the fraction
of remaining ROC area covered by MA. The possible
range of ∆ROC depends on the value of R, for example
if R = 0.99T then ∆ROC ≤ 0.01; whereas δROC always
can take on values in the range −∞ ≤ δROC ≤ 1. In
our experimental results we present these quantities
as percentages. To avoid a singularity in δROC , we
use the convention that if R = T then δROC = 0. This
was an exceedingly rare occurrence, and almost always
when this did occur it was the case that R̂ = T as well.

The tests that we performed differed in which param-
eters were fixed and which were varied (see Section 4.2
for specific values):

1. (Nodes test) Nr, Ntest, Nk, and Ntrials were
fixed to constant values , and N was systemati-
cally varied to test the sensitivity of MA perfor-
mance as the number of nodes in the network is
varied.

2. (Training-records test) N , Ntest, Nk, and
Ntrials were fixed to constant values, and Nr was
systematically varied to test the sensitivity on the
number of training records.

3. (Density test) N , Nr, Ntest, and Ntrials were
fixed to constant values, and Nk was systemat-
ically varied test the sensitivity of MA perfor-
mance on the complexity of the generating dis-
tribution.

In all cases we assume a uniform prior over structures
and thus allow ps(Xi, Pi) = 1 for all i. We also adopted
the K2 metric (Cooper & Herskovits, 1992) which sets
αijk = 1 for all (i, j, k). This criterion has the property
of weighting all distributions of parameters equally.
All variables in our tests were binary: Nc = Nf = 2.

4.2 Results

The nodes test was performed with Nr fixed to 200
records, Ntest fixed to 100 records, Nk fixed to 5 par-
ents, Ntrials set to 500, and N systematically varied
through the values {5, 10, 20, 40, 80, 100, 150, 200, 500}.
The mean values of ∆ROC and δROC for this test are
shown in Figure 2 (a). In these and all subsequent
figures, the small solid error bars denote the 99% con-
fidence interval of the mean value. The dashed bars

-2%

0%

2%

4%

6%

8%

10%

12%

0 200 400 600

Number of Nodes (N)

∆ R
O
C

-5%

0%

5%

10%

15%

20%

25%

0 200 400 600

Number of Nodes (N)

δ R
O
C(a)

-4%

0%

4%

8%

12%

1 100 10000 1000000

Number of Records (Nr)

∆ R
O
C

-5%

0%

5%

10%

15%

20%

25%

1 100 10000 1000000

Number of Records (Nr)

δ R
O
C(b)

-8%

-4%

0%

4%

8%

12%

16%

1 10 100 1000

Density (Nk)
∆ R

O
C

-8%

-4%

0%

4%

8%

12%

16%

20%

24%

28%

1 10 100 1000

Density (Nk)

δ R
O
C

(c)

Figure 2. Results as a function of (a) the number of nodes,
(b) the number of records, and (c) the generating density.
The solid error bars denote the 99% confidence intervals
for the mean. The dashed bars indicate the spread of the
data (±1σ).

indicate the ±1σ level and are shown to give a feel for
the spread of the data independent of the measurement
error of the mean.

In the nodes test, both ∆ROC and δROC were greater
than 0 with probability p > 0.99 for all values of N
save one, which was significant at the 0.95 level. Model
averaging performed increasingly better as the number
of nodes increased, converging to about ∆ROC = 5%,
δROC = 10% for N > 150 nodes. Due to the large
standard deviation of the results, about 70% (2σ) of
the probability mass is concentrated in the region from
−1% <∼ ∆ROC

<∼ +11% and −2% <∼ δROC
<∼ +20% for

N >∼ 100.

The training-records test was performed with N fixed
to 200, Ntest fixed to 100 records, Nk fixed to 5 par-
ents, Ntrials set to 200, and Nr varied through the val-
ues {25, 50, 100, 200, 800, 2000, 3200, 12800}. The out-
comes of this test are shown in Figure 2 (b). The
mean values were statistically significant at the 99%
level for all tested values of Nr; however, unlike the
nodes test where the results seemed to converge as
the number of nodes increased, here we observed a
local maximum at ∆ROC ' 5%, δROC ' 10% some-
where between 200 and 800 records. Again, due to the

large standard deviation, ∼ 70% of the results are gen-
erally concentrated between −4% <∼ ∆ROC

<∼ +9%,
−5% <∼ δROC

<∼ +15%.

The density test was performed with N fixed
to 200 nodes, Nr fixed to 200 records, Ntest

fixed to 100 records, Ntrials set to 500, and
Nk systematically varied through the values {1 −
10, 20, 40, 60, 80, 100, 150, 200}. The outcomes of this
test are shown in Figure 2 (c). For sparse graphs
(Nk < 10), again with probability > 99%, the results
are favorable to model averaging with means around
∆ROC =4–6% and δROC =4–8% with most of the
probability lying between −2% <∼ ∆ROC

<∼ +12%,
−4% <∼ δROC

<∼ +20%. For very dense graphs the
mean drops by a factor of about 2 or 3, and some
∆ROC points are no longer statistically significant.

To test the robustness of these results, we performed
a worst-case training-records test with the number of
nodes set to N = 5 and the density set to Nk = 5,
both chosen to be the least optimal values for MA
(based on the previous experimental results reported
above). This run used the same parameters as the
training-records test in Figure 2 (b) only with N =
5 and Ntrials = 1000. As shown in Figure 3, with
this extreme test the MA classifier showed little if any
significant improvement over the MAP naive classifier;
conversely, even as all parameters achieved the least
optimal values for our measurement range, the single
MAP naive model never performed significantly better
on average than the MA classifier.

MA Worst-Case Performance

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

10 100 1000 10000 100000
Number of Records (Nr)

∆ R
O
C

MA Worst-Case Performance

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

10 100 1000 10000 100000
Number of Records (Nr)

δ R
O
C

Figure 3. The worst-case configuration for model averaging
still does not produce statistically significant gains for the
single MAP naive model.

The performance of model averaging was also tested
by generating training and test data with the bench-
mark ALARM network. In this case, N = 36 and
Nk = 4 were fixed by the network and Ntest was set
to 1000 records, Ntrials was set to 100 and Nr was
systematically varied in a manner similar to the pre-
vious training-records tests. In this network there are
several nodes which could realistically be considered
the class nodes because they represent diagnostic con-

ditions. The results in Figure 4 are shown for the ana-
phylaxis and hypovolemia nodes. These two nodes were

Anaphylaxis

-4%

-2%

0%

2%

4%

6%

8%

10 100 1000 10000 100000
Number of Records (Nr)

∆ R
O
C

Anaphylaxis

-20%

-10%

0%

10%

20%

30%

40%

10 100 1000 10000 100000

Number of Records (Nr)

δ R
O
C

Hypovolemia

-1%

0%

1%

2%

3%

4%

5%

6%

10 100 1000 10000 100000
Number of Records (Nr)

∆ R
O
C

Hypovolemia

-10%

0%

10%

20%

30%

40%

50%

60%

70%

10 100 1000 10000 100000
Number of Records (Nr)

δ R
O
C

Figure 4. Results for the ALARM network classifying on
the anaphylaxis and hypovolemia nodes.

selected for the diversity of their results, the differences
indicating that the MA performance depends on local
features of the class node as well as on general fea-
tures of the generating network itself. Although these
results are consistent with our randomly-generated re-
sults, there is a general difference in how MA responds
to varying the number of training records for the two
different nodes. There exist many data points for both
nodes that did not achieve the 99% significance level,
and two points in the anaphylaxis test where the MAP
naive model performed statistically better at the 95%
level than MA, indicating that although our promise
of increased ROC area holds for the average network,
the topology is important and can have a bearing on
that result.

Finally, the performance was tested on the HEPAR
network (Onísko et al., 2000), another real-world net-
work of N = 70 nodes and Nk = 6 that diagnoses liver
disorders. In this case, Ntest was set to 500 records
and Ntrials was set to 200. The results are shown in
Figure 5 for the toxic hepatitis and hyperbilirubinemia
nodes. Typically MA achieves gains at the 99% con-
fidence level, but not always. Again, there are quali-
tative differences between classifications based on the
different nodes despite the fact that they belong to the
same network.

5. Discussion

We have shown that an alternative parametrization
of the MAP naive network model will produce a naive
model C∗ whose predictions are identical to those pro-

Toxic Hepatitis

-4%

-2%

0%

2%

4%

6%

8%

10 100 1000 10000 100000
Number of Records (Nr)

∆ R
O
C

Toxic Hepatitis

-5%

0%

5%

10%

15%

20%

10 100 1000 10000 100000

Number of Records (Nr)

δ R
O
C

Hyperbilirubinemia

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

10 100 1000 10000 100000
Number of Records (Nr)

∆ R
O
C

Hyperbilirubinemia

-5%

0%

5%

10%

15%

20%

10 100 1000 10000 100000

Number of Records (Nr)

δ R
O
C

Figure 5. Results for the HEPAR network classifying on
the toxic hepatitis and hyperbilirubinemia nodes.

duced by exact model averaging over the space of naive
networks with a fixed class node. We have shown that
calculating the C∗ parameters requires the two com-
plete sets of priors and sufficient statistics: {α∅ijk, αC

ijk}
and {N∅

ijk, NC
ijk}, respectively. These correspond to

the priors and statistics for a naive network with no
arcs and one with all arcs, respectively. Once these
quantities have been calculated each parameter in C∗

can be calculated in constant time. This observation
makes it apparent that our assumptions of both com-
plete and labelled data can be relaxed by using the EM
algorithm to calculate the expected sufficient statistics
N̂∅

ijk and N̂C
ijk. These statistics can then be used with-

out further ado to calculate the expected parameters
of C∗ in constant time.

Our MA technique is especially interesting because of
its simplicity. Any classification system that currently
employs a naive classifier could trivially be adapted to
use model-averaging by simply recalculating the pa-
rameters of the naive network. We have demonstrated
through empirical studies that this simple adjustment
very often leads to an increase in ROC area over the
MAP naive model; specifically how much of an im-
provement is dependent on features of the training set,
and both local and global properties of the generating
network.

Possible topics of future investigation include identi-
fying more general classes of networks for which exact
model averaging would be possible, perhaps even ap-
plying the technique together with a stochastic search
to perform more efficient approximate model averaging
for the general class of DAGs.

6. Acknowledgements

Some of the experimental work in this paper was performed
by Denver Dash while visiting the Machine Learning and
Perception group at Microsoft Research, Cambridge, UK.
This work was also supported in part by grant number S99-
GSRP-085 from the National Aeronautics and Space Ad-
ministration under the Graduate Students Research Pro-
gram, by grant IIS-9812021 from the National Science
Foundation and by grants LM06696 and LM06759 from
the National Library of Medicine.

References

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method
for the induction of probabilistic networks from data.
Machine Learning, 9, 309–347.

Domingos, P., & Pazzani, M. (1997). On the optimality of
the simple Bayesian classifier under zero-one loss. Ma-
chine Learning, 29, 103–130.

Friedman, N., Geiger, D., Goldszmidt, M., Provan, G.,
Langley, P., , & Smyth, P. (1997). Bayesian network
classifiers. Machine Learning, 29, 131.

Friedman, N., & Koller, D. (2000). Being Bayesian about
network structure. Uncertainty in Artificial Intelligence:
Proceedings of the Sixteenth Conference (UAI-2000) (pp.
201–210). San Francisco, CA: Morgan Kaufmann Pub-
lishers.

Heckerman, D. (1998). A tutorial on learning with
Bayesian networks. In M. I. Jordan (Ed.), Learning in
graphical models. Cambridge, Massachusetts: The MIT
Press.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995).
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning, 20, 197–
243.

Kohavi, R., & John, G. H. (1997). Wrappers for feature
subset selection. Artificial Intelligence, 97, 273–324.

Langley, P., & Sage, S. (1994). Induction of selec-
tive Bayesian classifiers. Proceedings of the Tenth An-
nual Conference on Uncertainty in Artificial Intelligence
(UAI–94) (pp. 399–406). San Francisco, CA: Morgan
Kaufmann Publishers.

Madigan, D., & Raftery, E. (1994). Model selection and
accounting for model uncertainty in graphical models us-
ing Occam’s window. Journal of the American Statistical
Association, 89, 1535–1546.

Meila, M., & Jaakkola, T. S. (2000). Tractable Bayesian
learning of tree belief networks. Uncertainty in Artifi-
cial Intelligence: Proceedings of the Sixteenth Confer-
ence (UAI-2000) (pp. 380–388). San Francisco, CA:
Morgan Kaufmann Publishers.

Onísko, A., Druzdzel, M. J., & Wasyluk, H. (2000). Exten-
sion of the Hepar II model to multiple-disorder diagnosis.
Intelligent Information Systems, Advances in Soft Com-
puting Series (pp. 303–313). Heidelberg: Physica-Verlag
(A Springer-Verlag Company).

