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Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule that
participates in various cellular regulatory events and that has been implicated in disease. Deciphering
ceramide signaling is challenging because multiple ceramide species exist, and many of them may
have distinct functions. We applied systems biology and molecular approaches to perturb ceramide
metabolism in the yeast Saccharomyces cerevisiae and inferred causal relationships between cer-
amide species and their potential targets by combining lipidomic, genomic, and transcriptomic analyses.
We found that during heat stress, distinct metabolic mechanisms controlled the abundance of differ-
ent groups of ceramide species and provided experimental support for the importance of the dihydro-
ceramidase Ydc1 in mediating the decrease in dihydroceramides during heat stress. Additionally, distinct
groups of ceramide species, with differentN-acyl chains and hydroxylations, regulated different sets of func-
tionally related genes, indicating that the structural complexity of these lipids produces functional diver-
sity. The transcriptional modules that we identified provide a resource to begin to dissect the specific
functions of ceramides.
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INTRODUCTION

Ceramides constitute a family of structurally related molecules that
form the core structure of the broader family of bioactive lipids found
in all eukaryotes, the sphingolipids (1). These structural variants of cer-
amide arise from the condensation of one or more sphingoid bases and
several fatty acids. These, in turn, can be modified by the addition of
distinct hydroxyl groups on either the sphingoid backbone or the fatty
acid. Thus, the biosynthesis of ceramides is the product of the com-
binatorial action of multiple enzymes that control the structural varia-
tions of the ceramide products. In yeast (Saccharomyces cerevisiae),
ceramide biosynthesis (Fig. 1) generates more than 30 distinct species
that can be identified by contemporary mass spectroscopy–based lipidomic
approaches (2); in mammals, the total number of ceramide species may
exceed 200 (3).

In humans, ceramides are collectively involved in physiological pro-
cesses, such as growth regulation and apoptosis, and in pathological con-
ditions, such as diabetes and cancer (2). However, a fundamental question
of ceramide-mediated signaling is whether the structural diversity of cer-
amides underlies functional diversity. That is, do the distinct ceramides
encode specific signals? Although manipulation of individual enzymes of
ceramide metabolism has enabled assignment of specific functions to
these enzymes (1, 4, 5), these approaches do not clearly delineate the spe-
cific lipid species involved in the process, because sphingolipid metabolism
constitutes a highly connected network such that perturbing the function
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of an enzyme can lead to broad changes in sphingolipid species beyond
the substrates and products of the enzyme (metabolic ripple effects) (3, 6).
Pinpointing the functions of the lipid or lipids implicated by manipu-
lating a sphingolipid metabolic enzyme is critical in deciphering the spe-
cific downstream pathways and the mechanisms that mediate the changes
in cellular behavior, because it is the lipid product and not the enzyme
per se that propagates the downstream signal. Therefore, new tools and
approaches capable of delineating connections between specific ceramide
structures and diverse downstream signaling pathways are needed.

S. cerevisiae has emerged as a powerful model to dissect metabolic
and functional pathways of sphingolipids. Activation of de novo sphin-
golipid synthesis is essential for yeast to survive heat stress (7, 8), and
sphingolipids mediate specific downstream processes in response to heat
stress, such as cell cycle arrest (9–11), mRNA sequestration (12), and in-
hibition of nutrient uptake (13). Microarray analysis revealed that de novo
synthesis of sphingolipids mediates the regulation of several hundred genes
in response to heat stress (14). This simultaneous sphingolipid-dependent
regulation of diverse processes provides an opportunity to identify functions
of diverse ceramide species, but also requires the development and applica-
tion of novel methodology.

RESULTS

Systematic perturbation of sphingolipid metabolism
decouples the biosynthesis of some groups of lipids
Our overall framework of dissecting the functions of specific ceramide
species in yeast proceeded as follows: (i) systematically perturb ceramide
metabolism using physiological and pharmacological treatments, (ii) mon-
itor lipidomic and transcriptomic responses to the treatments, and (iii) apply
systems biology analysis to deconvolute the signaling roles of ceramide
species in these responses. Yeast cells were subjected to different combi-
nations (see Materials and Methods for details) of heat stress, ISP1 (myriocin)
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treatment, and myristate treatment (Fig. 2A), with each perturbation af-
fecting different part(s) of the lipid metabolic network and leading to
diverse lipid profiles. We measured the relative abundance of the ceramide
species by mass spectrometry and the changes in gene expression in re-
sponse to these perturbations using microarrays (Fig. 2B). We then performed
a systems biology analysis to identify correlated changes in ceramide spe-
cies and gene expression and identified lipid groups that showed similar
profiles under all perturbations (Fig. 2C). Using ontology-based functional
analysis and transcription factor analysis (Fig. 2, D and E), we identified
functional modules among the genes that were potential targets regulated
by a specific ceramide species (or a lipid group). Selected predicted func-
tional associations were validated using phenotypic and transcriptomic
experiments (Fig. 2F).
www
We first studied ceramide profiles when cells were subjected to heat
stress and investigated the impact of blocking de novo synthesis using
ISP1, which inhibits the serine palmitoyltransferase (SPT) complex (Fig. 1),
the first committed reaction in the de novo pathway of sphingolipid bio-
synthesis. Many ceramide species, especially the phytoceramide family
(PHC), responded to heat stress through increased de novo synthesis
(Fig. 3A and table S1). These included C14, C16, and C18 PHC and
a-hydroxy–PHCs (as an example, see inset in Fig. 3A for C14–a-hydroxy–
PHC). In contrast, several members of the dihydroceramide family (DHC)
such as saturated C24 and C26 DHC decreased during heat stress in the
presence or absence of ISP1 (Fig. 3A). The decrease of DHCs during heat
stress is a novel finding, and the mechanism of how heat stress affects these
species has therefore not been defined.
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Fig. 1. S. cerevisiae sphingolipid metabolism. (A) Com-
plete sphingolipid metabolic pathway with explicit
examples of ceramide structures of each ceramide
subspecies investigated. Experimentally manipulated
enzymes are highlighted with red, as are the DHCs
and PHCs. (B) Generic ceramide structure with a C18

sphingoid base indicating placement of hydroxyl groups of a-hydroxy and
PHC species. A double bond is indicated at the third carbon of the fatty acid,
but ceramide species with monounsaturated fatty acids may vary in place-
ment of the double bond.
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To test the hypothesis that different ceramides regulate distinct cellu-
lar signals to mediate cell stress responses, we sought to infer the signaling
roles of different ceramide species using gene expression data as read-
outs of cellular signals. Because of the high connectivity of the sphingolipid
metabolic network (6), many species, for example, DHCs differing only in
N-acyl chain length, showed correlated changes during heat stress (Fig. 3A),
which obscured potential contributions of individual ceramides or subsets
of ceramides. To further dissect and segregate specific ceramide responses,
we treated cells with the fatty acid myristate, coupled with treatment with
ISP1, to define more specific ceramide responses.

Fatty acid treatment changes the concentration of lipid species with a
particular fatty acid side chain (15–17). Matmati et al. showed that adding
different fatty acids with different chain lengths to the medium enriches
the PHC pool with those PHC species that correspond to the same chain
length (18). Using this methodology, we treated yeast cells with the long-
www
chain (C14) fatty acid myristate to trigger an acute increase of ceramides
with the corresponding C14 acyl chains. Additionally, we also treated the
cells with ISP1 to block the incorporation of myristate or palmitate (derived
from myristate elongation) into the sphingoid backbone, which would lead
to an indiscriminate increase in sphingolipids. Upon myristate treatment,
C14, C16, and C24 DHC and C14 PHC species increased (Fig. 3B). More-
over, several other ceramide species (Fig. 3B) and the sphingoid bases (C0)
(fig. S1 and table S1) decreased in response to myristate, suggesting selec-
tive channeling of sphingoid bases to C14 DHC and C14 PHC at the ex-
pense of other ceramides. Thus, the C14 and C16 ceramides were effectively
decoupled from other ceramides, creating a contrast that would help to
resolve the signaling role of these species from other ceramides.

To reveal biologically meaningful patterns from the complex lipidomics
data sets collected from the systematic perturbations, we applied consen-
sus clustering analysis (19, 20) to the pooled lipidomic data sets to identify
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Fig. 2. Overall strategy of the study. (A) Perturbing sphingolipid metab- related with a lipid and that those in the red region are positively corre-

olism in different experimental conditions: heat stress (HS), ISP1, and
myristate treatments. (B) Collecting lipidomic and gene expression (mi-
croarray) data. (C) Modeling the relationship between lipids and genes.
The pseudocolored matrix shows that different lipid groups (columns)
are significantly correlated with different genes (rows). The scatter plots
illustrate that genes in the green region of the matrix are negatively cor-
lated with a lipid. (D) Performing ontology-based function analysis and
transcription factor (TF) analysis. (E) Identifying functional modules as-
sociated with lipid groups. Triangles represent genes encoding tran-
scription factors, rectangles depict genes, and an edge indicates that a
gene is regulated by a transcription factor. (F) Validating prediction using
phenotypic assays. hyg. B, hygromycin B.
.SCIENCESIGNALING.org 29 October 2013 Vol 6 Issue 299 rs14 3

http://stke.sciencemag.org/


R E S E A R C H R E S O U R C E

 on M
ay 26, 2015

http://stke.sciencem
ag.org/

D
ow

nloaded from
 

distinct lipid groups. The consensus clustering method repeatedly performs
clustering among randomly drawn subsets of the samples to identify intrinsic
subgroups of samples, in the current case, the lipids that were inseparable
during the repeated clustering. The results showed that ceramides could be
further segregated into distinct subgroups (the yellow blocks in Fig. 3C),
identifying lipid subgroups, such as one containing C16, C18, and C20.1
PHCs and one containing C18 and C20 DHCs (Fig. 3C). Generally, the
lipid species that cosegregated into individual ceramide clusters share sim-
ilar structures and are mostly products of a common set of specific en-
zymatic reactions in the sphingolipid pathway. For example, the cluster
consisting C16, C18, and C20.1 PHCs is separated from the cluster com-
posed of C18, C18.1, C20, and C20.1 DHCs, and synthesis of these cer-
amide species is metabolically separated by the function of the hydroxylase,
Sur2. Clear separation of these clusters indicated that the perturbations in-
duced distinct profiles and decoupled lipids that would exhibit a similar
profile if the yeast had only been exposed to a single perturbation, for ex-
ample, heat stress.

On the basis of the results of clustering analysis and knowledge of
ceramide metabolism, we divided the ceramides into nine major groups
(table S2), within which group members were statistically inseparable
in the clustering analysis and metabolically inseparable based on bio-
synthetic pathways. Identification of these clusters lends credence to
the theory that enzymes in the sphingolipid metabolism network respond
to cellular changes, thus producing distinct profiles for different species.
Therefore, we hypothesized that each group functions as a single meta-
www
bolic, signaling, and functional unit and attempted to identify their corre-
sponding downstream targets using gene expression data and statistical
analyses.

Transcriptomic responses are specific to perturbations
in sphingolipid metabolism
From the microarray data collected in parallel to the lipidomic data, we
identified differentially expressed genes responding to different pertur-
bations (Fig. 4A and table S3). We identified 1893 lipid-mediated stress-
responding genes that represented the intersections of the heat-sensitive
genes with the ISP1-sensitive and with the myristate-sensitive genes. The
members of the union gene set were ISP1-sensitive and thus dependent
on de novo synthesis of sphingolipids, corroborating previous findings
that sphingolipids play an important role in the yeast stress responses
(21–24).

To test the hypothesis that distinct ceramides encode disparate sig-
nals, which can be detected through the regulation of distinct target gene
sets, we studied the relationship between lipidomic and transcriptomic data
using three distinct methodologies: (i) the maximum information coeffi-
cient (MIC) (25), (ii) the Pearson correlation analysis, and (iii) a Bayesian
regression model. The MIC quantifies the information between a pair of
variables, such as a lipid species profile and a gene expression profile.
MIC can capture both linear and nonlinear relationships between variables
in a form similar to the familiar correlation coefficient, although the mea-
sured association (positively or negatively associated) lacks directionality.
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Fig. 3. Lipidomic analysis. (A) Lipidomic response to combinations of heat
stress and ISP1 treatment. Control (C), heat (H), ISP1 (I), and heat plus ISP1

Legend inset: C14–a-hydroxy–PHC. (C) Consensus clustering of lipidomic
data. The heat map of the consensus matrix reflects how frequently a pair
(H+I). (B) Lipidomic response to combinations of myristate and ISP1 treat-
ment. Control (C), myristate (M), and myristate plus ISP1 (M+I). In (A) and
(B), rows represent N-acyl chain length, and columns represent single com-
binations of hydroxyl groups for each ceramide. Saturated (Sat.) and mono-
unsaturated (Unsat.) N-acyl chains are indicated. Bar height is averaged
triplicate ceramide abundance; the range of each chart is color-coded.
of lipids is assigned to a common cluster during repeated sampling and
clustering. A red cell in the matrix indicates that a pair of lipids tends to
be assigned to mutually exclusive clusters, and a yellow cell indicates that
a pair tends to be assigned to a common cluster. Lipid name abbreviations:
dh, dihydro; aOH, a-hydroxy; C followed by a number, fatty acid chain
length. See table S1 for lipid mass spectrometry data.
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We assessed the significance of MIC and the Pearson correlation of all
lipid-versus-gene pairs. A total of 26,139 lipid-gene pairs had significant
MIC values (P < 0.01; Fig. 4B); 25,737 lipid-gene pairs had significant
Pearson correlation coefficients (P < 0.01) with a false discovery threshold
q value (26) set at q < 0.05. There were non-overlapping portions of the
MIC (table S4) and Pearson sets (table S5), which likely reflect the dif-
ference in assessing statistical significance between the two methods (Fig.
4B). We also performed a series of permutation tests in which lipidomic
data were randomly permuted to assess the false discovery rate (27). None of
the Pearson correlation coefficients derived from the permutation ex-
periment passed the threshold of P < 0.01 and q < 0.05, indicating that the
www.SCIENCESIGNALING.org 2
observed relationships between lipids and
gene expression were not false discoveries
that could result from multiple statistical
testing. By Pearson analysis, we identified
genes that exhibited a significant correlation,
either positive or negative, with at least one
lipid species (Fig. 4C), and clusters of simi-
larly regulated genes were apparent when
the correlations were performed on lipid
groups (Fig. 4D and table S5).

For the third method, we used a regular-
ized regression model (28), which represents
the expression value (log2-based) of a gene
as a linear function of lipids. It progressive-
ly shrinks the weighting coefficient of each
lipid predictor toward zero if that predictor
is not statistically associated with the gene
expression, until leaving only a single pre-
dictor with a nonzero coefficient. With this
model, we achieved the following goals: (i)
identifying the most informative ceramide
with respect to a gene, (ii) representing the
direction of a lipid influence (stimulate or
inhibit), and (iii) providing a mathematical
means to predict gene expression as a func-
tion of lipid concentration (Fig. 5A and table
S6). We pooled the genes potentially regu-
lated by each lipid cluster and further grouped
them according to the direction of regula-
tion (Fig. 5A). Each ceramide group had
statistically significant parameters with re-
spect to a set of genes, and the gene sets
associated with different ceramides were
largely non-overlapping, thus supporting
the hypothesis that each species plays roles
in distinct pathways regulating different
gene sets. We also noticed that distinct gene
setswere associatedwith ceramideswith the
same head group but different acyl chain
lengths, for example, those associated with
long-chain (C14 and C16) DHCs were differ-
ent from those associated with very long
chain (C18, C18.1, C20, and C20.1) DHCs
(referred to as LC-DHCs and VLC-DHCs,
respectively).

To better define ceramide-dependent
biological processes and to provide mech-
anistic understanding of ceramide-specific
pathways, we performed ontology-based,
semantic-driven function analysis and transcription factor analysis of
potential target genes. We divided the genes significantly associated with
a lipid group into modules (certain genes can be in more than one module)
by mining their Gene Ontology (GO) annotations (29), such that each
module contains genes that participate in coherently related biological pro-
cesses, which can be encompassed by a GO term that retains as much of
the semantic meaning of their original annotations as possible. Figure 5A
illustrates that a module of genes involved in the biological process iron ion
transportation (GO:0006826) and another module of genes involved in
vacuolar protein catabolic process (GO:0007039) were found among
the genes negatively correlated to LC-DHCs and VLC-DHCs, respectively.
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We then applied a graph-based algorithm to search for a set of transcription
factors that regulate the members of a module in a cooperative fashion,
thus producing a transcription factor module. The analyses, as illustrated
by the examples in Fig. 5B, revealed that the genes in these modules not
only performed related functions but also shared transcription factors,
which provided mechanistic evidence that the genes in a module were
regulated by a common signal. Our functional analyses project the molec-
ular findings from a gene level onto a conceptual level. For example, the
results in Fig. 5B can be translated into the following prediction: “LC-
DHCs regulate the genes involved in iron ion transportation.” Thus,
these gene modules produce testable hypotheses regarding functions
www
of specific groups of ceramide species. All gene modules identified by our
analyses—a function map of the ceramide-dependent genes—are available at
the Web site http://www.dbmi.pitt.edu/publications/YeastCeramideSignaling.
Note that not all modules have transcription factors associated with them
because of limitations in the available data regarding gene promoters and
their regulatory transcription factors.

Heat stress affects DHC metabolism through
activation of Ydc1
Heat stress resulted in a decrease in several DHCs through a mecha-
nism that was not inhibited by ISP1 and thus did not require de novo
synthesis of sphingolipids (Fig. 3A). In turn, these changes in DHCs af-
fected the expression of a large number of genes (Fig. 5A), reflecting their
important role in mediating the cellular response to heat stress. Therefore,
we investigated the molecular mechanism through which heat stress
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Fig. 5. Modeling relationship between lipidomic and gene expression data.

(A) Organizing genes demonstrating significant correlation with specific
ceramides. Genes (rows) are organized according to their association with
the different lipid subgroups. A green block represents a set of genes neg-
atively correlated to a lipid, and a red block represents a set of genes pos-
itively correlated to a lipid. Examples of major enriched GO terms within
gene blocks are shown. (B) Defining pathways of specific biologic modules
that respond to specific ceramides, perform related functions, and share
transcription factors. Two example modules are shown (see http://www.
dbmi.pitt.edu/publications/YeastCeramideSignaling for all modules). Rect-
angles represent lipid-correlated genes, triangles indicate the transcription
factors shared by the genes, and an edge from a transcription factor to a
gene indicates that the gene has the binding sites for the transcription
factor in its promoter. The function performed by the genes in a module
is represented with a GO term.
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Fig. 6. Role of Ydc1 in mediating the impact of heat stress on gene expres-

sion. (A) Effect of heat stress on AFT1 expression in wild-type (WT) yeast
cells (n = 6 and 4, for 30° and 39°C, respectively). (B) Effect of heat stress
on AFT1 expression in the ydc1D strain (n = 4, for 30° and 39°C). (C) Ef-
fect of overexpression of YDC1 on AFT1 expression at 30°C (n = 6 and 2,
for WT and +YDC1, respectively). Data are shown as means ± SE except
for in (C), where the data are shown as average and half of the range for
the two +YDC1 measurements.
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affected DHC metabolism, more specifically to identify the enzyme(s)
that mediates the effect of heat stress.

The alkaline dihydroceramidase (encoded by the YDC1 gene) is a good
candidate enzyme to mediate the impact of heat stress on long-chain DHCs.
Ydc1 hydrolyzes DHCs preferentially over PHCs (30) to a free fatty acid and
dihydrosphingosine, thus reducing the concentration of all DHCs. Aft1 is
one of the transcription factors associated with the LC-DHC negatively cor-
related genes, and the AFT1 gene is in the gene module, thus forming a posi-
tive feedback loop. Therefore, we analyzed the expression of AFT1 as an
indicator of the transcriptional activity of Aft1 in the YDC1 deletion and over-
expression yeast strains. We measured AFT1 expression to assess whether
Ydc1 was required to mediate changes in gene expression in response to
heat stress (Fig. 6, A and B). Heat stress–induced AFT1 expression (Fig. 6A)
and deletion of YDC1 attenuated the response (Fig. 6B). Overexpression of
YDC1 should decrease DHCs and, thus, mimic the reduction in DHCs caused
by the heat stress. Strikingly, overexpression of YDC1 induced AFT1more
than a hundredfold compared with that in wild-type yeast (Fig. 6C). Thus,
our results confirmed that DHCs regulated the expression of AFT1 in
module 1, and Aft1 is likely involved in this response. The results also in-
dicated that activation of Ydc1 is sufficient to induce gene expression
changes similar to those induced by heat stress; thus, it is likely one of
the enzymes that mediate the impact of heat stress on DHC metabolism.

Phenotypic experiments validate distinct signaling roles
of different DHCs
The integrative analyses of lipidomic and transcriptomic data led to the
following hypothesis: DHC species with different side chains participate
in different signaling pathways. To investigate whether specific transcrip-
tional regulations by distinct DHCs had functional impacts on cells, we
examined the effects of perturbing DHCs on cell phenotypes. We focused
on the two gene modules shown in Fig. 3C, which are suggested to be reg-
ulated distinctly by LC-DHCs or VLC-DHCs. Because these modules were
negatively correlated with the specific DHC groups, we predicted that in-
www
creasing the respective lipids would repress genes in the corresponding mod-
ules and would produce phenotypes mimicking those resulting from deletion
of module genes. We identified 17 phenotypes associated with deletion of
the genes in the two modules (table S7), and we then evaluated yeast cell
growth after treatment with myristate or oleate to increase production of the
LC-DHCs and VLC-DHCs, respectively.

We analyzed in detail seven phenotypes on the basis of deletion mu-
tant phenotypes (31–37) for the genes within the LC-DHC–sensitive
gene module or the VLC-DHC–sensitive gene module (Fig. 7A). For ex-
ample, the genes ARN1, ARN2, and FRE3 were among iron transport
genes that should be negatively regulated by LC-DHCs as predicted by
our analysis (Fig. 5B), and their corresponding deletion mutant strains
arn1D, arn2D, and fre3D are all sensitive to high sodium. Increased pro-
duction of LC-DHCs by myristate treatment, but not increased VLC-
DHCs induced by oleate treatment, reproduced this growth defect in the
wild-type strain (Fig. 7B and fig. S2). Conversely, increased production of
VLC-DHCs by oleate treatment, and not by myristate treatment, repro-
duced the Congo red and Rose Bengal sensitivity phenotypes associated
with HSP12 and SKN7 deletions (35, 37), respectively. We expected that ole-
ate and the corresponding increase in VLC-DHCs would mimic the pheno-
types of hsp12D because this gene was identified from the microarray data
as negatively correlated with VLC-DHCs. Skn7 is a transcription factor
required to induce the genes involved in oxidative responses, and a pro-
found sensitivity of skn7D to the singlet oxygen–producing chemical Rose
Bengal was reported (37). Our transcription factor analysis indicated that
Skn7 likely stimulates the transcription of seven genes in module 2, thus
leading to the hypothesis that VLC-DHCs regulate these genes through
suppression of the transcriptional activity of Skn7. Oleate treatment led
to a marked increase in sensitivity to Rose Bengal in wild-type cells in a
lipid-specific manner, which is consistent with the hypothesis that VLC-
DHCs inhibited the transcriptional activity of Skn7. The results from these
phenotypic experiments demonstrate the identification of specific func-
tional responses to specific groups of ceramides.
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Fig. 7. Experimental validation of lipid-dependent phenotypes. (A) Confirmation of pub-
lished genetic phenotypes as positive controls. Published phenotypes for deletion mu-
tants from the LC-DHC–sensitive gene module (green font) or the VLC-DHC–sensitive
gene module (blue font) were used to predict ceramide and fatty acid–specific growth
defects. One deletion mutant phenotype was confirmed for each treatment used.
Conditions were selected from the literature on the basis of phenotypes of genes with-
in each module (31–37). (B) Validation of LC-DHC– or VLC-DHC–sensitive pheno-
types. Rows: specific phenotypes predicted to manifest in response to C14 or
C18.1 DHCs, given the indicated treatment condition. Cells were spotted onto agar
containing specified treatment plus vehicle (0.1% ethanol), or saturating (1 mM)
myristate or oleate. SCD (SC containing 2% dextrose) is no treatment. Spots represent
1:10 serial dilutions of a single mid-log culture. Green font: phenotypes of the LC-DHC–sensitive module predicted to be induced by myristate treatment.
Blue font: phenotypes of the VLC-DHC–sensitive module predicted to be induced by oleate treatment, and 2% glycerol is associated with both modules.
Images are representative of triplicate experiments (fig. S2).
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DISCUSSION

Here, we addressed the challenging task of determining specific signaling
roles of distinct ceramides in yeast. In general, a well-established approach
to infer causal relationship between two objects (or events) is to manipu-
late the potential causal object (or event) in a random trial while investigat-
ing whether the target object (or event) consistently responds to such
manipulations (38). Adopting this principle to lipid-mediated signaling,
we applied a series of perturbations to manipulate sphingolipid metabo-
lism, with each leading to unique changes in both ceramide metabolism
and gene expression through distinct mechanisms. The results showed sig-
nificant correlations (linear or nonlinear) between specific ceramide spe-
cies or ceramide groups and gene expression despite the diversity of lipid
and gene response to these perturbations, thus supporting the hypotheses
that causal relationships exist between the ceramides and genes studied
in this report. Although it is possible that each perturbation may exert
effects on gene expression (or phenotypes) through additional confound-
ing mechanisms other than through ceramides, systematic perturbation
experiments reduced the likelihood of such effects. For example, the com-
bination of multiple approaches to manipulate LC-DHC—reducing these
lipids by heat stress, myrocin treatment, or overexpression of YDC1, and
inducing these lipids by myristate treatment—effectively minimizes the
impacts of potential confounding factors associated with each individual
manipulation. Thus, we confidently concluded that LC-DHCs regulated
the genes in module 1.

In conclusion, ceramides mediated a multitude of distinct cellular sig-
nals in the yeast stress responses. Additionally, this study revealed that the
abundance of DHCs was decreased during the yeast response to heat
stress, likely through activation of the dihydroceramidase (Ydc1). Func-
tionally, the various DHCs regulated distinct subsets of target genes pre-
dicted to participate in distinct biologic processes. Overall, we provided
evidence that distinct ceramide species with different N-acyl chains, func-
tional groups, and hydroxylation participate in regulatory processes. The
structural complexity of ceramides underscores the potential diversity of
the functions that they can play in cellular systems because even closely
related ceramides (such as LC-DHCs versus VLC-DHCs) regulated dis-
tinct sets of functionally related genes. These findings suggest new re-
search directions in the study of ceramide-mediated signaling, including
their roles in human physiology and disease.
, 2015
MATERIALS AND METHODS

Yeast strains and culture conditions
Yeast strains used in this study including genotypes are listed in table S8.
YPD (yeast extract, peptone, and dextrose) medium was used for the heat
stress experiment, and for fatty acid treatment, synthetic complete (SC)
medium containing 0.17% yeast nitrogen base (US Biological), 0.5% am-
monium sulfate, 2 mM sodium hydroxide, and 0.07% SC supplement was
used; SCD is SC containing 2% dextrose. SCD dropout medium lacking
uracil was used in cells transformed with pYES2 plasmid, and SC with
galactose lacking uracil was used to induce YDC1 open reading frame in
pYES2 plasmid for the overexpression studies. For all experiments, cells
were treated during mid-log growth at 30°C. Heat stress was performed
by shifting cells to a 39°C water bath after 45 min of pretreatment with
myriocin (Sigma) or vehicle. Cultures were harvested by centrifugation at
3000g for 3 min and stored at −80°C. For spot tests, compounds required
for specified treatments including glycerol, sodium chloride, acetic acid,
caffeine, Congo red, hygromycin B, and Rose Bengal were purchased from
Sigma. All compounds, including fatty acid (myristate or oleate) or vehicle
www
(0.1% ethanol), were dissolved in medium by warming to 50°C for 10 min.
After medium was re-equilibrated to room temperature, it was mixed with
2× agar at 50°C to make SC with 2% agar; 25 ml of medium was poured
into 100-mm petri dishes. Solidified plates were dried for 20 min at 37°C
before use. Mid-log cultures in SCD were diluted [OD600 (optical density at
600 nm), 0.3], and then 5 µl of four serial 1:10 dilutions was spotted and
incubated at 30°C for 3 to 5 days.

Heat stress and ISP1 treatment
Cells grown to mid-log (OD600, 0.6) from overnight cultures were pretreated
with 5 µM ISP1 or vehicle (0.1% methanol) for 45 min, and then heat stress
samples were shifted from 30° to 39°C for 15 min. Samples (100 ml) were
divided into 10- and 90-ml aliquots for microarray and lipidomic analysis,
respectively, and then harvested at room temperature by centrifugation at
3000g for 3 min and flash-frozen in a dry ice methanol bath.

Myristate treatment
Cells grown to mid-log (OD600, 0.6) from overnight cultures were pre-
treated with 5 µM myriocin or vehicle (0.1% methanol) for 45 min and
then treated with 1 mM myristate (Sigma) or fatty acid vehicle (0.05%
ethanol) for 15 min. Samples (100 ml) were divided into 10- and 90-ml
aliquots for microarray and lipidomic analysis, respectively, and then har-
vested at room temperature for 3 min and flash-frozen in a dry ice meth-
anol bath.

Systematic perturbations and collection of lipidomic
and microarray data
Yeast cells (JK9-3da) were subjected to the following combinations of
perturbations: (i) control condition; (ii) ISP1 treatment at 30°C; (iii) heat
stress; (iv) heat stress plus ISP1 treatment; (v) control condition for fatty
acid supplement experiment, 30°C in SC medium; (vi) myristate treatment
at 30°C; and (vii) myristate plus ISP1 treatment at 30°C. Experiments were
repeated three times under each of the above condition.

RNA was extracted from 108 cells with the hot acid phenol method
(39). Synthesis of complementary DNA (cDNA), in vitro transcription
labeling, and hybridization onto the Yeast2.0 chip were conducted with
the Affymetrix GeneChip Kit.

Cells were grown, treated, and extracted, and total protein was mea-
sured, all according to (40), and relative lipid concentrations were quanti-
fied according to the method of (41) and normalized to total protein.

YDC1 experiments
Wild type (BY4741) or ydc1D was used to perform experiments. Growth
conditions and heat stress were done as described above. To achieve YDC1
overexpression, a BY4741 strain was transformed with pYES2 plasmid
containing an open reading frame of YDC1 under galactose promoter.
For galactose induction, cells were harvested from a dextrose-containing
medium by centrifugation at 3000g for 3 min; pellets were washed with
sterile water, then inoculated into a galactose-containing medium, and
grown for 6 hours before treatment with heat stress. After heat stress, cells
were harvested by centrifugation, washed with sterile water, and centri-
fuged again. The pellets were snap-frozen in liquid nitrogen until ready
for RNA extraction.

Quantitative real-time reverse transcription polymerase
chain reaction
Total RNAwas harvested with hot acid phenol method, described in Short
Protocols in Molecular Biology, unit 13.10 (42). First-strand cDNA was
produced as described previously (43). Real-time analysis was done with
7500 Real-Time PCR System (Life Technologies), and SYBR Green Supermix
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protocol (Bio-Rad) was used to perform the analysis. Primers used in the
reverse transcription polymerase chain reaction are AFT1 forward primer
(TCAAAAGCACACATTCCCTCA) and AFT1 reverse primer (AACTTT-
AAATGCGTCCGACC). The expression of target genes was normalized
to the expression of three reference genes: RDN18, ALG9, and TAF10. The
primers are as follows: RDN18, CCATGGTTTCAACGGGTAACG (forward)
and GCCTTCCTTGGATGTGGTAGCC (reverse); ALG9, CACGGATAGT-
GGCTTTGGTGAACAATTAC (forward) and TATGATTATTCTGGCA-
GCAGGAAAGAACTTGGG (reverse); TAF10, ATATTCCAGGATCA-
GGTCTTCCGTAGC (forward) and GTAGTCTTCTCATTCTGTT-
GATGTTGTTGTTG (reverse).

Ontology-based gene function analysis
Given a set of genes that are significantly correlated to a specific lipid species
and their annotations in the form of the GO (44) (http://www.geneontology.
org) terms, we aimed to group genes into nondisjoint subsets, such that
each module contained genes with closely related GO annotations, and the
overall function of the module was represented by a GO term that cap-
tured most of the semantic information of the original GO annotations of
the genes. We represented genes and their annotations with a data structure
referred to as GOGene graph (29, 45). In such a graph, a node represents a
GO term, and a directed edge between a pair of nodes reflects an “is a” (ISA)
relationship between the GO terms, that is, parent term subsumes that of
the child term. In addition, each node kept track of the genes it annotated;
therefore, the graph contained information of both GO terms and genes.
We constructed a canonical graph with all GO terms in the Biological Pro-
cess namespace, according to the ontology definition from the GO con-
sortium (http://www.geneontology.org). When given a set of genes and
their annotations, we associated the genes to GO terms on the basis of their
annotations, and then we trimmed leaf nodes that had no genes associated.
This produced a subgraph in which leaf nodes were a subset of the original
GO annotations associated with the genes of interest. Under such a setting,
the task of finding functionally coherent gene modules can be achieved by
grouping genes according to their annotations through collapsing GOGene
graph in a manner that leads to minimal information loss, and we stopped
merging when the P value of assessing the functional coherence of a gene
module was equal or greater than 0.05 (29).

Microarray and data analysis
Affymetrix CEL files of the microarray experiments were processed with
the “affy” package (v 1.24.2), and differential expression was assessed
with the “limma” package (v 3.2.3) of the Bioconductor Suite (http://www.
bioconductor.org/). The threshold for detecting differential expression was
set at P < 0.01 and q < 0.05.

Consensus clustering of lipidomic data
The R implementation of the clusterCons (20) was downloaded from the
CRAN (Comprehensive R Archive Network) (http://cran.r-project.org/web/
packages/clusterCons/). Lipidomic data (32 species in 21 experimental
conditions) were used as input for the program in multiple runs. For each
lipid species, the concentration is normalized to a standard normal dis-
tribution (zero mean and unit SD). The partition around medoids (PAM)
and Kmeans algorithms were used as base clustering algorithms to run the
ConsensusPlus algorithm. The cluster size (K) is set through a range (6 to 13)
to explore optimal number of clusters to group the lipids.

Correlation analysis of ceramide concentrations and
gene expression
The software for calculating maximal information coefficient was down-
loaded from http://www.exploredata.net/ (accessed December 2012),
www
which was maintained by the authors of the report by Reshef et al.
(25). The statistical significance of the MIC values was determined with
the significance table provided by the authors at the threshold of P < 0.01.
Because the authors only provide the P values for MIC values that are suf-
ficiently large, it is not possible to perform false discovery correction of
these P values using the q values (26) package in such setting.

The Pearson correlation analysis was performed with the standard R
language package. The returnedP values for all lipid-versus-gene pairswere
further subjected to false discovery correction with the q value package.
The significance threshold is set at P ≤ 0.01 and q ≤ 0.05.
SUPPLEMENTARY MATERIALS
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Fig. S1. The effect of myristate on the lipidomic profile, including the effect on sphingoids.
Fig. S2. Validation of lipid-specific growth phenotypes in triplicate.
Table S1. Lipidomics data under all combinations of treatments (xlxs).
Table S2. Microarray data heat stress (xlxs).
Table S3. Microarray data under all combinations of treatments (xlxs).
Table S4. List of lipid-gene pairs showing significant association measured by MIC (xlxs).
Table S5. List of lipid-gene pairs showing significant Pearson correlations (xlxs).
Table S6. List of lipid-gene pairs showing significant associations measured using
Bayesian regression (xlxs).
Table S7. All treatments tested for fatty acid–specific growth defects.
Table S8. Yeast strains used in this study.
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