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ABSTRACT

This paper reports the methods and results ofa computer-
based algorithm that takes as input the expression levels of
a set ofgenes as given by DNA microarray data, and then
searchesfor causal pathways that represent how the genes
regulate each other. The algorithm uses local heuristic
search and a Bayesian scoring metric.

We applied the algorithm to induce causal networksfrom a
mixture of observational and experimental gene-
expression data on genes involved in galactose metabolism
in the yeast Saccharomyces cerevisiae. The observational
data consisted of gene-expression levels obtained from
unmanipulated "wild-type" cells. The experimental data
were produced by deleting ("knocking out') genes and
measuring the expression levels of other genes. We used
this data to evaluate several variations ofthe local search
method. In each evaluation, causal relationships were
predicted for all 36 pairwise combinations of nine key
galactose-related genes. These predictions were then
compared to the known causal relationships among these
genes.

INTRODUCTION

Caausal modeling and discovery are central to science.
Experimental studies, such as biological interventions with
corresponding controls, often provide the most trustworthy
methods we have for establishing causal relationships from
data. In such an experimental study, one or more variables
are manipulated and the effects on other variables are
measured. On the other hand, observational data result
from passive (i.e., non-interventional) measurement of
some system, such as a cell. In general, both observational
and experimental data may exist on a set of variables of
interest. For example, in biology, there is a growing
abundance of observational gene expression data. In
addition, for selected variables of high biological interest,
there are data from experiments, such as the controlled
alteration of the expression of a given gene.

Microarray technology has opened a new era in the study
of gene regulation. It allows a relatively quick and easy
way to assess the mRNA expression levels of many
different genes. Large time-series datasets generated by
microarray experiments can be informative about gene
regulation. Microarray data have been analyzed using
classification or clustering methodsl2 and gene pathway
(network) methods3-7. Dutilh8 gives a short review of
genetic networks. A more thorough review of genetic
networks based on biological context was published by
Smolen, et al.9. Wessels, et al.10 conducted a limited

comparison study of selected continuous genetic network
models3'11'12. Unlike these previous methods, we use a
method that models a latent variable implicitly and
experimental interventions explicitly when evaluating
hypotheses about causal relationships. In this paper, we
extend our scoring method18 by introducing a local search
method. Many Bayesian network-structure search methods
have been introduced and evaluatedl3-15. Most of the
search methods use global search, i.e., a search that
considers all modeled variables at a time, to search for the
best structure that fits the data. Because of the large search
space of the global structures, this makes the global search
method less efficient in learning local (e.g., pairwise)
causal relationships.

This paper reports the results from the analysis of a gene-
expression dataset that was gathered by experimentation
on galactose genes in the yeast Saccharomyces
cerevisiae16. Our analysis focuses on pairs of genes (X, Y)
and attempts to determine whether the expression level of
gene X has a causal influence on the expression of gene Y.
As a representation of causation, we use causal Bayesian
networks. These networks include variables that represent
expression levels of measured genes, as well as latent
(hidden) variables that represent unmeasured quantities,
such as the cellular levels of proteins and small
molecules17. We introduce several variations of our local
causal search method and compare their pathway
predictions with the pathways that have been established in
the biological literature18.

METHODS

A Bayesian network is a directed acyclic graph in which
each node represents a variable and each arc represents
probabilistic influence. A causal Bayesian network (or
causal network for short) is a Bayesian network in which
each arc is interpreted as a direct causal influence between
a parent node (variable) and a child node, relative to the
other nodes in the network19. Figure 1 illustrates the
structure of a hypothetical causal Bayesian network
structure that contains five nodes. The probabilities
associated with this causal network structure are not
shown.

The causal network structure in Figure 1 indicates, for
example, that the Gal4 gene can regulate (causally
influence) the expression level of the Gal3 gene, which in
turn can regulate the expression level of Gal5 gene.
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The causal Markov condition gives the conditional
independence relationships that are specified by a causal
Bayesian network:

A node is independent of its non-descendants (ie.,
non-effects) given its parents (i.e., its direct causes).

Gal4 gene

Gal 3 gene

Gall gene -) Gal5 gene

Figure 1. A causal Bayesian network that represents a
portion of the gene-regulation pathway for galactose
metabolism in yeast.

The causal Markov condition permits the joint distribution
of the n variables in a causal Bayesian network to be
factored as follows19:

n

(XI I x2,...,IXn K) = t P(xi I Xir',K)(1
i=1

where xi denotes a state of variable Xi, Y;z denotes a joint
state of the parents of Xi, and K denotes background
knowledge.

We introduce 6 equivalence classes (El through E6) among
the structures (Figure 2). The causal networks in an
equivalence class are statistically indistinguishable for any
observational and experimental data on X and Y. We
denote an arbitrary pair of nodes in a given Bayesian
network B as (X, Y). If there is at least one directed causal
path from X to Y or from Y to X, we say that X and Y are
causally related in B. IfX and Y share a common ancestor,
we say that X and Y are confounded in B. We understand
that modeling all nodes will decrease the structure and
parameter prediction errors, but as the first step of
modeling a latent variable, we only look at pairwise
relationships between two nodes (X and Y) and a latent
variable H.

X 2.YSX Yl lX H-Ypot-he

Figure 2. Six Local Causal Hypotheses

Let E= {El, £2, £3, £4, E5, E6} and let Eji denote the node
pair X and Y with causal relationship Ei. Let us consider
the posterior probability that variable X causes variable Y
given data D on the measured variables. We can derive the
posterior probability ofEixY as:

(2)P(Exy ID,K) = X,P(S I D,K)
S:E'Yis in S

where the sum is taken over all causal network structures
that (1) contain just the nodes in S, and (2) contain a
structure E(x'. Based on the properties of probabilities, the
term within the sum in Equation 2 may be rewritten as
follows:

P(S D,K) = P(S,D K) = P(S,D I K)
P(D IK) P(S,DI K)

S

(3)

Since the probability P(D K) is a constant relative to the
entire set of causal structures being considered, Equation 3
shows that the posterior probability of causal structure S is
proportional to P(S, D K), which we can view as a score
ofS in the context of D. The probability terms on the right
side of Equation 3 may be expanded as follows:

P(S,D K) = P(S K)P(D S,K)
= P(S K) JP(D S, s K)P(65 S, K)d6s

(4)

where (1) P(S K) is a prior belief that network structure S
correctly captures the qualitative causal relationships
among all the modeled variables; (2) Os are the
probabilities (parameters) that relate the nodes in S
quantitatively to their respective parents; (3) P(D I S, Os,
K) is the likelihood of data D being produced, given that
the causal process generating the data is a causal Bayesian
network given by S and Os; and (4) P(Os S, K) expresses a
prior belief about the probability distributions that serve to
model the underlying causal process.

With appropriate assumptions, we can evaluate P(DIS,K)
in Equation 4 with the following equation13'14:

P(DIS,K)=FIh N() h F(r(akN)
i= =, rI(a,. + NU k=l j(xk ) (5)

where ri is the number of states that Xi can have, qi denotes
the number of joint states that the parents of Xi can have,
Nyk is the number of cases in D in which node Xi is
passively observed to have state k when its parents have
states as given byj, r is the gamma function, aijk and ay
express parameters of the Dirichlet prior distributions, and
N = l N(1^. We used the BDe metric14 with

1 which is a commonly used non-informative

parameter prior for the BDe metric. When a case involves
the manipulation of a variable (e.g., the "knocking out" of
gene Xi), we do not tally a count for that case in Nyk20. See
Yoo and Cooper17 for more information on modeling
experimental interventions.

Implicit Latent Variable Scoring (ILVS) Method.
Explicit scoring of latent-variable models requires
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exponential time in the number of database samples.
Therefore, approximation methods have been introduced in
the literature, including methods based on stochastic
simulation and on expectation maximization14.
Unfortunately, these methods often require long
computation times before producing acceptable
approximations. Therefore, we developed a new method
called the Implicit Latent Variable Scoring (ILVS)
method17.

The basic idea underlying ILVS is to (1) transform the
scoring of a latent model Ei (e.g., E5 in Figure 2) into the
scoring of multiple non-latent variable models, (2) score
those non-latent models efficiently using Equation 2, and
then (3) combine the results of those scores to derive an
overall score (i.e., marginal likelihood). For instance,
consider scoring E5 with two types of samples. One type is
data for which X and Y were passively observed. We can
derive the marginal likelihood of this data using the causal
network in Figure 3(a), which contains no latent variable.
Let P(Do E,, K) denote this marginal likelihood. The
other type of sample is data for which X was manipulated
and Y was observed. We use the causal network in Figure
3 (b) to derive the marginal likelihood of this data, namely
P(Dm E5, K). The different appearance of the arcs in
Figure 3 (a) and Figure 3(b) signifies that these arcs are
representing different distributions ofX and Y. Continuing
the Bayesian analysis, if (as in ILVS) we assume our
beliefs about the distribution ofX and Y in the Figure 3(a)
situation are independent of the beliefs about their
distribution in the Figure 3(b) situation, then the overall
marginal likelihood of all the data (the passively observed
data and the data generated by experimental manipulation)
is P(D Es, K) = P(Do E5, K) x P(Dm E5, K). It is
straightforward to extend the analysis to also include data
in which Ywas manipulated and Xwas passively observed.

In deriving the marginal likelihood of E4 and E6, ILVS
uses a technique similar to the one just described for E5.
Yoo and Cooper17 provide algorithmic details ofILVS and
a proof of its convergence to the correct generating
structure in the large sample limit.

X- 'Y
(a)

X --.Y
(b)

Figure 3. Two non-latent variable structures used to score a
latent-variable structure.

ILVS scores each Ei in Figure 2 by only considering
pairwise measured nodes. Thus, ILVS evaluates Equation
5 for only two measured nodes at a time. In earlier studies,
we applied ILVS to simulated data'7 and to yeast DNA
microarray data'8. We have also extended ILVS to create a
system called extILVS that scores more than pairwise
relationships.')

Local ILVS Method (LIM). Let L1xy denote a set of local
structures that includes Eixy and let LXy = u, Lix. For
example, in Figure 1 let X=Gall and Y=Gal2. Then L,xy
could be the causal structure shown in Figure 1. LIM
(Local ILVS method) calculates P(ErY D, K) by first,
searching for the best Ljxy that fits the data; and second,
using all unique Lixy that were visited so far. Scores of the
node pairs, calculated by extILVS, are used to guide the
search for the best L,("Y. Finally, we estimate Equation 2 by
the following equation:

X£P(D,SI K)
S:EX iu in T

P(Ex ID,K)= Zp(D,TIK)
T

(6)

where T denotes all the structures generated in the search.
Many heuristic methods have been used to search for the
best structure that fits the datal4. Note that unlike the
previous methods, we concentrate on L'',Y i.e., the local
structure of Efx". In this paper we use structure search as
defined in the following steps: (Step 1) Construct a set V
that represents strongly related variables withX and Y. Let
W equal V u{X,Y} . We limit the number of variables in W
to be less than k and use those variables to define the
structures in Lxy. Now any structure SE Lxy can be denoted
as S = {El'i Pe {all pairs in W}}. We initialize S to a
random structure by randomly choosing Elp for all P. (Step
2) For a given structure S, we score with extILVS six
different structures by substituting Elp with one of the six
hypotheses (from Figure 2) for all node pairs P in W; (Step
3) Select the Ejp that in Step 2 generated the structure with
the highest score; update S by substituting Efp for EJP in S
and repeat Step 2 with the new S. Stop the search if either
there is no improvement in the structure score or the
number of iterations exceeds a user defined limit. We also
perturb the structure once the search reaches a local
maximum. We provide three different perturbations to
avoid a local maximum and they select one of the six
hypotheses (from Figure 2) for each of the node pairs (X,
Y) according to the following distributions:
* Random Perturbation: {P(E,F"ID,K) = 1/6 1 i=1,2,...6}
* Local Perturbation: {P(E7XY1D,K) i=1,2,....61

calculated by LIM.
* ILVS Perturbation: {P(E/"ID,K) i=1,2,...6)

calculated by ILVS.
We later pair these perturbations to introduce different
variations of LIM. Also, two different search methods
were implemented:
* Local Search: Iterating Step 2 through Step 3 while

forcing S to include pairwise relationships E,xy,
E2x,..., E6xY for each of node pairs (X, Y)

* Global Search: Iterating Step 2 through Step 3 with no
restrictions on S.

1) Detail pseudo code ofLIM is available at:
http://www.cbmi.upmc.edu/-cwyoo/yoo-thesis.pdf
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Example Run of LIM. For example, let us assume there
are only five modeled nodes: U, V, X, Y, and Z. Further
assume we are limiting k = I 1 < 4 and W={X, Y, Z}. In
Step 1 we randomly initiate a structure, e.g., S={E,xy, E2X,
E6yz}. In Step 2, we first consider the six different
structures derived from S by substituting E,xYwith any of
{E xr, E2x, E3x', E4x1, E5x', E6xy}. We do the same for
E27Z and E6yz. We evaluate all 18 different structures. In
Step 3 we choose the highest scored structure and go to
Step 2. Upon reaching a stopping condition, to score
P(EXYlIS,K), for example, we sum all scores of visited
structures that include E7xY and divided by the sum of the
scores of all visited structures. Note that indirect causal
relationships, e.g., X*-Z*-Y, are also used in scoring E7xy.

Dataset Description. The cDNA microarray data we
analyzed were obtained from experiments that focused on
the galactose utilization pathway in the yeast
Saccharomyces cerevisiae as reported by Ideker, et al.16.
The experiments included single gene deletion involving
nine of the key genes2) that participate in yeast galactose
metabolism.

Dataset Preparation. Since the dataset was already
normalized3), we discretized the dataset according to the
distribution of each gene's expression level18.

Analyses. We applied LIM to every pair of the nine
galactose genes. For each gene pair, we used LIM to
derive a posterior probability for each of the six causal
hypotheses in Figure 2. Since the causal relationships
among these nine genes are understood relatively well, we
assume that these generally accepted biological
relationships are correct and can serve as a standard
against which to compare the output of LIM. We
implemented two variations of LIM: LIM using Random
and Local Perturbation (LRLP); and LIM using ILVS and
Local Perturbation (LILP). LRLP was implemented with
Local Search (LRLP&Local) and Global Search
(LRLP&Global) methods. Later we selected the Local
Search method, which outperformed the Global Search
method, and implemented with LILP (LILP&Local). All
the experiments ran with 10 perturbations for each LXy
(i=1,2,...,6 and for all node paris (X,Y)). We used the same
number of perturbations for the global search. We also set
k=6. We also compared the LIM results with the results of
ILVS analysis of the same dataset18.

RESULTS

Comparison of LRLP&Local, LRLP&Global, and
LILP&Local is shown in Figure 4. The plot in the figure
was taken from the entire run and was sorted by the log

2) Nine galactose genes are Gall, Gal2, Gal3, Gal4, Gal5(PGM2),
Gal6(LAP3), Gal7, GallO, and Gal80.
3)The normalization method is available at:
www.systemsbiology.org/VERAandSAM/

scores. Figure 4 shows that LRLP&Local runs with the
least number of visited structures but LILP&Local finds
the most probable structure (structure with the highest
log(P(DIS,K)) among the three methods. Although
LRLP&Global considered a relatively large number of
structures, it fails to find a structure with a higher log(P(DI
than LILP&Local).

iLILP&Local -LRLP&Local --LRLP&GIobaIj
log(P(DIS.K))

-315

-365

415

-465

-515

-565

-615

*3M.24 -302.86 *35.31
iI)

4000 8000 12000 16000 20000 '

Figure 4. Comparison of LRLP&Local, LRLP&Global and
LILP&Local. X-axis represents the number of unique structures
visited by LIM and Y-axis represents log(P(DIS,K)). Highest
score searched by each method is displayed in the graph.

Table 1. Comparison results: PPV(Positive Predictive Value) and
NPV(Negative Predictive Value) of ILVS, LILP&Local, and
LRLP&Local. Numbers in the parenthesis represent the total
number of cases. Shaded columns in (a) indicate the causal
relationship PPV (or NPV), e.g., the first shaded column shows
that ILVS predicted 10 out of 12 causal directions correctly;
Shaded columns in (b) indicate the confounded relationship PPV
(or NPV). ' indicates p < 0.05 for the null hypothesis that one of
the six causal hypotheses was chosen uniformly at random.

PPV NPV
dicon El and E2 E4 and Es E3 E6

ILVS 0.0 (3) 0.4 (9) 0.3 (19) 0.4 (5)
0.8 (12)'0.3 (4)

LILP&Local 0.5(4) 1.0(5) 0.2(22) l 0.
0.8 (9)* 0.3 (27)

LRLP&Local 0.2(5) 0.7(5 0. (22) 1 1.0 (4)
0.6 (10) 0.3 (26)

(a) Causal Predictions

PPV NPV
Methods

Predictions E4 and E 1E6 El and E2 E3

ILVS 0.4 0.4 (5) 0.0 (3) 0.3 (19)
0.4 (14) 0.2 (22)

LILP&Local 1.0(5)' l 0.8(5)' 0.3(4) T 0.2(22)
0.9 (10)'0.2 (26)

LRLP&Local 0.7(5) | 1.0 (4) 0.2(5) | 0.2 (22)
_____ _ 0.9 (9) 0.2 (27)

(b) Confounded Predictions
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Summary results of the predictions made by ILVS,
LRLP&Local, and LILP&Local are shown in Table 14).
Table l(a) shows the performance of the three methods
when causal relationships are (or are not) predicted.
LILP&Local performed both better in predicting causal
relationships of confounded and not confounded separately
and performed comparable to ILVS when the two
hypotheses were combined, i.e., El and E4 were considered
equivalent. Table l(b) shows the performance of the three
methods when confounded relationships are (or are not)
predicted. LRLP&Local and LILP&Local outperformed
ILVS. All the method's NPV(Negative Predictive Value)s
were low, which deserves more investigation.

DISCUSSION

We introduced a causal discovery algorithm that can
model causal hypotheses with latent variables. LIM
extends ILVS by searching through local structures that
include the pairwise variables considered in ILVS.

We applied LIM to an available dataset containing gene
expression levels from experiments that focused on
galactose genes. A variation ofLIM that incorporates some
aspects of ILVS (LILP) showed better performance than
ILVS, especially in predicting confounded relationships,
but it needs improvement and further evaluation. Possible
reasons for low NPVs of LIM include a small set of
samples and limited experimental conditions and variation;
for the false positives output by LIM, some may simply be
wrong, while others may represent unknown causal
relationships within galactose gene regulation.

Future work includes applying LIM as a sub-module in a
decision support system that suggests additional DNA
microarray experiments to perform that have the highest
expected value of information for revealing gene
regulation pathways of interest.
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