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This paper reports the methods and results of a computer-based search for causal relationships
in the gene-regulation pathway of galactose metabolism in the yeast Saccharomyces cerevisiae.
The search uses recently published data from cDNA microarray experiments. A Bayesian
method was applied to learn causal networks from a mixture of observational and experimental
gene-expression data. The observational data were gene-expression levels obtained from
unmanipulated “wild-type” cells. The experimental data were produced by deleting (“knocking
out”) genes and observing the expression levels of other genes. Causal relations predicted from
the analysis on 36 galactose gene pairs are reported and compared with the known galactose
pathway. Additional exploratory analyses are also reported.

1 Introduction

Causal knowledge makes up much of what we know and want to know in science.
Thus, causal modeling and discovery are central to science. Experimental studies,
such as biological interventions with corresponding controls, often provide the
most trustworthy methods we have for establishing causal relationships from data.
In such an experimental study, one or more variables are manipulated and the
effects on other variables are measured. On the other hand, observational data
result from passive (i.e., non-interventional) measurement of some system, such as
a cell. In general, both observational and experimental data may exist on a set of
variables of interest. For example, in biology, there is a growing abundance of
observational gene expression data. In addition, for selected variables of high
biological interest, there are data from experiments, such as the controlled
alteration of the expression of a given gene.

Microarray technology has opened a new era in the study of gene regulation. It
allows a relatively quick and easy way to assess the mRNA expression levels of
many different genes. Large time-series datasets generated by microarray
experiments can be informative about gene regulation. Microarray data have been
analyzed using classification or clustering methods1,2 and gene pathway (network)
methods3,4,5,6,7. Dutilh8 gives a short review of genetic networks. A more thorough
review of genetic networks based on biological context was published by Smolen,
et al.9. Wessels, et al.10 conducted a limited comparison study of selected



continuous genetic network models3,11,12. Unlike these previous methods, we
introduce a method that models experimental interventions explicitly when
evaluating hypotheses about causal relationships. Independently, Pe’er, et al.13 have
similarly modeled interventions but they did not model latent variables.

This paper reports the results from the analysis of a gene-expression dataset
that was gathered by experimentation on galactose genes in the yeast
Saccharomyces cerevisiae14. Our analysis focuses on the discovery of pairs of
genes (X, Y) in which the expression of gene X has a causal influence on the
expression of gene Y. As a representation of causation, we use causal Bayesian
networks that include measured gene expression levels as well as possible latent
causes that are not measured, such as the cellular level of proteins and small
molecules15. The results of our causal analyses are compared with the known
pathway. We also report novel causal relationships found in the analysis, which we
believe deserve additional study.

2 Modeling Methods

A causal Bayesian network (or causal network for short) is a Bayesian network in
which each arc is interpreted as a direct causal influence between a parent node
(variable) and a child node, relative to the other nodes in the network16. Figure 1
illustrates the structure of a hypothetical causal Bayesian network structure
containing five nodes. The probabilities associated with this causal network
structure are not shown.

Figure 1. A hypothetical causal Bayesian network structure

The causal network structure in Figure 1 indicates, for example, that a history
of smoking can causally influence whether lung cancer is present, which in turn
can causally influence whether a patient experiences fatigue. The causal Markov
condition gives the conditional independence relationships specified by a causal
Bayesian network: A node is independent of its non-descendants (i.e., non-
effects) given its parents (i.e., its direct causes).
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The causal Markov condition permits the joint probability distribution of the n
variables in a causal Bayesian network to be factored as follows 16:

(1)

where xi denotes a state of variable Xi, πi denotes a joint state of the parents of Xi,
and K denotes background knowledge.

Discovery of causal networks is an active field of research in which numerous
advances have been—and continue to be—made in areas that include causal
representation, model assessment and scoring, and model search17,18,19,20.

2.1  The Modeling of Experimental Interventions

In this section, we briefly describe how to represent experimental intervention in a
causal Bayesian network. First, consider that we have a Bayesian network S that
represents the causal relationships among a set of genes (in terms of the regulation
of expression). We need to augment this network to represent the experimental
interventions (manipulations) that were performed to obtain the microarray data at
hand. To do so, let 

iXM be a variable that represents the value k (from 1 to ri) to

which the experimenter deterministically manipulated gene Xi (e.g., a “knock out”
of Xi). To represent this deterministic manipulation, we augment S so that (1)
variable 

iXM  is a parent of Xi in S, and (2) for all the joint states of iπ′ we have that
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i

π , where iπ′ are the parents of Xi other than 
iXM . Details about

this representation are discussed by Cooper and Yoo21.
For given microarray data D, we are interested in deriving the posterior

probability of a causal network hypothesis S given data D and background
knowledge (priors) K; that is, we want to know P(S | D, K). In particular, we would
like to find causal networks with posterior probabilities that are relatively high. A
key step in the Bayesian derivation of P(S | D, K) is to derive the marginal
likelihood, namely P(D | S, K). Specifically, P(S | D, K) is proportional to P(D | S,
K) × P(S | K), where P(S | K) denotes prior belief (perhaps from background
biological knowledge) that S is a valid causal hypothesis.

If D contains only passively observed data (no interventions), then Equation 2
provides a method for deriving the marginal likelihood, where ri is the number of
states that Xi can have, qi denotes the number of joint states that the parents of Xi

can have,  Nijk is the number of cases in D in which node Xi is observed to have state
k when its parents have the states that are indexed by j, Γ is the gamma function,
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and ∑ =
=

ri

k ijkij 1
αα . The derivation and detailed explanation of Equation 2 are given

in Cooper and Herskovits22 and Heckerman, et al.23. Briefly, the equation assumes
(1) discrete variables, (2) causal mechanisms that are local and independent (e.g.,
belief about the causes of gene Xi do not influence belief about the causes of gene
Xj), (3) data exchangeability (i.e., the order in which the experiments were
performed is irrelevant), (4) a particular representation of parameter prior
probabilities that is based on Dirichlet probability density functions, and (5) no
missing data or latent variables. The marginal likelihood given by Equation 2 is
sometimes called the BDe metric23.
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Consider microarray data D, some of which was obtained under intervention and
some of which was obtained by passive observation (i.e., data on “wild types”). As
proven by Cooper and Yoo21, augmenting S to contain manipulation variables of the
type 

iXM , as described above, is equivalent to having the terms Nijk in Equation 2

denote just those cases in which Xi was passively observed (e.g., not manipulated)
to have value k when its parents were in state j. We used Equation 2 under this
modification to derive P(D | S, K) when D contains a mixture of data obtained
under manipulation and under passive observation. For parameter priors, we
assumed that 

ii
ijk qr

1
=α , which for the BDe metric is a commonly used non-

informative parameter prior.

3 Scoring Methods of Structures with a Latent Variable

As mentioned in Section 2, Equation 2 assumes no latent variables. If we wish to
model the possibility of a latent causal influence (which indeed we do), we need to
extend Equation 2. Exact extensions involve applying Equation 2 an exponential
number of times, one application for each possible state of the latent variables24.
Such an exact method is not computationally feasible. Thus, in practice, we need to
use approximation methods to evaluate P(S | D, K) when S contains latent variables.
In the remainder of this section, we explain the approximation method that we
applied in this paper.

3.1  Causal Hypotheses Being Modeled

Figure 2 displays six local causal hypotheses (E1 through E6) that we model, shown
as causal network structures. Variable X is the expression level of a given gene.
Variable Y is the expression level of another gene. H is a latent (hidden) variable.



We denote an arbitrary pair of nodes in a given causal network S as (X, Y). If there
is at least one directed causal path from X to Y or from Y to X, we say that X and Y
are causally related in S. If X and Y share a common ancestor, we say that X and Y
are confounded in S.

Figure 2. Six causal hypotheses on a pair (X, Y) of measured variables.

To derive the marginal likelihood (i.e., score) of causal structures E1, E2, and
E3, we can use Equation 2, since the hidden variable H does not influence either X
or Y, and thus, can be ignored21. For structures E4, E5, and E6, for which H is a
confounding influence of X and Y, we use the scoring method discussed in the next
section.

3.2  Implicit Latent Variable Scoring (ILVS) Method

Since explicit scoring of latent-variable models needs exponential time (in the
number of database samples), approximation methods have been introduced in the
literature, including methods based on stochastic simulation and on expectation
maximization23. Unfortunately, these methods often require long computation
times before producing acceptable approximations. Therefore, we developed a new
method called the Implicit Latent Variable Scoring (ILVS) method15.

The basic idea underlying ILVS is to (1) transform the scoring of a latent
model S (e.g., model E5 in Figure 2) into the scoring of multiple non-latent
variable models, (2) score those non-latent models efficiently using Equation 2,
and then (3) combine the results of those scores to derive an overall score (i.e.,
marginal likelihood). For instance, consider scoring E5 with two types of samples.
One type is data for which X and Y were passively observed. We can derive the
marginal likelihood of this data using the causal network in Figure 3(a), which
contains no latent variable. Let P(Do | E5, K) denote this marginal likelihood. The
other type of samples is data for which X was manipulated and Y was observed. We
use the causal network in Figure 3(b) to derive the marginal likelihood of this data,
namely P(Dm | E5, K). The different appearance of the arcs in Figures 3(a) and 3(b)
signifies that these arcs are representing different distributions of X and Y. Figure
3(a) represents a situation in which X and Y are dependent based on a combination
of direct causal influence of X on Y and on the confounding of X and Y by hidden
process H. For the situation modeled by Figure 3(b), the experimental
manipulation of X removes all causal influence of H on X. Therefore, Figure 3(b)
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represents a situation in which X and Y are dependent based only on the direct
causal influence of X on Y – there is no additional confounding influence.
Continuing the Bayesian analysis, if (as in ILVS) we assume our beliefs about the
distribution of X and Y in the Figure 3(a) situation are independent of the beliefs
about their distribution in the Figure 3(b) situation, then the overall marginal
likelihood of all the data (the passively observed data and the experimentally
manipulated data) is P(D | E5, K) = P(Do | E5, K) × P(Dm | E5, K). It is
straightforward to extend the analysis to also include data in which Y was
manipulated and X was passively observed.

In deriving the marginal likelihood of E4 and E6, ILVS uses a technique similar
to the one just described for E5. Yoo and Cooper15 provide algorithmic details of
ILVS and a proof of its convergence to the correct generating structure in the large
sample limit.

X        Y                          X        Y
 (a)                                   (b)

Figure 3. Two non-latent variable structures used to score a latent-variable structure.

4 Gene Expression Dataset Analyses

We applied the ILVS algorithm to a gene-expression dataset to produce putative
causal relationships among the genes. This section briefly describes the dataset and
summarizes the steps we followed in preparing the data for analysis.

4.1  Dataset Description

The cDNA microarray data we analyzed were obtained from experiments that
focused on the galactose utilization pathway in the yeast Saccharomyces
cerevisiae as reported by Ideker, et al.14. The experiments included single gene
deletion involving nine of the key genes1) that participate in yeast galactose
metabolism. All microarray experiments were repeated four times. For each
experiment, one of the nine genes was deleted, or alternatively, the experiment
used a wild-type cell wherein no genes were deleted. For each of those 10
experimental conditions, galactose was available extracellularly in one set of
experiments and absent in another set. Thus, there were a total of 20 different
experimental conditions. Since each of those 20 experiments was repeated four
times, the overall dataset contains results from 80 experiments. In each

                                                            
1) 

Nine galactose genes are Gal1, Gal2, Gal3, Gal4, Gal5(PGM2), Gal6(LAP3), Gal7, Gal10, and Gal80.



experiment, 5,936 gene expression levels were measured, corresponding to almost
the entire Saccharomyces cerevisiae genome.

4.2   Dataset Preparation

This section describes the five data preparation steps that we applied to the data.
We tried different methods of discretization (i.e., forcing all knock out genes to
have expression level of 0; discretization with clustering) but found no significant
difference in the overall predicted performances.

1) Genes that had expression levels missing in all four repetitions of a given
experiment were excluded from the analysis (n = 195 genes were excluded).

2) If the expression level of a gene was missing in some experiment, its value
was estimated as the mean value of the available measurements for that gene.

3) Negative intensities were assumed to be 0.
4) Let Xi

*
 denote the intensity for gene Xi, which serves as an indicator of the

expression level of Xi in an experiment in which some gene (not necessarily
Xi) was knocked out. Similarly, let Xi

r
 denote the intensity, which is an

indicator of the expression level of Xi when no genes were manipulated (wild
type). The relative intensity for gene Xi was calculated as log(Xi

*/Xi
r). If Xi

*
 was

0, we used the minimum log(Xi
*/Xi

r) value for gene Xi.over all 80 experiments
for gene Xi. If Xi

r was 0, we used maximum log(Xi
*/Xi

r)  value for gene Xi over
all 80 experiments. If both Xi

*
 and Xi

r were 0, log(Xi
*/Xi

r)  was set to 0.
5) Discretization was performed based on each gene’s expression level mean m

and standard deviation δ over all 80 samples. All genes were assigned three
states: 0 was assigned to any value less than m-δ, 1 was assigned to any value
greater than or equal to m-δ and less than m+δ, and 2 was assigned to any value
greater than or equal to m+δ.

4.3  Analyses

We applied ILVS to every pair of the 5,936 yeast genes that includes one or both
genes from the nine galactose genes. For each gene pair, we used the method in
Section 3.2 to derive a posterior probability for each of the six causal hypotheses
in Figure 2. We analyzed our results in two main parts.

The first part focused on just the nine galactose genes that were manipulated.
Since the causal relationships among these nine genes are understood relatively
well, we assume that these generally accepted relationships are correct and can
serve as a standard against which to compare the output of ILVS. The ILVS method
was considered to label a given gene pair as having causal relationship R (among
the six possibilities in Figure 2) if P(R | D, K) was greater than 0.5. For each gene



pair (X, Y), there were 8 cases in each X and Y (and all other genes for that matter)
were passively observed, 8 cases in which X was knocked out and Y observed, and 8
cases in which Y was knocked out and X observed.

The second part of our analysis was more exploratory than evaluative. In
particular, we examined all 9 × 5,732 = 51,588 gene pairs consisting of one gene
from the nine galactose genes and one gene from outside that set. Let X denote one
of the nine galactose genes and let Y denote one of the other 5,732 genes studied.
For each gene pair (X, Y),  there were 8 cases in which X and Y were observed, 8
cases in which X was knocked out and Y observed, and no cases in which Y was
knocked out and X observed. We identified every gene pair for which one of the six
causal hypotheses in Figure 2 was greater than probability 0.9. Each pair represents
a hypothesis about the nature of a causal relationship that has yet to be
characterized.

5 An Investigation of ILVS: Results

This section first presents the results of exploring relationships just among the
nine galactose genes, and then between those nine genes and all other genes in the
dataset.

5.1  Galactose Genes

The first column in Table 1 shows pairwise causal relationships that represent
generally accepted biological knowledge about the galactose gene-regulation
pathway, as summarized in Ideker, et al.14. The table also shows the results of
applying ILVS to the 36 pairs of galactose genes. Only the causal relationships that
had a posterior probability greater than 0.5 are shaded. No relationship had a causal
hypothesis with a probability higher than 0.9, possibly due to the small number of
samples in the dataset.

Upon comparing the ILVS predictions with the known galactose metabolic
pathway, we show the results in Table 1. Each shaded row in reversed font
represents ILVS predictions that agree with accepted biological knowledge. The
shaded rows in bold font denote that for reference structure T, there exists
uncertainty about its validity. Other shaded rows represent predictions that are
inconsistent with accepted biological knowledge.

The errors in Table 1(a) are due to ILVS assuming genes are independent,
when biological knowledge indicates an expected dependence. We label these as
false negatives. There are at least two plausible reasons for these errors. First, the
sample size (24 samples per pair) is small, and thus, unless the dependence is
strong, that dependence may not be apparent from the data. Second, the biological
knowledge we used as a reference standard expresses general patterns of causal



dependency among the galactose genes; not all of those patterns were necessarily
revealed by the experiments performed in creating the dataset that was given as
input to ILVS.

Table 1. The most probable causal hypotheses predicted by ILVS as representing  relationships among

the nine manipulated galactose genes under study

ILVS Predicted Structure ILVS Predicted StructureReference
Structure T Structure S P(S|D,K)

P(T|D,K)§

Reference
Structure T Structure S P(S|D,K)

P(T|D,K)§

Gal6---Gal7 Gal6   Gal7 0.80 0.02 Gal80⇒Gal1 Gal80→ Gal1 0.56 0.16
Gal2⇒Gal7 Gal2   Gal7 0.80 0.01 Gal3⇒Gal1 Gal3→ Gal1 0.33 0.33
Gal1---Gal5 Gal1   Gal5 0.80 0.03 Gal3⇒Gal7 Gal3→ Gal7 0.31 0.31
Gal2⇒Gal5 Gal2   Gal5 0.75 0.01 Gal80⇒Gal10 Gal80→ Gal10 0.30 0.17
Gal2⇒Gal10 Gal2   Gal10 0.74 0.01 Gal80⇒Gal7 Gal7→ Gal80 0.25 0.11
Gal1---Gal6 Gal1   Gal6 0.73 0.03 (b) E1 and E2

Gal6---Gal10 Gal6   Gal10 0.73 0.02 ILVS Predicted Structure

Gal80⇒Gal5 Gal5   Gal80 0.70 0.04
Reference

Structure T Structure S P(S|D,K)

P(T|D,K)§

Gal2⇒Gal1 Gal1   Gal2 0.57 0.16 Gal4→Gal7 Gal4⇒Gal7 0.83 0.01
Gal2⇒Gal6 Gal2   Gal6 0.56 0.01 Gal10---Gal7 Gal10⇒Gal7 0.81 0.004
Gal5---Gal7 Gal5   Gal7 0.55 0.02 Gal4→Gal80 Gal4⇒Gal80 0.58 0.10
Gal5---Gal10 Gal5   Gal10 0.54 0.07 Gal4→Gal1 Gal4⇒Gal1 0.47 0.04
Gal3⇒Gal6 Gal3   Gal6 0.51 0.10 Gal2⇔Gal3 Gal2⇒Gal3 0.42 0.45*

Gal3⇒Gal5 Gal3   Gal5 0.45 0.08 Gal4→Gal10 Gal4⇒Gal10 0.41 0.003
Gal3⇒Gal10 Gal3   Gal10 0.43 0.25 Gal2↔Gal4 Gal2⇒Gal4 0.40 0.33†

Gal4→Gal6 Gal4   Gal6 0.41 0.08 Gal3⇒Gal1 Gal3⇒Gal1 0.33 0.33
Gal3---Gal80 Gal3   Gal80 0.33 0.11 Gal3⇒Gal7 Gal3⇒Gal7 0.31 0.31
Gal4→Gal5 Gal4   Gal5 0.28 0.08 (c) E4 and E5

Gal5---Gal6 Gal5   Gal6 0.28 0.09 ILVS Predicted Structure
(a) E3

Reference
Structure T Structure S P(S|D,K)

P(T|D,K)§

Gal80⇒Gal6 Gal6---Gal80 0.63 0.06
Gal1---Gal7 Gal1---Gal7 0.60 0.60
Gal1---Gal10 Gal1---Gal10 0.57 0.57
Gal2⇔Gal80 Gal2---Gal80 0.57 0.35*

Gal4→Gal3 Gal3---Gal4 0.49 0.29
(d) E6

Notation: The symbol → represents the relationship given by causal structure  E1 and E2 (from Figure 2).

Likewise, a blank space is used for E3, a ⇒ for E4 and E5, and a  --- for E6. In column 1, a birectional arc

indicates that there is a known feedback pathway between the two genes (e.g., Gal2⇔Gal3). The symbol †

indicates summing the posterior probabilities for E1 and E2. A * indicates summing the probabilities for E4

and E5. The column labeled P(T|D,K) § gives the probability that ILVS assigned to the reference structure

in column 1. See the text for an explanation of the shaded results.

The errors in Tables 1(b), 1(c), and 1(d) result from the most probable
hypothesis (according to ILVS) being inconsistent with assumed biological
knowledge. There are only two pairs (the shaded ones in Table 1(d)) for which



ILVS obtains exactly the correct hypothesis. Consider, however, the following
relaxation: A hypothesis is correct if it indicates that there is a causal pathway
from X to Y (with or without confounding) and according to existing biological
knowledge there is indeed a causal pathway from X to Y (with or without
confounding). For example, under this interpretation Gal80→Gal1 would be
correct, since the reference structure is Gal80⇒Gal1, which includes a causal path
from Gal80 to Gal1. Under this relaxation of correctness, 12 of the 17 unique
relationships (71%) in Tables 1(b), 1(c), and 1(d) are correct.

5.2  Galactose Genes and Other Genes 

In this section, we report the results of an exploratory analysis. The purpose of this
section is to illustrate an initial step in using computer-based, data-intensive
methods to hypothesize causal relationships.

Table 2. Types of highly probable (>0.9) gene pairs predicted by ILVS from 51,588 considered pairs.

E1, E4, and E6 E2 E3 E5

1,329 (2.58%) 4 (0.008%) 586 (1.14%) 1,113 (2.16%)

Table 3. Conditional distributions of four genes that are reported by ILVS in Table 2 to be highly probable

(>0.9) effects of Gal1 or Gal2. For example, Table 3(a) presents P(YBR096W | Gal2).

Gal2 Gal2

low no ch high low no ch high
low 0.021 0.301 0.083 low 0.021 0.301 0.083

YBR096W no change 0.021 0.688 0.833 YMR086W no change 0.021 0.688 0.833
high 0.958 0.011 0.083 high 0.958 0.011 0.083

(a) (b)

Gal2 Gal1

low no ch high low no ch high
low 0.958 0.011 0.083 low 0.026 0.493 0.026

SSU1 no change 0.021 0.688 0.083 SER3 no change 0.949 0.493 0.026
high 0.021 0.301 0.833 high 0.026 0.013 0.949

(c) (d)

In an analysis of 51,588 gene pairs, ILVS scored 5.9% of the node pairs as
having a high probability (>0.9) causal hypothesis (see Table 2). Since the 5,732
genes were not experimentally deleted, ILVS could not distinguish among E1, E4,
and E6 when one of the nine galactose genes were treated as variable X in Figure 2;
therefore, E1, E4, and E6 are grouped in Table 2. The four unconfounded causal
relationships are Gal2→YBR096W, Gal2→YMR086W, Gal2→SSU1, and Gal1→



SER3. Conditional distributions in Table 3 suggest that Gal2 is acting as a relative
inhibitor for YBR096W and YMR086W, and as an activator of SSU1. Table 3(d)
suggests that Gal1 is acting as an activator for SER3. Interestingly SER3 is one of
only two proteins that are known to bind with Gal1 and its regulatory role is
unknown25.

To evaluate all 51,588 gene pairs, ILVS required about four and a half hours of
CPU time on a Pentium 500MHz Linux machine with 384M RAM.

6 Summary and Discussion

ILVS is a novel, efficient causal discovery algorithm that can model causal
hypotheses with (and without) latent variables. The method attains its efficiency by
modeling one pair of variables at a time and by evaluating latent-variable models
implicitly, rather than explicitly. In previous work, the ILVS algorithm has been
shown to be asymptotically correct in the large sample limit15. Thus, with enough
valid data, it is guaranteed to find the correct causal relationship between each pair
of variables in a dataset. The ILVS method can use data obtained from passive
observation and from active experimental manipulation. Since much gene-
expression data is of both types, the ILVS method is of particular relevance to
work on discovery of gene-regulation pathways from gene-expression data.

We applied the ILVS method to an available dataset containing gene
expression levels from experiments that focused on galactose metabolism. These
early results are promising, but in need of improvement. The error rates in re-
discovering the known galactose gene-regulation pathway were high. Possible
reasons include a small set of samples and limited experimental conditions and
variation; the influence of these two limitations is supported by the fact that ILVS
did not give a high probability (> 0.9) to any of the galactose causal relationships
that it hypothesized. For the false positives output by ILVS, some may simply be
wrong, while others may represent unknown causal relationships within galactose
gene regulation.

An exploratory analysis of the galactose dataset yielded approximately 3,000
causal relationships (out of 51,588) that appear highly probably (according to
ILVS). Those hypothesized relationships have not yet been investigated in the
laboratory. In future work, we intend to work with yeast biologists to begin to
explore some of the most interesting and promising of these hypotheses.

Algorithmic improvements that we are pursuing include performing Bayesian
model averaging (rather than model selection), modeling continuous data directly
(rather than discretizing the data), developing and using informative models of the
types of measurement noise that exists in microarray experiments, modeling
covariates (e.g., galactose levels) in evaluating the causal relationships among a



pair of genes, modeling gene-regulation feedback, and incorporating into our
Bayesian analyses informative structure and parameter prior probabilities.
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