
 
 

 
 
 
 
 

Abstract 
Predictive models are often constructed from clinical 
databases with the goal of eventually helping make 
better clinical decisions. Evaluating models using 
decision theory is therefore natural. When construct-
ing a model using statistical and machine learning 
methods, however, we are often uncertain about pre-
cisely how a model will be used. Thus, decision-
independent measures of classification performance, 
such as the area under an ROC curve, are popular. As 
a complementary method of evaluation, we investi-
gate techniques for deriving the expected utility of a 
model under uncertainty about the model's utilities. 
We demonstrate an example of the application of this 
approach to the evaluation of two models that diag-
nose coronary artery disease. 

1. Introduction 
This paper is concerned with how to evaluate the 
performance of clinical prediction models, such as 
models used for risk assessment, diagnosis, and 
prognosis. In particular, we focus on evaluating the 
performance of models that predict a probability dis-
tribution over a discrete outcome variable given a set 
of clinical features about a patient. 

There are many measures for evaluating classifi-
cation performance (Hand, 1997). Historically, accu-
racy has been a commonly used measure of classifi-
cation performance in machine learning. More re-
cently, researchers have increasingly used Receiver 
Operating Characteristic (ROC) curves (Weinstein & 
Fineberg, 1980; Provost, Fawcett, & Kohavi, 1998) 
and their variants and extensions to evaluate classifi-
cation performance. ROC curves provide an estimate 
of the various possible sensitivities and specificities 
of a model in predicting a binary outcome over the 
range of threshold probabilities.  

While ROC curves evaluate the discriminative 
performance of a model, they do not assess model 
calibration. A model is well calibrated if the probabil-
ity predicted for an outcome corresponds closely to 
the empirical frequency of that outcome. If, for ex-
ample, a model predicts that P(rain | barometric 
pressure = 29) = 60%, then when the barometric 
pressure is 29, rain empirically occurs about 60% of 
the time. There are numerous measures for assessing 
calibration, with the Hosmer-Lemeshow goodness-
of-fit measure being a popular one (Hosmer & Le-

meshow, 1980). Essentially, these measures indicate 
how far the predicted probabilities of an outcome 
variable deviate from the associated empirical fre-
quencies. 

In decision making that is based on decision 
analysis, the expected utility of a model generally 
depends on both its discriminative performance and 
its calibration. We might separately assess a model’s 
classification performance and its calibration, and 
then combine those assessments in some way to ob-
tain an overall measure of performance. Alterna-
tively, we could directly estimate an overall measure 
of performance of the model, which is the approach 
taken in this paper. In particular, this paper concen-
trates on evaluating the expected value of models 
with an eye toward how they might be used to make 
decisions, which is often the ultimate purpose for 
constructing predictive models. 

2. Background 

Figure 1 shows a simple decision tree (Weinstein 
& Fineberg, 1980) for a binary decision D with op-
tions d1 and d2, and a binary outcome R (for result) 
with values r1 and r2. The parameter p equals P(R = 
r1 | x, D = d1), where x is a set of variables with as-
signed states (i.e., features) that are used to predict R. 
The parameter q equals P(R = r1 | x, D = d2). The 
parameters u11, u12, u21, and u22 are utilities associated 
with each of the four branches of the tree. For exam-
ple, u12 denotes the utility of making decision d1 and 
having outcome r2 occur. The utilities are real num-
bers that range in value from 0 (worst outcome) to 1 
(best outcome). The expected utility (EU) of taking 
decision option d1 is EU(d1) = p ⋅ u11 + (1 – p) ⋅ u12. 
Similarly, for decision option d2, EU(d2) = q ⋅ u21 + (1 
– q) ⋅ u22. For a given patient case, if EU(d1) > 
EU(d2), then d1 is the optimal decision; if EU(d2) > 
EU(d1), then d2 is the optimal decision; otherwise 
both decisions are equally optimal. If, in a given case, 
decision option di is taken and the outcome rj occurs, 
the utility of having made di in light of rj is uij, which 
can be interpreted as the decision-theoretic measure 
(score) for that decision-outcome combination. Sup-
pose we use prediction model M to derive P(R = r1 | 
x, D). If a set T of test cases are evaluated, the sum of 
the utility scores of the cases divided by |T| is an es-
timate of the expected utility of M applied to such 
cases. 

Deriving the Expected Utility of a Predictive Model  
When the Utilities Are Uncertain 

Gregory F. Cooper, M.D., Ph.D. and Shyam Visweswaran, M.D., M.S. 
Center for Biomedical Informatics and the Intelligent Systems Program 

University of Pittsburgh, Pittsburgh, Pennsylvania 

AMIA 2005 Symposium Proceedings Page - 161



As is known, ROC curves are an imperfect indi-
cator of expected utility, even qualitatively. Indeed, 
each point on an ROC curve corresponds to a prob-
ability decision threshold, which in turn corresponds 
to a unique equivalence class of utilities. The ROC 
curve makes no commitment to any particular set of 
utilities, which can either be a strength or a weakness, 
depending on the purpose for evaluating a model. 
Empirically, Moons et al. (1997) provide examples 
based on medical data in which two models have 
virtually identical AUROCs but significantly differ-
ent expected utilities, according to the utility model 
considered. In contrast, two other models have sub-
stantially different AUROCs, but similar expected 
utilities.  

Researchers have applied expected utility as a 
measure for evaluating predictive models. One ex-
ample is the evaluation of the Pathfinder system in 
the early 1990s by Heckerman and Nathwani (1992). 
More recently, cost-based (or utility-based) perform-
ance measures have been studied increasingly in ma-
chine learning (Dietterich, et al., 2000). Expected 
utility is a natural evaluation measure if there is a 
well-defined decision problem at hand and the rele-
vant utilities can be assessed. In developing a predic-
tive model to apply to future patient cases, however, 
we may not have precisely defined utilities. One ap-
proach to addressing this problem is to represent the 
utilities as uncertain quantities, that is, as random 
variables. 

Adams and Hand (1999) describe a method for 
comparing classifiers when misclassification costs 
are uncertain. They lucidly describe the advantages 
of treating utilities as random variables in developing 
an evaluation measure for predictive models. Ulti-
mately, however, the measure they develop is not an 
expected utility, although it is related to expected 
utility.  

The primary purpose of this paper is to investi-
gate expected utility as an evaluation measure under 
uncertainty about the utilities. To be clear at the out-
set, we are not advocating the replacement of other 
measures of model performance, such as ROC curves 
and goodness-of-fit measures. Rather, our goal is to 

provide a complementary measure of performance 
that emphasizes future decision making uses of a 
model, while not requiring a firm commitment (on 
the part of a model-building researcher) to an exact 
decision making context or set of utilities. The per-
formance measure we describe provides an estimate 
of how well a model will perform under uncertainty 
about how it will be used to make decisions in the 
future. 

3. Methods 
In this section we first describe a general approach 
for deriving the expected utility for a model, under 
uncertainty about the utilities. Next, we introduce an 
example decision problem that involves diagnosing 
coronary artery disease. Finally, we derive the ex-
pected utility of using a neural network model and a 
simple Bayes model to diagnose coronary artery dis-
ease on a set of patient cases. To do so, we use a nu-
merical method that is straightforward to implement 
and practical to apply to decision problems that have 
only a few decision options and outcomes. 

3.1. General Formulation 

We can generalize the binary decision model in Fig-
ure 1 to a model with m decision options and n out-
come values.1 Equation 1 shows the expected utility 
(EU) of decision option di in light of a given set of 
features x. ∑ ⋅=

j
ijiji uddorPdEU ))(,|()|( xx                      (1) 

The notation do(di) means that the probability in 
Equation 1 represents the causal effect on outcome rj 
of taking (doing) decision option di in the context of 
features x. 

In a standard decision analysis, there is at least 
one best possible outcome that is assigned a utility of 
1 and at least one worst possible outcome that is as-
signed a utility of 0. All other outcomes are then as-
signed values between 0 and 1. The optimal decision 
is the one that maximizes Equation 1, namely, 

))|((maxarg xdEU idi
, and the expected utility of 

that decision option is )).|((max xdEU idi
 The ulti-

mate utility of that decision, in light of the actual 
outcome, is discussed in Equation 4 below. 

Standard decision analysis assumes a well-
defined decision problem and a decision maker who 
assesses all the utilities precisely. When constructing 
a general-purpose predictive model, however, we 
often are uncertain about both the problem (which 
                                                        
1  We could further generalize to consider a sequence of 
decisions, rather than a single decision and to represent 
continuous-valued decisions and outcomes, but we will not 
do so here. 
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Figure 1. A simple decision tree. 
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reflects uncertainty about how the model will be used 
in the future to solve problems) and the utilities 
(which reflect uncertainty about the preferences of 
some future, unknown decision maker). In this paper 
we focus on dealing with the uncertainty about utili-
ties, and we assume that a useful decision problem 
can be envisioned at the time a model is constructed; 
we show an example in Section 4.2 In summary, we 
concentrate in this paper on evaluating the expected 
utility of models that estimate the probability term in 
Equation 1. 

Let U = {u11, u12, ..., u1n, u21, u22, u2n, ..., umn} be 
the set of utilities in the decision model. Equation 2 
modifies Equation 1 to explicitly include U and to 
specify that the probability function reflects the pre-
dictions of a particular model M. ∑

=
⋅=

n

j
ijiji uddoMrPUMdEU

1

))(,,|(),,|( xx      (2) 

Equation 3 shows the decision option that has the 
maximum expected utility when we use model M to 
generate probabilities of outcome R.  
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Let c be a patient case in the test dataset, consisting 
of a feature set x and an outcome R. Let g(c) be a 
function whose value equals j, if and only if R = rj in 
case c. For example, in a test dataset of 100 cases, if 
the value of R in case 3 is r2, then g(case 3) = 2. Let 
xc be the features associated with case c. For exam-
ple, if the only feature is age, and case 3 has age = 
45, then x3 = (age = 45). Equation 4 expresses the 
utility of the decision given by Equation 3 in light of 
the actual outcome in case c, as given by g(c). 

)(),,,(),,( cgcUMfucUMu x=                                   (4) 

Let the probability distribution P(U | x) represent the 
uncertainty about the values of the utilities, given 
feature set x. Thus, P(U | x) encodes our belief about 
the utilities of a future decision maker who we envi-
sion using model M in making decision D. Since we 
are uncertain about the utility values, we integrate 
Equation 4 over the probability of the joint values of 
the utilities, as shown in Equation 5. ∫ ⋅=

U
c dUUPcUMucMEU )|(),,(),( x               (5)  

Equation 6 shows the expected utility of applying 
model M in making decisions for the test cases in T. 
EU(M,T) can also be interpreted as the expected util-

                                                        
2  While modeling the uncertainty of the structural decision 
problem is beyond the scope of this paper, it is an interest-
ing problem for future research. 

ity of using M in making decisions in the future on 
cases drawn from the distribution that generated the 
cases in T. If we wish to select a predictive model for 
an envisioned future decision maker to use in cases 
such as T, we should select the model M* for which 
EU(M*,T) is maximum relative to all the models con-
sidered. 
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3.2. An Example 

In this section we describe an example that illus-
trates the application of Equation 6 to a particular 
decision problem. In doing so, we discuss the key 
ideas needed to apply that equation in other decision 
problems. 

The example clinical problem involves diagnos-
ing coronary artery disease (CAD). We use outcome 
r1 to represent no CAD at the present time and r2 to 
represent CAD at the present time. We use d1 to rep-
resent a diagnosis of no CAD, and d2 to represent a 
diagnosis of CAD, again, at the present time. We as-
sume the best situation (from the patient or patient-
surrogate perspective) is to diagnose no CAD and 
have no CAD, and therefore u11 = 1. We assume that 
diagnosing the absence of CAD when a patient actu-
ally has CAD is the worst outcome (u12 = 0), because 
such a patient may not receive timely treatment for a 
serious disease. We also assume that u21 > u22, which 
expresses that it is better to not have CAD and be 
misdiagnosed as having it, than to have CAD and be 
correctly diagnosed as having it. Subject to these 
constraints, for the purpose of illustration (and with-
out loss of generality) we assume a uniform prior 
over all values of u21 and u22, which expresses our 
uncertainty about the values these utilities will have 
in future applications of this CAD decision model. 

We assume p = q in Figure 1, because the diagno-
sis of CAD (or, alternatively, of no CAD) at the pre-
sent time will not influence whether the patient has 
CAD at the present time. The diagnosis can, how-
ever, influence subsequent patient states, and such 
influence is captured by the utilities in the model. 
Making the above assumptions transforms Figure 1 to 
Figure 2. Following Figure 2, Equation 7 specializes 
Equation 6 to integrate over just the two uncertain 
utilities in the example problem. 
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where the integral is over all joint values of u11 and 
u12, and the square brackets enclose a list of only the 
uncertain utilities and leave implicit u11 and u12, 
which are constant. 

For simplicity, we applied a straightforward nu-
merical integration method to estimate Equation 7 as 
follows: 
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where k is a fraction that indicates how the utility 
variables are incremented from 0 to 1 in the sums. 
For example, for the CAD problem, we used k = 
0.01, and therefore the utility variables in the inner 
two sums of Equation 8 took on the values 0, 0.01, 
0.02, …, 1.0. 

For the CAD problem, when u21 > u22 then P(u21, 
u22) = b, where b is a constant; otherwise, P(u21, u22) 
= 0. Since P(u21, u22) must sum to 1.0 over all the 
values of u21 and u22 in Equation 8, it follows that b = 
1/5050 in that equation. 

It is straightforward to record the joint values of 
u21 and u22 that yield the maximum and minimum 
values of EU(M, T), as derived by Equation 8. We 
report such values in Section 4. 

The advantage of applying the computational ap-
proach illustrated by Equation 8 is that it is (1) easy 
to implement, (2) adequately efficient for simple de-
cision problems, and (3) provides the flexibility to 
use an arbitrary probability distribution on the un-
known utilities in the sum. Nonetheless, more com-
plex decision problems will likely require more so-
phisticated methods for approximating the integral in 
Equation 6, such as Monte Carlo integration methods. 

4. Results 
In this section we illustrate the application of the 
methods described in Section 3 to the CAD decision 
problem. We first introduce the dataset and machine-
learning methods that we used, and then present the 
results. 

 

4.1. Dataset 

We used data that were collected at the Cleveland 
Clinic Foundation by Robert Detrano, M.D., Ph.D. 
and that are available from the heart disease directory 
of the UCI Machine Learning repository 
(www.ics.uci.edu/~mlearn/MLRepository.html). A 
primary reason for choosing this dataset is that it is 
non-proprietary and publicly available, and thus, 
other researchers can validate and extend the results 
we report here, using that dataset. The data consist of 
303 patient cases, 139 of whom were diagnosed with 
coronary artery disease (CAD) based on angiographic 
evidence of at least 50% narrowing of one or more 
coronary blood vessels. The remaining 164 cases 
were considered to have no CAD. The values of 13 
variables were recorded for each patient, representing 
demographic, symptom, sign, and laboratory infor-
mation. 

4.2. Machine Learning Methods 

We split the data randomly into a training set of 
210 (~70%) cases and a test set of 93 cases (~30%). 
As examples of predictive models that have been 
applied frequently in machine learning, we chose to 
learn Neural Network (NN) and Simple Bayes (SB) 
models. We emphasize that our purpose is not to ana-
lyze the performance of these models, per se, but 
rather to use them to illustrate the application of the 
methods described in Section 3. To learn the NN and 
SB models, we used software that is available in the 
Weka library (Weka v3.3.6, www.cs.waikato. 
ac.nz/ml/weka) with default learning settings. For 
each method, we induced a predictive model from the 
training set that we then applied to the test set to ob-
tain the results reported below. 

4.3. Experimental Results 

Figure 3 shows ROC curves for each of SB and 
NN. The results described in the caption suggest that 
the two methods are only borderline statistically sig-
nificantly different when using a 95% confidence 
interval (CI), which we computed using a bootstrap 
method with 1000 samples. 

Table 1 shows the EU results of NN and SB, as 
well as the expected utility for an optimal (Opt) 
model. An optimal (Opt) model produces the correct 
prediction with probability 1. As with the ROC 
analysis, while SB performs better than NN, the sta-
tistical significance of that difference is tenuous, as 
shown by the 95% confidence intervals (CI) that 
were derived using bootstrap sampling.  

As an indication of the computation times re-
quired, it took an average of 22,840 ms (averaged 
over 10 runs) to derive the EU of the NN model using 
the numerical method given by Equation 8. We used 
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Figure 2. The decision tree used for the CAD decision 
problem example. 
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a desktop computer with a 500 Mz Pentium III proc-
essor and 384 MB of RAM. 

 
Table 2 lists the values of u21 and u22 that maximize 
and that minimize the absolute or relative EUs. Note 
that for the test set that we used, the minimum EU for 
SB - NN is 0, meaning that there are no utility set-
tings for which NN performs better than SB; this 
insight cannot be gleaned from the ROC curve in 
Figure 3. 
 

Table 2. The maximum and minimum EUs of various mod-
els for the CAD decision problem. 

Method Max EU u21, u22 Min EU u21, u22 
Opt 0.9905 0.99, 0.98 0.5269 any, 0 
NN 0.9258 0.99, 0.98 0.5084 0.06, 0.05 
SB 0.9875 0.99, 0.98 0.5260 0.23, 0.03 

Opt - NN 0.1189 0.65, 0.64 0 any, 0 
Opt - SB 0.0739 0.40, 0.39 0 any, 0 
SB - NN 0.0761 0.93, 0.92 0 any, 0 
 
As a form of visual sensitivity analysis, Figure 4 
plots the differences in EUs between SB and NN. A 
darker color indicates better performance of SB over 
NN; white indicates no difference. Figure 4 shows (1) 
that NN does relatively poorly when u22 is high and 
u21 is high (dark areas), and (2) NN and SB perform 
about the same when u22 is low (light areas).  

5. Summary 
In this paper we introduced a basic approach to 

evaluating predictive models based on expected util-
ity as an evaluation measure. This approach empha-
sizes two main points: (1) the importance of our con-
sidering future decision-making uses of predictive 
models being constructed, and (2) the explicit incor-
poration of our uncertainty about such future uses 
into the evaluation of a model.  

We applied the approach to an example decision 
problem. The EU results were consistent with the 
results of an ROC analysis, but also revealed interest-
ing insights that would not be apparent in an ROC 
analysis. 
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Figure 4. Plot of EU(SB) – EU(NN) with 
the constraint u21 > u22. 
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Table 1. The EU of various models for the example 
CAD decision problem. 

Method Numerical EU 95% CI 
Opt 0.6814 [0.6162, 0.7466] 
NN 0.6178 [0.5386, 0.6984] 
SB 0.6455 [0.5712, 0.7199] 

Opt - NN 0.0636 [-0.0429, 0.1676] 
Opt - SB 0.0359 [-0.0586, 0.1325] 
SB - NN 0.0276 [-0.0799, 0.1348] 

Figure 3. The AUROC for Simple Bayes is 0.9374 
[95% CI: 0.8648, 0.9760] and for the Neural Net-
work it is 0.8711 [95% CI: 0.7854, 0.9315]. 
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