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The past decade has seen the emergence of programs that make use of large knowledge bases to assist physicians in 
diagnosis within the general field of internal medicine. One such program, Internist-I, contains knowledge about over 
600 diseases, covering a significant proportion of internal medicine. This paper describes the process of converting a 
subset of this knowledge base --  in the area of cardiovascular diseases -- into a probabilistic format, and the use of 
this resulting knowledge base to teach medical diagnostic knowledge. The system (called KBSimulator -- for 
Knowledge-Based patient Simulator) generates simulated patient cases and uses these cases as a focal point from which 
to teach medical knowledge. This project demonstrates the feasibility of building an intelligent, flexible instructional 
system that uses a knowledge base constructed primarily for medical diagnosis. 
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1. Introduction 

One of the difficulties students have in learning 
medical diagnosis is adapting what they have 
learned in the classroom to the diagnosis of pa- 
tients. The proliferation of factual knowledge 
within each medical specialty has led to increased 
rote learning and to a lack of experience with 
integrating such knowledge for diagnosis and 
problem solving. A project panel on the general 
education of the physician reiterated what many 
others have said before: medical schools should 
reduce their dependence on lectures as the prin- 
cipal method of teaching, and should increase 
activities that provide students with more oppor- 
tunities for independent learning and problem 
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solving [29]. One way to increase opportunities for 
problem solving is to use the computer to provide 
the student with simulated patients to diagnose 
and manage [15]. A major stumbling block to the 
further development of this approach to medical 
education, however, has been the costly and time- 
consuming process of creating didactically useful 
patient cases for computer-based education [21]. 
One way to overcome the high cost of creating 
patient cases for computer-based teaching is to 
make use of large existing medical knowledge 
bases, such as In t e rn i s t - I /QMR [28], HELP [33], 
RECONSIDER [4], and DXplain [2],to generate 
didactically useful teaching cases automatically. 
The knowledge base can also be used to tutor the 
student flexibly, according to the student's specific 
needs. In addition, the knowledge base can be 
used to model the student's knowledge, so that 
specific tutorial interaction can be tailored to ad- 
dress deficiencies in the student's own fund of 
knowledge. 
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2. Background 

2.1. Intelligent tutoring 

The primary feature of an intelligent tutoring sys- 
tem is that the system itself has knowledge about 
the subject matter that it is tutoring: the system is 
able to solve the same problems that it is pre- 
senting to the student. By making use  of this 
knowledge base, the system is able not only to 
tutor the student about the specific solution to the 
problem, but also to use this knowledge to di- 
agnose the student's errors and to tailor teaching 
strategies and material to the student's specific 
deficiencies. Because of its knowledge about the 
general subject matter, the system may also be 
capable of engaging in a meaningful dialogue with 
the student in areas that may not be directly 
related to the specific problem at hand [5]. In 
general, intelligent tutoring systems must have a 
knowledge base from which they generate or solve 
problems, problem-solving expertise, diagnostic or 
student-modelling capabilities, and some explana- 
tion ability [35]. 

Considerable research in the use of knowledge 
bases for intelligent tutoring has been done in the 
context of the G U I D O N / N E O M Y C I N  projects 
[10]. GUIDON [8,9] is an intelligent computer- 
aided instructional (ICAI) system that makes use 
of the MYCIN [34] rule base to teach students the 
rules that MYCIN used to diagnose and recom- 
mend therapy for cases of bacteremia and 
meningitis. By interfacing a separate tutoring 
knowledge base that contained rules about tutor- 
ing strategy, GUIDON was able to tutor the stu- 
dent about the rules, or heuristics, contained in the 
original MYCIN knowledge base. MYCIN and 
many other rule-based expert systems, however, 
use an implicit nonpsychological strategy for diag- 
nosis; these strategies, although sufficient for diag- 
nosis, often are of limited value for teaching. 
MYCIN contains neither knowledge about the 
structure and strategy of medical diagnosis, nor 
support knowledge (the underlying justification 
for a rule) [10]. Subsequent work by Clancey has 
focused on augmenting and restructuring the 
knowledge base to incorporate rules for diagnostic 
strategy and increase its usefulness for teaching. 

In this project, we make use of a probabilistic 
knowledge base to teach associational rather than 
heuristic knowledge. Since the knowledge that we 
are teaching is that of associating manifestations 
with diseases, rather than on the larger task of 
'how to do diagnosis', we have bypassed some of 
the problems being addressed in the G U I D O N /  
NEOMYCIN projects by focusing on a smaller 
teaching goal. We are not teaching the student 
how to diagnose, but rather, we are teaching the 
association between findings and diseases - -  that 
is, the differential diagnosis of findings. We wish 
to teach the student what are the possible diseases 
given a manifestation or set of manifestations, and 
what is their probability of occurrence. 

2.2. Case-based instruction 

Although GUIDON used the MYCIN knowledge 
base from which to tutor it did not generate 
patient cases from this knowledge base; rather, it 
used cases selected from a prespecified library of 
patient data. In contrast to this, the KBSimulator 
system described in this paper makes use of pa- 
tients generated de novo from the knowledge base. 

GUIDON supplements the MYCIN rule base 
with a separate rule base containing approxi- 
mately 200 tutorial rules that guide the system in a 
tutorial dialogue with the student. In addition, the 
student is able to query the MYCIN knowledge 
base about how and why certain conclusions were 
reached. In a somewhat analogous manner, 
KBSimulator presents a patient case for the stu- 
dent to diagnose, and allows the student to ex- 
plore the knowledge base on her own initiative to 
answer questions that she might have while di- 
agnosing a particular patient case. 

2.3. Patient-case generation from a knowledge base 

De Dombal used his abdominal pain diagnostic 
system to simulate patients for teaching purposes 
[13]. Thirty-five findings were recorded from a 
series of 600 patients who were suffering from one 
of six different abdominal diseases. From these 
data, a table was produced linking the frequency 
of the occurrence of a particular finding to each 
disease. Using this table and a random-number 
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generator, the system generated simulated patients 
who had one of the six encoded diseases, accord- 
ing to the frequency of occurrence of each finding 
in a patient with that disease. Although there is no 
published discussion of why this work was not 
pursued further, our research suggests that the 
approach used by de Dombal may lead to signifi- 
cant problems because the knowledge base does 
not encode relationships among the findings within 
a disease process (i.e., it assumes conditional inde- 
pendence) [6]. Because the presence of one finding 
may make the presence of another finding highly 
unlikely or impossible (e.g., for the manifestations 
MALE and PREGNANT, the presence of one excludes 
the possibility of the other), the lack of representa- 
tion of this dependency can lead to the generation 
of patient cases with unlikely combinations of 
findings (such as a patient who is both MALE and 
PREGNANT). 

A similar approach to de Dombal's was used, 
adapting the Internist-I knowledge base for the 
purpose of patient-generation, in the TEST pro- 
gram [31]. However, similar problems arising from 
inadequately encoded dependencies among pa- 
tient findings led to the generation of patients 
with inconsistent findings. A project to augment 
the Internist-I knowledge base with causal knowl- 
edge and to use this augmented knowledge base to 
create simulated patient cases was explored in the 
CPCS project [27,31]. Although this augmented 
knowledge base was capable of generating clini- 
cally consistent patient simulations, it was esti- 
mated that it would take an order of magnitude 
greater effort to convert the existing Internist-I/ 
QMR knowledge base into this augmented knowl- 
edge base than has already been expended in the 
25 person-years of the development of the existing 
Internist-I/QMR knowledge base. 

3. Overview of the KBSimulator system 

Fig. 1 shows a diagram of the KBSimulator sys- 
tem. We converted a subset of the Internist-I 
knowledge base, in the domain of cardiovascular 
diseases, into a probabilistic format, which we 
used as the knowledge base. This subset contains 

I Patient 
Simulator Module 

I Problem Solving 
Expertise Module I 

Tutoring Module 
(tutoring strategy, etc) 

ration 
ule 

Fig. 1. The KBSimulator system, illustrating the various com- 
ponents of the system. 

knowledge about 31 cardiovascular diseases and 
their relationship to over 350 manifestations. 

As shown in Fig. 1, the medical knowledge base 
serves several purposes: it is used to generate 
patient cases, it can be queried for information by 
the student, it is used to 'solve' the patient case 
that is being presented to the student, and it is 
used as a framework for rudimentary explanation. 

The system generates simulated patient cases 
directly from the knowledge base and places these 
patient cases into a 'lesson'. A tutoring subpro- 
gram presents this patient case to the student, one 
manifestation at a time. As manifestations are 
presented to the student, the system applies its 
own expertise, using Bayes' rule, to calculate the 
probability of each possible disease given the 
manifestations presented up to that point. When 
the probability of some disease reaches a prede- 
fined threshold, the presentation of manifestations 
is halted, as the student has presumably been 
given sufficient information to diagnose the case. 
At this point, the student engages in a mixed-ini- 
tiative interaction with the computer system, and 
is given the opportunity to make the diagnosis, to 
obtain more information about the patient, to 
examine the knowledge base for the differential 
diagnosis of any of the manifestations in this 
patient, or to ask the computer to explain which 
manifestations are the key ones in making the 
diagnosis. As the student interacts with the pro- 
gram, the computer keeps track of her perfor- 
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mance. This rudimentary student model is used to 
direct the generation of subsequent patient cases. 

4. The KBSimulator knowledge base 

We decided to create a program that initially 
teaches students about cardiovascular diseases, 
both because the pathophysiology of cardiovascu- 
lar diseases is reasonably well understood, and 
because it is an important general area in medi- 
cine and thus could form the basis for a system of 
benefit to all medical students, no matter what 
their specific interests. 

We used 31 of the 47 cardiovascular diseases 
known to the Internist-I system, eliminating those 
that we thought were relatively clinically unim- 
portant. 

To build a knowledge base that had manifesta- 
tions that would be optimally useful for teaching, 
we eliminated manifestations that either occurred 
too infrequently or were too nonspecific to be of 
much diagnostic use. In this way, nonspecific 
manifestations or relatively rare manifestations of 
limited specificity, such as AFFECT APPREHENSIVE 
and HICCUPS, were eliminated from the knowledge 
base. 

Pruning the knowledge base resulted in a de- 
crease in the number of manifestations from 600 
to about 450. The resulting list of manifestations 
and diseases was examined by our collaborating 
cardiologist, and revealed many more manifesta- 
tions that he deemed relatively unimportant for 
teaching purposes. In addition, our expert re- 
placed several manifestation and disease terms 
with terms in more current usage; for example the 
t e r m  PYROGENIC SHOCK w a s  replaced with SEPTIC 

SHOCK. The additional elimination of manifesta- 
tions brought the total number of manifestations 
used in our knowledge base down to about 350. 
The final knowledge base used by KBSimulator 
therefore contained knowledge about 31 cardio- 
vascular diseases and their relation to 350 manife- 
stations. 

4.1. Probabilistic conversion from Internist-I 

4.1.1. Probability and Bayes' rule 
The earliest knowledge bases that were success- 
fully applied to medical diagnosis were programs 

that used Bayes' rule to calculate the probability 
of a disease given a constellation of patient find- 
ings. By making the assumptions that the diseases 
under consideration are mutually exclusive and 
exhaustive, and of the conditional independence 
of manifestations given a disease, it is possible to 
apply Bayes' rule over a set of manifestations, 
thereby calculating the probability of a particular 
disease given a combination of findings. 

Examples of diagnostic systems that use Bayes' 
rule in this manner are Warner's program for the 
diagnosis of congenital heart disease [36] and de 
Dombal's program for the diagnosis of abdominal 
pain [14]. Although the assumption of mutually 
exclusive and exhaustive diseases and the assump- 
tion of conditional independence of manifesta- 
tions given a disease are rarely satisfied com- 
pletely in real life, the performance of some of 
these systems within limited domains has been 
impressive [1]. 

4.1.2. Ad hoc reasoning systems 
Several ad hoc knowledge-representation and di- 
agnostic-reasoning schemes have also been devel- 
oped for computer-assisted medical diagnosis. The 
Internist-I system in particular uses subjective 
weights, called frequencies and evoking strengths, 
to link diseases to findings, and uses disease-inde- 
pendent/finding-specific imports that represent 
the degree to which one is compelled to explain 
the presence of a given finding in a patient [26]. 
The scoring scheme used is also limited to the 
Internist-I system. For example, the statement 'the 
score for diagnosis X is 130' is specifically based 
on the numerical weights in the Internist-I system 
and is not readily translated to other uncertainty- 
representation methods. 

AI researchers have often used ad hoc methods 
for reasoning under uncertainty, citing limitations 
of probability theory as their justification for doing 
so. Further research, however, has begun to 
elucidate the correspondence between some of 
these ad hoc methods and probability theory 
[18,19,22]. Some of the advantages of using prob- 
ability theory over an ad hoc method are that 
assumptions made in probabilistic reasoning sys- 
tems are explicit, probability theory is widely un- 
derstood, knowledge bases that make use of this 



theory could be adapted by different researchers 
to their own purposes without the need for exten- 
sive interpretation and validation, and the use of 
probability theory makes it possible to incorporate 
statistical data into the knowledge base and to 
validate the knowledge base with statistical data. 
For these reasons, we decided to convert our 
subset of the Internist-I knowledge base into a 
probabilistic form to take advantage of the prop- 
erties of such a knowledge-representation scheme. 

4.1.3. Mapping frequency numbers into probabilities 
Earlier work done on the Internist-I knowledge 
base explored the correspondence between the 
Internist-I concepts of evoking strength and the 
Bayesian notions of predictive value and belief 
updates [18]. Studies have shown, however, that 
physicians are more reliable in giving the prob- 
ability that a patient with a particular disease will 
exhibit a particular symptom, than they are in 
giving the probability that a patient exhibiting a 
particular symptom will have a particular disease 
[24]. For example, physicians can more accurately 
estimate the probability that a patient with a 
pulmonary embolus will be short of breath than 
they can estimate the probability that a patient 
who is short of breath has a pulmonary embolus. 
For  this reason, we decided to focus on the use of 
the Internist-I frequency numbers (which would 
be more accurate than the evoking strengths) to 
accomplish our knowledge-base conversion. 

Since the Internist-I frequency numbers are a 
measure of sensitivities, that is, P(MxIDx) [26], 
we converted these numbers directly to their cor- 
responding probabilities. This was done by obtain- 
ing probability conversion tables from R. Miller, 
one of the primary developers of the Internist-I 
system. On two separate occasions, estimates of 
the general correspondence between P(MxIDx ) 
and the Internist-I frequency measures were ob- 
tained. On the first occasion a point probability 
was obtained, and on the second, a probability 
interval was obtained. These correspondences are 
shown in Table 1. The elicited point probabilities 
showed a close correspondence to the midpoint of 
the probability intervals, and we decided to use 
the point probabilities for o u r  knowledge-base 
conversion. 

TABLE 1 

Probability estimates of Internist-I frequency numbers 
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Frequency Probability Point 
interval (%) probability (%) 

1 0-  5 2.5 
2 5- 36 20 
3 37- 64 50 
4 65- 95 80 
5 95-100 98.5 

4.1.4. A priori probabilities 
We obtained a priori probabilities for each of the 
31 diagnoses by mapping them into their ICD-9 
equivalents and obtaining the number of admis- 
sions to U.S. hospitals for those codes for the year 
1983, the last year for which we were able easily to 
obtain such statistics [23]. In those cases for which 
there was no equivalent ICD-9 code correspond- 
ing to an Internist-I diagnosis, we used an esti- 
mate of the number of admissions with that diag- 
nosis in one year. By dividing the number of 
admissions for a particular diagnosis by the num- 
ber of total admissions for the 31 diagnoses, we 
obtained the a priori probability for that diagnosis 
(i.e, the a priori probability of that diagnosis given 
that the patient has one of the 31 diagnoses). In 
doing so, we make the 'completeness' and 'mutual 
exclusivity' assumptions; that is, we assume that 
the patient has one, and exactly one, of the 31 
diseases. 

4.1.5. Baseline manifestation occurrence and import 
Internist-I contains frequency and evoking 
strength numbers linking those diseases and 
manifestations that are positively associated with 
one another, but it does not record a number for 
those diseases and manifestations for which there 
is no 'greater than baseline' association. For ex- 
ample the manifestation PAIN RIGHT BIG TOE is 

not associated with the disease ATRIAL SEPTAL 
DEFECT, and therefore the Internist-I disease pro- 
file for the disease ATRIAL SEPTAL DEFECT would 
not contain the manifestation PAIN RIGHT BIG 
TO~, and there would not be an explicit frequency 
number linking the two. However, the probability 
of finding the manifestation PAIN RIGHT BIG TOE 
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T A B L E  2 

Miss ing  sensi t iv i ty  numbers  af ter  m a p p i n g  f requency in to  cor- 

r esponding  sensi t ivi t ies  

Prior  M x l  Mx2  Mx3 Mx4 Mx5 .. .  Mx350 

proba-  

b i l i ty  

0 .0 l  D x l  x ? '~ x ? ... ? 

0.20 Dx2  ? x x ? ? ... x 

0.03 Dx3  ' ? ? x ? ... ? 

0.18 Dx4  x ? ? ? x ... ? 

0.12 Dx31 ? x ? ? ? ... x 

in a patient with ATRIAL SEPTAL DEFECT is not zero 
(although it is quite small). In other words, for a 
large majority of manifestation-disease pairs, there 
is no explicit encoding of frequency, as there is no 
'greater than baseline' association between that 
manifestation and that disease. 

After mapping frequency into corresponding 
sensitivities and obtaining prior probabilities as 
described in the previous sections, we obtain the 
sparse table depicted in Table 2, where the x's 
signify frequencies that are encoded in the knowl- 
edge base, and ?'s signify those manifestation-dis- 
ease pairs for which there is no explicit number 
encoded, and for which we must assume some 
'baseline occurrence' of that manifestation. As 
these baseline occurrences are presumably disease 
independent, only one probability estimate is 
needed for each manifestation. Thus, for our 
KBSimulator cardiovascular disease knowledge 
base, only 350 such numbers would be needed: 
one estimate of 'baseline occurrence' for each 
manifestation. 

Internist-I assigns to each manifestation a dis- 
ease-independent import number, which ranges 
from 1 to 5, defined as the 'global importance of 
the manifestation' - -  that is, the extent to which 
one is compelled to explain the manifestation's 
presence in any patient [26]. 

The exact probabilistic definition of import is a 
matter of continuing research. However, there 
seems to be a strong correspondence between im- 
port and the baseline occurrence of a manifesta- 

tion. An import of 5 (manifestation absolutely 
must be explained by one of the final diagnoses) 
signifies that the baseline occurrence of the mani- 
festation is zero, or extremely small. Similarly, an 
import of 1 (manifestation is usually unimportant, 
occurs commonly in normal persons, and is easily 
disregarded) signifies that the baseline occurrence 
of that manifestation is relatively high; that is, the 
probability of a disease that can directly account 
for the manifestation is increased only slightly 
when compared to a disease for which no 
frequency number is explicitly encoded in the 
Internist-I knowledge base. 

Although it would not have been difficult to 
estimate baseline probabilities for each manifesta- 
tion de novo (and there are many advantages to 
doing so), we decided to use an import-to-mani- 
festation baseline mapping in KBSimulator to ex- 
plore whether that mapping would yield a knowl- 
edge base that could be used for teaching. From 
Table 1, we see that a frequency of 1 corresponds 
to a P(MxIDx ) of 0.025. The 'baseline occur- 
rence' of any manifestation, then, should generally 
be smaller than this number (if it was higher, then 
a frequency number should have been encoded). 
For those manifestations with an import of 1, we 
set the baseline occurrence of that manifestation 
to 0.02, and create an exponentially decreasing 
function to calculate the baseline occurrence of 
manifestations with higher import numbers. The 
resultant mapping of imports to baseline occur- 
rences is shown in Table 3, and is described by the 
equation: 

P ( M x  baseline ) = 0 . 0 2  * 2 - ( I m p o r t -  1) 

T A B L E  3 

M a p p i n g  i m p o r t  to base l ine  man i fe s t a t ion  occurrence  

Impor t  P ( M x  baseline) 
1 0.02 

2 0.01 

3 0.005 

4 0.0025 
5 0.00125 



Using this technique, we are able to fill in the 
missing probabilities in Table 2, to yield a knowl- 
edge base that contains the a priori probability of 
31 cardiovascular diseases, and a P(MxlDx ) for 
the occurrence of each of 350 manifestations in 
each of the 31 diseases. Although numerous as- 
sumptions were made to derive this table, one of 
our objectives was to determine whether such a 
probabilistic conversion would yield a knowledge 
base adequate for teaching purposes. 

4.2. Grouping manifestations 

Attempting to simulate patients from a probabilis- 
tic knowledge base that assumes conditional inde- 
pendence among manifestations often results in 
the generation of unlikely or nonsensical patient 
cases [6]. An example of this would be the disease 
MITRAL REGURGITATION and the associated mani- 
festations P-WAVE NOTCHED and ATRIAL FIBRILLA- 
TION. Since these manifestations are both present 
with significant probability in the disease MITRAL 
REGURGITATION, it would be possible in an un- 
modified Bayesian system to generate a patient 
who exhibited both of these manifestations. How- 
ever, since the presence of atrial fibrillation pre- 
cludes the possibility of seeing a p-wave on the 
electrocardiogram (EKG), a patient who had both 
these manifestations would present inconsistent 
findings. In addition, it would be desirable to 
minimize the presentation of manifestations that 
duplicate the same conceptual information. For 
example, it would not be useful to give the student 
the information that the patient had a decreased 
hematocrit when the system has already told him 
that the patient has a decreased hemoglobin, since 
the two observations generally convey the same 
information. 

To attenuate the negative effects of the assump- 
tion of conditional independence among manifes- 
tations occurring in a disease, we grouped findings 
that are mutually exclusive or strongly dependent. 
Many of these relationships have been represented 
through the use of PROPERTIES in the Internist-I 
system [25]. In this project, we examined the list of 
manifestations and, with the assistance of the In- 
ternist-I PROPERTIES, formed groups of manifesta- 
tions. Each group was classified as one of: Mutu- 
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ally Exclusive (e.g. MALE, FEMALE), Strongly De- 
pendent (e.g. HEMATOCPaT, HEMOGLOBIN), or Both 
- -  i.e., a group that includes some manifestations 
that are mutually exclusive and some that are 
s t rong ly  d e p e n d e n t  (e.g. TACHYCARDIA, 
EKG-TACHYCARDIA, BRADYCARDIA, and EKG- 
BRADYCARDIA). 

As we shall see later, this group type is used to 
determine the probability of including a manifes- 
tation from that group when generating a patient 
case. 

5.  P a t i e n t  g e n e r a t i o n  

Patient cases that are generated from a knowledge 
base should be both realistic and useful for teach- 
ing. By pruning the manifestations in the manner 
described in Section 4, we selected those that 
would be useful to teach. By grouping manifesta- 
tions, we provided enough structure in the knowl- 
edge base to avoid the generation of nonsensical 
patients. In this section, we describe how patient 
cases are generated (Fig. 2). 

First, a disease is selected at random from the 
set of diseases about which the system wishes to 
teach the student. The system examines the list of 
manifestations associated with the selected dis- 
ease, and determines the presence of each mani- 
festation or manifestation group by generating a 
random number between 0 and 1 and comparing 
the generated number with the P(MxlDx ) for 
that manifestation or the P(GplDx) for that group 
of manifestations. For example, if P(MxIDx ) is 
0.2, and the randomly generated number is equal 
to or below 0.2, that manifestation will be in- 
cluded in the patient case; if the generated num- 
ber is above 0.2, the manifestation will not be 
included. 

For each group of manifestations, a P(GplDx ) 
(the probability of generating any of the manifes- 
tations in that group) is calculated. For Mutually 
Exclusive groups (groups that contain only mutu- 
ally exclusive manifestations), the individual prob- 
abilities for each manifestation are summed (up to 
a maximum of 1.0) to form this 'group probabil- 
ity'. For Strongly Dependent groups, the highest 
probability number among all the manifestations 



192 

is taken as the probability for the group. For 
groups that are classified as Both (contain both 
mutually exclusive and strongly dependent mani- 
festations), the resulting probability for the overall 
group should be between the probability that 
would have been obtained if the groups contained 
only manifestations that were mutually exclusive 
or highly dependent. The following heuristic for- 
mula has the property that it results in a number 
that is between the probability obtained for the 
Mutually Exclusive and Strongly Dependent 
groups, and is used to determine the overall prob- 
ability that should be assigned for groups classi- 
fied as Both: 

P(GPIDx)  = 1 - [(1 - P ( M I I D x ) )  

*(1 - P ( M 2 [ D x ) ) *  ... 

* ( 1 - P ( M ,  IDx))] 

n 

= 1 - l-'IP(MiilDx) 

where Gp = ( M1 ,M 2 . . . . .  M,  ). 
An argument could be made for the use of a 

group of mutually exclusive subgroups of strongly 
dependent manifestations, and for the use of a 
combination of the techniques used for the Mutu- 
ally Exclusive and Strongly Dependent groups to 
determine the overall probability for groups clas- 
sifted as Both. However, the use of the preceding 
heuristic formula led to reasonable behavior of the 
system and was adopted for simplicity. 

If the randomization procedure determines that 
a group is present, then one of the manifestations 
in the group is chosen by another random draw. 
The probability that any particular manifestation 
will be selected from a chosen group is simply 
proportioned according to the P(MxJDx)  for that 
manifestation. Thus, at most, one manifestation in 
a group of mutually exclusive and /o r  strongly 
dependent manifestations can be present in a gen- 
erated patient case. 

Whenever a manifestation is determined to be 
present, it is added to the current generated pa- 
tient case. Each patient case thus represents a list 

of manifestations that are present - -  the explicit 
absence of a manifestation is not represented. Up 
to ten such cases are generated at a time. After 
this case-generation phase, the program moves 
onto the patient-case-presentation and tutorial in- 
teraction phase. 

6. Patient-case presentation and tutorial interaction 

Figs. 3, 4, and 5 show annotated output from the 
system. Patient cases are presented to the student 
in a standard case-presentation fashion (Fig. 3). 

The age and sex of the patient are presented 
first, followed by the patient's chief complaint and 
symptoms. History, physical findings, and labora- 
tory and procedure results may also be presented. 
As each manifestation is presented to the student, 
KBSimulator uses Bayes' rule to recalculate the 
probability of the patient's diagnosis (see [13] and 
[36] for illustrations of the use of this approach). 
When the probability of a diagnosis exceeds a 
specified preset threshold, the system halts the 
presentation of further manifestations, as the stu- 
dent, we presume, has been provided with enough 
information to make the diagnosis. 

At this point, the student has the option of 
entering a diagnosis (6uess Dx), asking for more 
information about his patient (AnotherMx), asking 
the system to indicate the manifestation that pro- 
vides the strongest evident for the diagnosis (Hi nt), 
querying the knowledge base for the differential 
diagnoses of any manifestation present in this 
patient (MxDiff), moving on to the next case 
(NextCase), or redisplaying all the patient mani- 
festations presented so far (Redi splay).  

The system thus engages the student in a 
mixed-initiative dialogue, allowing the student to 
offer a diagnosis or to obtain further information 
of various kinds. For example, if the student were 
to ask for another manifestation, for the differen- 
tial diagnosis of a manifestation, and then for a 
hint, the dialogue shown in Fig. 4 would ensue. 

If the student, at some point, selects the correct 
diagnosis, KBSimulator reviews the case by indi- 
cating the manifestations that were the most im- 
portant for the diagnosis. KBSimulator then pre- 
sents the rest of the case to the student, showing 
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'as 

Pick Mx 
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T 
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no I I yes 

Mx = manifestation 
Dx = disease 

Fig. 2. Flow chart illustrating the process of patient-case generation from the knowledge base. 

the student the remaining results of the history, 
physical examination, laboratory values, and the 
results of special procedures and studies. The stu- 
dent is allowed a final opportunity to explore the 
knowledge base prior to continuing on to the next 
case (Fig. 5). 

This is a patient of SEX MALE, and of AGE 16 TO 25, 

who has a chief complaint of 

73: DYSPNEA AT REST. 
History and physical ex~ua show: 

52: CHEST TBAL~9~ ~E/~OTE HX 

223: HEART SOUND <S> P2 INCREASED 
259: LEG <S> EDF2~ BILATERAL SLIGHT OR MODERATE 

295: pRESSURE ARTERIAL SYSTOLIC 90 TO 110 
301: PRESSURE VENOUS INCREASED ON INSPECTION 
302: PRESSURE VENOUS KUSS~I%UL SIGN POSITIVE 

{at this point the program pauses because it has calculated a probability 
of greater than the specified threshold [0.90) for the disease} 
(G) uessDx, (A) notherMx, (H) int, (M) xDiff, (N) extCase, (R) edisplay : 

Fig. 3. Initial case presentation (comments are enclosed in 
curly brackets). 

Fig. 6 illustrates, in flow-chart form, the pro- 
cess of patient-case presentation used in KBSimu- 
lator. The program selects one of the previously 
generated patient cases and presents this case in a 
case-presentation fashion until the specified 
threshold for diagnosis is exceeded. The program 
then engages the student in a mixed-initiative di- 
alogue, where the student is able to obtain further 
information on her own initiative. As we shall 
discuss in the next section, the program scores the 
student on each case presented. If the student 
selects the correct diagnosis, or if all the manifes- 
tations have been presented to the student and she 
is still unable to guess the correct diagnosis, the 
system reviews the case, displays the final score, 
and allows the student to obtain the differential 
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(GluessDx, (A)notherMx, (H)int, (M)xDiff, (N)extCase, (R)edisplay: 

{student types "a," asking for another manifestation in this patient case} 

315: PULSE PRZSSURE NARROW 

(G)uessDx,(A)notherMx,(H)int,(M)xDiff,(N)extCase,(R)edisplay: m 315 

{student requests the differential diagnosis of Mx # 315} 

~<: PULSE PRESSURE NARROW 

Freq Dx#: Diagnosis 

9.2 26: RHEUMATIC CARDITIS ACUTE 

0.2 25: SEPTIC SHOCK 

0.5 20: MYOCARDITIS ACUTE 

~.5 19: MYOC;d%DIAL INFARCTION ACUTE 

3.9 16: HYPOVOLEMIC SHOCK 

2.3 14: HEAT EXHAUSTION 

~.5 ii: CONSTRICTIVE PERICA/~ITIS 

~.2 I0: CARDIOMYOPATHY PRIMA/~Y 

~.S 9: CA~IOGENIC SHOCK ACUTE 

~.98 8: C~DIAC T.~ONADE 

~.2 7: CA2~D!AC FAILURE LEFT CHRONIC CONGESTIV~ 

~.2  4: AORTIC VALVULAR STENOSIS 

;differential diagnosis for ~x number 315 is printed out, with the 
probability of finding that manifestation (PULSE PRESSURE NA~OW) in each 
of the diagnoses} 

(G)uessDx,(A)notherMx,(H)int,(M)xDiff,(N)extCase,(R)edisplay: 
{user requests a hint} 

Th=s is a rare diagnosis, but the manifestation 52 CHEST TRAUMA REMOTE HX 
is the most helpful in making the diagnosis. 

Fig. 4. Dialogue between the program and student in the 
continuation of the case initially presented in Fig. 3 (user input 

is under,ned, comments are enclosed in curly brackets). 

diagnosis of any of the manifestations in the case 
before proceeding. 

7. Student modeling 

The system monitors a student's performance by 
keeping a score for each diagnosis that the student 
attempts. The student starts out with a score of 
100 for each patient case. If the student is able to 
determine the correct diagnosis without any assis- 
tance, his score for that case is 100. For each hint, 
manifestation differential, and additional manifes- 

(G)uessDx,(A)notherMx,Crl)im,(M)xDiff,(N )extCase,(R)edisplay: . ~  
{ the student guesses Dx #11 } 
Dx: CONSTRICTIVE PEKICARDITIS 
Good!! You got it right!! 
This is a rare diagnosis, hut the manifestation 52 CHEST TRAUMA REMOTE HX and the 
manifestation 302 PRESSURE VENOUS KUSSMAUL SIGN POSITIVE are the most helpful 
in making the diagnosis. 
{The system critiques this case by giving the most important manifestations that contributed to 
the probability of this diagnosis, and then presents the rest of the manifestations in this patient 
case} 
This padent also had the following other findings: 

103: EKG T WAVE <S> INVERTED 
24.4: HEART XRAY PERICARDIAL CALCIFICATION 
241: HEART XRAy LEFT VENTRICLE ENLARGED 
303: PROTEINURIA 
262: LUNG <S> FORCED VITAL CAPACITY DECREASED 
128: HEART CATHETERIZATION LEFT ATRIUM MEAN PRESSURE INCREASED 
137: HEART CATH LEFT VENTRICLE END-DIASTOLIC PRESSURE INCREASED 
I48: HEART CATHETERIZATION RIGHT VENTRICLE DIASTOLIC DIP 
140: HEART CATH PULMONARY ARTERY WEDGE PRESSURE INCREASED 
216: HEART OUTPUT DECREASED 
298: PRESSURE VENOUS CENTRAL GTR THAN 10 
146: HEART CATHETERIZATION RIGHT ATRIUM MEAN PRESSURE INCREASED 

( M ) xDi f f,( N )extCase,CE) ndLesson: N 
{The system gives the student another opportunity to find out the differential diagnosis of any 
of Ihe manifestations presented, before going on to the next case} 

Fig. 5. Review and presentation of remaining patient case (user 
input is underlined, comments are enclosed in curly brackets). 

tation that the student requests, a penalty of 10 
points is deducted. If he makes an erroneous guess 
of the diagnosis, his score is reduced by 50%. 
These are arbitrary prototypical numbers that can 
be adjusted as experience with the system in- 
creases. With further work, it will be possible to 
tailor the precise number of points deducted to 
the type of information requested, and to the 
extent of the error in diagnosis. 

The student is given up to ten patient cases 
during each 'round' .  After each round, the dis- 
eases for which the student diagnosed a case suc- 
cessfully with a score of 90 or greater are removed 
from subsequent simulation. As the interaction 
proceeds, only those diseases that the student had 
difficulty diagnosing are generated. In this way, 
the system uses the student's score to focus atten- 
tion on those diseases with which the student has 
had the most difficulty. After each round, the 
student is told his average score for that round; at 
the conclusion of the entire interaction, the stu- 
dent is given a summary of the number of patient 
cases he has diagnosed, and the average score for 
the entire session. As the student learns the mani- 
festation-disease relations, he can be expected to 
improve his performance and score, and therefore 
to obtain increasing positive feedback from the 
system. 

8. Preliminary experience 

KBSimulator has been implemented on a DEC- 
2060 computer and is accessible to all users of the 
SUMEX-AIM system at Standord University. The 
tutoring program itself was written in Standard 
Pascal, and comprises approximately 800 lines of 
code. 

KBSimulator was built primarily to explore the 
use of ICAI techniques that would utilize an exist- 
ing knowledge base to generate realistic patient 
cases that would be useful for teaching. In a 
preliminary evaluation of KBSimulator, four peo- 
ple - -  one medical student in his clinical years, 
two board-certified internists, and a pediatrician 
- -  interacted with the system. 

All participants reported learning something 
useful from their interaction. A typical response 
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was: 'KBSimulator reinforced or taught me the 
relationship of different heart murmurs in the 
diagnosis of cardiovascular disease.' Preliminary 
responses indicated that users enjoyed using the 
system, thought the simulated patients were realis- 
tic, felt that the interaction was a useful learning 
experience, and believed that this technique should 

be extended to other medical areas other than 
cardiology. 

Most of the criticisms of KBSimulator related 
to the awkwardness of the user interface and the 
lack of text-recognition capability. In addition to 
improving the interface, suggestions for improve- 
ments were for the addition of ' red herring' 
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manifestations, graphical displays of how manife- 
stations contributed to the diagnosis, rewarding of 
partial success, and addition of the capability to 
explain the causal mechanisms that relate manifes- 
tation and disease. 

Although this preliminary feedback is anec- 
dotal, early experience suggests significant poten- 
tial in the use of this approach for the construc- 
tion of tutoring systems. 

9. Discussion and conclusion 

The main components of an ICAI system are [3]: 
(1) A knowledge base (the knowledge that the 

system tries to impart to the student). 
(2) Problem solving expertise. 
(3) The student model, indicating what the stu- 

dent does and does not know. 
(4) Tutoring strategies, which specify how the 

system presents material to the student. 
KBSimulator has all the components of an 

ICAI system (at varying levels of sophistication) 
and, to our knowledge, it is the first system that 
makes use of a knowledge base both to generate 
simulated patients and to tutor a student intelli- 
gently. The methods used and described in this 
paper are by no means confined to this particular 
knowledge base or domain; they could be applied 
easily to any knowledge base that is encoded in a 
probabihstic format. 

9.1. Patient-case generation from a knowledge base 

By pruning the knowledge base of nonspecific 
manifestations, we were able to improve the abil- 
ity to produce didactically useful patient cases. 
Through the use of manifestation grouping, we 
were able to encode some of the strong dependen- 
cies among manifestations, eliminating the genera- 
tion of nonsensical patients and patients with 
redundant manifestations. The use of a probabilis- 
tic causal network representation (sometimes called 
a Bayesian belief network representation) would 
allow for the encoding of all known dependencies 
among manifestations without requiring that the 
entire joint probability space be specified [11,32]. 
Although the possible exponential time complex- 

ity of calculation needed to make inferences with 
such systems remains a problematic issue [7,12], 
this knowledge-representation technique holds 
much promise. The current lack of a large knowl- 
edge base in a causal probabilistic format pre- 
cludes the adaptation of this method of knowledge 
representation for teaching at this time. 

9.2. Student modeling 

The use of a knowledge base to generate patient 
cases flexibly allows for the tailoring of the gener- 
ated cases to the learning needs of the student. 
KBSimulator makes use of a rudimentary student 
model that contains simply the disease-specific 
scores that the student achieves when diagnosing 
patient cases. By using this model, KBSimulator is 
able to focus patient-case generation precisely on 
those diseases for which the student does not 
achieve a threshold score. By extending the model 
of the student to incorporate a measure of the 
student's understanding of each manifestation, pa- 
tient-case generation could be tailored to generate 
cases that have the specific manifestations that the 
student does not understand. 

9.3. Mixed-initiative dialogue 

The use of a mixed-initiative dialogue allows the 
student to obtain specific information according 
to her needs and to explore the knowledge base in 
the context of diagnosing a specific patient case. 
This feature allows the individual student to ob- 
tain information that specifically addresses the 
gaps in her own fund of knowledge. Future work 
could be directed toward improving the nature of 
this mixed-initiative dialogue, by making better 
use of the 'expert' aspect of KBSimulator to tutor 
the specific misconceptions of the student. For 
example, the system could be enhanced such that, 
when the student makes an erroneous diagnosis, 
the system calculates the probability of that diag- 
nosis to determine the extent of the error and asks 
the student which manifestations led her to make 
that particular diagnosis. The student could then 
be tutored specifically on the differences between 
the guessed disease and the correct one. 
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9.4. Knowledge-base augmentation 

Much future work remains to be done in pro- 
viding more than a numerical description of how 
manifestations and diseases are related. If we in- 
"cluded a textual explanation of these relation- 
ships, the system would be capable of explaining 
the causal mechanisms involved. By limiting the 
textual explanations to only those manifestation- 
disease pairs that are of significant clinical impor- 
tance, we could limit the amount of knowledge- 
acquisition work necessary while still retaining 
much of the benefit of this addition. 

9.5. Internist-I and probabilistic knowledge bases 

Our research into the probabilistic meaning of the 
numerical quantities used in the Internist-I knowl- 
edge base, and our demonstration of the ability to 
convert part of the Internist-I knowledge base into 
a probabilistic form that can be used for case-based 
tutoring, has several important implications. Be- 
cause of the time-consuming work needed to create 
a knowledge base such as that used by Internist-I, 
other researchers have been interested in adapting 
the Internist-I knowledge base for various applica- 
tions [16,30]. Conversion of the Internist-I knowl- 
edge base into a probabilistic format allows this 
knowledge to be encoded in the standard language 
of probability that is widely understood, so re- 
searchers can adapt such a knowledge base to 
their own applications. The use of a probabilistic 
methodology also allows one to incorporate statis- 
tical data into portions of the knowledge base, and 
to cross-check numbers in the knowledge base 
with statistical data as they become available. 

9.6 Future 

The goal of the research described in this paper 
was to explore the feasibility of using a medical 
knowledge base both to generate patient cases and 
to use ICAI techniques for flexible intelligent tu- 
toring. Although we have succeeded in showing 
the feasibility of the methodology illustrated in 
this paper, much further potential exists in this 
research direction. By making use of a causal 
network representation, by expanding the student 

model, by improving the mixed-initiative dialogue 
to respond to the specific misconceptions of the 
student, by augmenting the knowledge base with 
'support' knowledge, it will be possible to extend 
the work described in this paper to build a power- 
ful and flexible learning system to augment the 
education of the budding physician. 
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