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ABSTRACT 

This paper presents a new inference algorithm for belief networks that combines a 
search-based algorithm with a simulation-based algorithm. The former is an extension of  
the recursive decomposition (RD) algorithm proposed by Cooper, which is here modified 
to compute interval bounds on marginal probabilities. We call the algorithm bounded-RD. 
The latter is a stochastic simulation method known as Pearl's Markov blanket algorithm. 
Markov simulation is used to generate highly probable instantiations of  the network nodes 
to be used by bounded-RD in the computation of  probability bounds. Bounded-RD has the 
anytime property, and produces successively narrower interval bounds, which converge in 
the limit to the exact value. 

KEYWORDS: Bayesian belief networks, belief updating, incremental bound- 
ing algorithms, simulation 

1. INTRODUCTION 

Belief networks [3] and influence diagrams [4] are powerful formalisms for 
modeling and reasoning with uncertainty. They have been extensively used in a 
large variety of applications ranging from medical diagnosis to fault diagnosis in 
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complex machinery [5-10], stimulating the development of efficient techniques 
for probabilistic inference in belief networks. 

Several algorithms have been devised for probabilistic inference with belief  
networks, and when applied to specific network topologies, these algorithms can be 
computat ionally tractable [11, 12]. Among the tractable methods are those based 
on assumptions about the nature of the probabili ty distribution to be modeled, such 
as noisy-o~ gates [3], similarity networks [13, 14], and the additive belief-network 
model [ 15]. However, in its general formulation, the problem of  inference in bel ief  
networks, both exact and approximate, is NP-hard [16, 17]. 

The worst-case intractability, while not invalidating the research on exact tech- 
niques for minimizing inference time, makes the research on approximate inference 
methods particularly important. Besides the class of  exact algorithms [1, 12, 18-  
20], there are two main classes of approximate methods l" (1) stochastic simulation 
methods, which compute an estimate of the exact probabilities by sampling the 
space of possible instantiations of the network [2, 22, 23], and (2) search-based 
approximate methods, which search for the most probable instantiations in this 
space [24-26]. Most of the algorithms belonging to the last class can also be char- 
acterized as incremental bounding algorithms, since they compute successively 
narrower upper and lower bounds on the probability of interest [27-29]. The rate 
at which these bounds are narrowed is generally contingent upon the existence of  
a relatively small number of  probable instantiations that cover a large portion of  
the probabili ty space, which in turn depends on the asymmetry of the individual 
prior and conditional probability distribution in the network [30]. 

The main motivation for our work stems from the consideration that simulation- 
based algorithms and search-based algorithms reflect two approaches to inference 
that are complementary. On the one hand, simulation-based methods yield a 
point-value estimate of  the probability of interest. On the other hand, search- 
based methods provide us with correct interval bounds on the exact probability, 
and the width of the interval is a clear gauge of how useful these bounds can be 
to the reasoning process. When facing a decision problem, a probability interval 
may be sufficient to select the optimal decision. If not, the estimate may be used to 
make the decision in a time-critical situation. Assuming we have access to interval 
bounds on the probability of interest, a first and immediate way of controlling the 
accuracy of  a point-value estimation is to test whether it falls within the given 
bounds. At  the same time, assuming the estimation does fall within the computed 
bound, it represents the best first guess on the probability of interest. 

In this paper, we present a new inference algorithm for belief  networks that com- 
bines a search-based algorithm with a simulation-based algorithm. The former is 
an extension of the recursive decomposition (RD) algorithm proposed by Cooper 

l An alternative and less explored approach, which we do not consider in this paper, is based on the 
manipulation of the network structure, by removing selected edges so as to reduce the connectivity of 
the network [21 ]. 
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in [ 1 ], which is here modified to compute interval bounds on marginal probabilities. 
We call the algorithm bounded-RD. The latter is a stochastic simulation method, 
usually referred to as straight simulation, which is also known as Pearl 's  Markov 
blanket algorithm [2]. Markov simulation is used to generate highly probable 
instantiations of  the network nodes to be used by bounded-RD in the computation 
of  probabili ty bounds. Bounded-RD has the anytime property, and produces suc- 
cessively narrower interval bounds, which converge in the limit to the exact value. 

The remainder of  this paper is organized as follows: In Section 2 we briefly 
review the belief-network formalism, and illustrate the recursive decomposit ion 
algorithm, which is described in more detail in [1]. In Section 3, we describe 
bounded-RD, and explain how the algorithm makes use of stochastic simulation 
to try to maximize the tightness of the interval bounds to be computed. In Section 
4 we present the results of  some experiments we conducted with a test-bed im- 
plementation of  the algorithm, and in Section 5 we briefly discuss some relevant 
related work. Finally, in Section 6 we conclude the paper with a short summary 
and some suggestions for further work. 

2. B A C K G R O U N D  

2.1. Basic Concepts and Notation 

A belief  network is defined by a triple (G, f2, P) ,  where G = (X, E)  is a 
directed acyclic graph with a set of  nodes X = {xl . . . . .  xn } representing domain 
variables, 2 and with a set of arcs E representing dependencies among domain 
variables; f2 is the space of  possible instantiations of  the domain variables3; and 
P is a probabili ty distribution over the instantiations in f2. Given a node x c X,  
we use nx to denote the set of parents of  x in X. The family Ox of a node x is 
defined as the set {x} t3 rrx. In general, the family of a set X c X,  denoted by Ox, 
is the union of the families of the nodes in X, i.e., Ox = Ux~X Ox. 

In Figure 1, we give an example of a simple network structure, derived from 
[31 ], which we use throughout the paper to illustrate basic concepts. By "reading" 
the network structure, and by giving a causal interpretation to the links displayed, 
we see that metastatic cancer (xl)  is a cause of brain tumor (x3), and that it can also 
cause an increase in total serum calcium (xz). Furthermore, brain tumor can cause 
papilledema (x s ), and both brain tumor and an increase in total serum calcium can 
cause a patient to lapse into a coma (x4). 

The key feature of  belief  networks is their explicit  representation of conditional 
independence among events (domain variables). In particular, each variable is 

21n this paper, we make no distinction between the network nodes and the variables they represent. 

3 An instantiation w of all n variables in X is an n-uple of values {X 1 . . . . .  Xn } such that xi = Xi  for 

i = 1  . . . . .  n. 
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P(~,,) = 0.2 
X1 XI: metastatic cancer P(z~ [z~) = 0.7 

/ ~  P(z: I~t) = 0.1 
X2: total serum calcium P(z~ I z t  ) = 0.6 

X3: brain tumor P(~:~ ]~t) = 0.2 
X4: coma 

X2 X3 P(z4[~2,z3) = 0.8 

\ . / \  P(=~ l~ ,~ , )  = 0.4 
P(z, 1~2,~) = 0.1 

P(zblz3) = 0.4 
X4 X5 P(z6 I~-s) = 0.1 

Figure 1. A simple belief network, with set of nodes X = {xl, x2, x3, x4, xs} ,  parent 
sets 7rx] = 0, 3Tx2 = 7rx3 ~'~ {X I }, 7~X4 = {X2, X3}, 7rx5 = {X3}, and families 0q = {xl }, 
0~2 = {Xl,X2}, 0x3 = {xl, x3}, 0x 4 = {x2, x3, x4}, and Ox5 = {x3,xs}. All the nodes 
represent binary variables, taking values from the domain {True, False}. We use the 
notation Yi to denote (xi = False).  The probability tables give the values of p ( x  i I 7r~i) 
only, since p(2-i I 7rx,) = 1 - p(x i  I 7rxi). 

independent  of  its nondescendants  given its parents. This property is usually 

referred as the M a r k o v  c o n d i t i o n ,  and it allows us to express the probabil i ty dis- 

tribution P by means  of  probabil i ty tables associated with the domain  variables. 
That  is, each node xi  in X is augmented  with a probabili ty table containing the 

probabil i t ies  o f  the node ' s  values condi t ioned on its parents (i.e., the table asso- 

ciated to the node xi  stores the probabil i ty distribution P ( x i ] T r x ~ ) ,  where rrx, is 
empty  if  xi  is a node without  parents). Figure I shows the probabili ty table for 

each node in the network.  

The  probabil i ty o f  any instantiation in f2 can then be computed  from the prob- 

abilit ies in the be l ie f  network. In fact, it can be shown [3, 32] that the jo in t  
probabil i ty o f  any particular instantiation of  all n variables in a bel ief  network can 
be calculated as follows: 

P(X, . . . . .  Xn )  = [ ' I  P(Xi I 7rx,). 
i=1 

(1) 

The  comple te  set of  condi t ional  independence  assertions implied by a ne twork  

structure can be determined by means o f  the concept  of  d-separation, a graphical  

character izat ion introduced by Pearl in [3]: 

If  A, B, and D are three disjoint  subsets o f  nodes in the directed acyclic  

graph G,  the set D is said to d-separate A from B, if  for every path be tween 
a node in A and a node in B one o f  the fo l lowing condi t ions  holds: i) the 

path contains  a node e with converging arrows and neither e nor any of  its 

descendants  be long to D;  or ii) the path contains a node e that does not 
have converg ing  arrows, and e belongs to D. 
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It can be proved that d-separation actually characterizes all and only the condi- 
tional independence assertions that follow from satisfying the Markov condition 
in a belief network [3]. The concept of  d-separation is important because through 
the identification of small d-separators we can decompose the network into prob- 
abilistically independent subnetworks, and their reduced size makes them more 
manageable and easier to understand. In the next section we will see how the 
identification of proper d-separators is essential to the effective application of our 
inference algorithm. 

The phrase probabilistic inference using belief network usually refers to the 
calculation of conditional probabilities of the form P(H' I E'), where H '  and E '  
are instantiations of the subsets H and E of X. The calculation of P(H' I E') is 
also called a query. When the conditioning set E is empty, the problem reduces 
to the computation of the marginal probability P(H'). By applying Equation (1), 
P(H') can be calculated as follows: 

P(H')= Z P(x, ..... x,,): 52 H (xi (2) 
N - H  X - H  i : l  

where N - H denotes the set difference (i.e., X - H = {x ] x ~ N, x ~ H}). 
When the conditioning set E is not empty, we can still apply Equation (2) to the 
calculation of  P ( H' [ E'), since P ( H' I E') = P ( H', E') / P ( U), and P ( H', E') 
and P(E') can both be computed by Equation (2). The calculation of Equation (2) 
by exhaustive enumeration can be performed for trivial networks only, since the 
number of instantiations to be enumerated is exponential in the number of  nodes 
in the network. 

2.2. Belief Network Inference by Recursive Decomposit ion 

Belief network inference by recursive decomposition is a divide-and-conquer 
technique that performs the calculation of  Equation (2) by recursively decomposing 
the network, and by mapping the resulting decomposition into a corresponding 
factorization of  the summation in the equation. The decomposition is aimed 
at reducing the number of  operations needed (multiplications and additions) by 
eliminating the redundancies inherent in Equation (2). 

EXAMPLE 1 We introduce the technique with a simple example using the 
belief network of  Figure 1. Suppose we wish to calculate P(x5 = T) [for brevity, 
P(x~)]. The application of the brute-force approach of Equation (2) to compute 
P(x~) yields 

P(x~) = Z P(x~lx3)P(x4lx3, x2)P(x3 I x~)P(x~_ I x,)P(x~). (3) 
xl ,...,x4 

Note that variable x3 is a d-separator for the network, because according to the 
Markov condition, given the value of x3, the variable x~ is probabilistically in- 
dependent of the variables xj, x2, x3, x4. We could thus select x3 as a separator 
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variable, to perform the same calculation as in Equation (3) by decomposing the 
summation as follows: 

P(Xf5)~X~ (P(xI5IX3) XIZ, X2,X4 P(x4Ix3'x2)P(x3Ix])P(x2Ix|)P(x|))" ( 4 )  

Instantiating the variable x3 in the outer sum renders the factor P(x' 5 [ x3) inde- 
pendent of  the second inner sum. The evaluations in Equation (4) are performed 
from the inside outward, and the complete evaluation of Equation (4) requires 
15 additions and 50 multiplications, while Equation (3) requires 15 additions and 
64 multiplications. Carrying the example further, we see that the variable x2, to- 
gether with the variable x3 already instantiated, is a d-separator for the subnetwork 
{xl . . . . .  x4}, which is the set of  variables composing the second sum of  Equation 
(4). Selecting xe as the new separator variable results in the decomposition 

P(x'5):~x3 [P(x'slx3)~x~ (~x P(x3lx,)PCx2lxl)P(x,) 

× Z P(x4lx3, x2))]. (5) 
X4 

The complete evaluation of Equation (5) requires 11 additions and 22 multiplica- 
tions, representing a considerable reduction from the number of operations needed 
when applying the brute-force approach of Equation (3). Assume we cache the 
values of the summation ~-~x2 ["" "] indexed by the value assigned to x3, and let us 
refer to these values with or(x3). If  we now wish to calculate P(x~'), for some 
X H ! 5 ¢ xs, we can use the cached or(x3), since their value is independent of the 
particular value assigned to x~. 4 We can then use Equation (6) to calculate the 
probabili ty of interest: 

P(x~st) = Z P(x~' [x3) or(x3), (6) 
X3 

which requires 1 addition and 2 multiplications, representing a 15-fold reduction 
in the number of  additions and a 32-fold reduction in the number of multiplications 
from the numbers required by the brute-force approach given by Equation (3). 

Belief-network inference by recursive decomposit ion is based on a systematic 
application of  the decomposit ion method informally introduced in the example 
above. By looking at Example 1, we can see that every step in the decomposit ion 
corresponds to the partition of  a set of  nodes, and to the determination of a d- 
separator for the partition components. In fact, the decomposit ion that leads to 
Equation (4) from Equation (3) is obtained by partitioning the set {Xl . . . . .  xs} into 
the two sets {xs} and {Xl . . . . .  x4}, and by selecting x3 as the d-separator of these 
two sets. Likewise, the decomposit ion that leads to Equation (5) from Equation 

4For the sake of the explanation, assume that xs has more than two values; otherwise the probability 
of interest could simply be calculated as P(x~ ~) = 1 - P(x~). 
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(4) is obtained by decomposing the set {xl . . . . .  X4} into the two sets {xl, x2, X3} 
and {x4}, and by selecting the set {x2, x3} as their d-separator. Notice also that x5 
is already instantiated when performing the first step of  the decomposition,  and 
both x3 and x5 are already instantiated when performing the second step of  the 
decomposit ion.  

The decomposit ion process just  described can be effectively formalized by 
means of  the function f ,  which we define below together with the main theo- 
rem that establishes how f can be recursively decomposed. To this purpose, we 
need to introduce some additional terminology. For any set X c Pc', we denote 
with f2 (X) the set of all possible instantiations of  X, and with X' and X i arbitrary 
instantiations of X, where the latter notation is used when we need to distinguish 
between different instantiations. Given X and Y as two subsets of X,  let X/y,  
denote the partial instantiation of  set X obtained by instantiating the nodes in 
X f3 Y as specified by Y'. For example, if X = {xl, X2}, Y = {x2, X3}, and 
Y' = {(x2 = T, x3 = F)}, then X/r ,  = {(xl = T, x2 = T),  (Xl = F, x2 = T)}. 
That is, X/r ,  represents the set of possible instantiations of X where x2 is clamped 
to T. 

DEFINITION 1 Let 2( be the set of all variables in a belief network, let X be a 
subset of  ¢(, and let Ox denote the family set of  X (i.e., Ox = Ux~X Ox ). Given a 
subset Hx ~ 2( such that ( Hx t3 X) = Ox, and given an arbitrary instantiation 
H~ of  Hx, we define the function f as follows: 

f ( X ' H t x ) =  Z l-'[ P ( x l r r x ) '  (7) 
X / . ,  x x ~ X  

where the summation is taken over all the possible instantiations of  X - Hx, 
since the variables in Hx are instantiated as specified by H~¢. 

From Equation (7), we can see that when X = Pc', the invocation of f ( X ,  H~) 
corresponds to the calculation of  the marginal probabili ty P(H~).  The following 
theorem establishes the way function f can be recursively decomposed.  

THEOREM 1 Given the invocation of f ( X, H~x ) for any Hx and X satisfying 
Definition l, and given any partition (Y, Z) of  X, the set S = (Or A 0z) - Hx 
renders the following equation valid." 

:(x,  u ' j  = f(v, uy/s,O.x) f ( z ,  (8) 
S 

where Hv = Ov N (S U Hx), Hz = Oz Cl (S U Hx). 

A proof  of the theorem can be found in [1]. In Equation (8), the summation 
is over all the instantiations S' of S. Notice that Hr/s,ul4 x is a full instantiation 
of  Hv, since by construction Hv c S U Hx, and is consistent, since Hx A S = 
0. Likewise, Hz/s,uH, x is a consistent full instantiation of Hz. Basically, the 
theorem establishes that it is possible to find a set (S U Hx) that renders the 
components  of  the partition (Y and Z)  conditionally independent of  the remaining 
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belief-network variables. That is, given S and Hx as defined in Theorem 1, the 
variables in the set Y are conditionally independent of the variables in the set 
1 ,  - (S U Hx U Y). Analogously, the variables in the set Z are conditionally 
independent of the variables in the set 1 '  - (S U Hx U Z). This comes as no 
surprise, since it can be proved that the set SU Hx d-separates each of Y and Z from 
the remaining belief-network variables [1]. Notice that the theorem does not say 
how the partition (Y, Z) should be chosen, and in general, the number of possible 
partitions is large. The selection of an appropriate partition is the most delicate 
issue in the application of RD, and the efficacy of the method largely depends on it. 

As we previously mentioned, the theorem actually provides a method for calcu- 
lating the marginal probability P(Q') of any subset Q of,I/ .  The value of P(Q') is 
obtained by invoking f(X, H~), with X = 1,, Hx = Q, and H x = Q'. Theorem 
1 provides a way of  decomposing f, by partitioning the set X into two subsets 
1/and Z, and by recursively applying f to the partition components. The recur- 
sion terminates at each function invocation f(X, H;x) in which PXr = 1, and the 
variable x in X and its parents are instantiated. At this point, f(X, Hi() evaluates 
directly to P (x'  F rr~). As long as we require that the set Y and the set Z in the parti- 
tion (Y, Z)  each contain at least one node, the first argument of function f becomes 
smaller at progressively deeper levels of the recursion. Thus, we must eventually 
reach invocations of f of the form f(X, H~) in which IXI = 1. Let x designate 
the sole element in X. We know that the parents o fx  must be instantiated, because 
it follows from Definition 1 that Hx D Q_ Ox - X = 0~ - {x} = 7r~. I f x  is instan- 
tiated, we return P(x I rr~) as discussed. I f x  is not instantiated, we set Y = {x} 
and apply Equation (8) once more, with Z = Hz = 91 and S = {x}. At this point, 
f (Y ,  H i )  returns P(x I 7r~), and f(Z, Hz) = f(91, 0) evaluates to 1 by definition. 

EXAMPLE 2 We can apply the method just  described to the calculation of 
P(x5 = T) of Example l, by invoking f(X, H'x) with X = 1, and H~( = 
x~. Provided we first partition 2( into (Y, Z) = ({xj . . . . .  x4}, {xs}), and we 
further partition Y into the two components {xl . . . . .  x3} and {x4}, we obtain the 
same decomposit ion of  Equation (5). The recursive application of Theorem 1 is 
illustrated in 

f(X, Xs) = Z f({xs},  {x3, x~}) f ( {x l ,  x2, x3, x,}, {x3}) (9) 
X 

= Z /({xs},  {x3, x~}) Z f ( { x l ,  x2, x3} {x2, x3})f( lx4},  {x2, x3}) 
X~, X2 

(lo) 

: ~ [P(x~lx3) ~x2 ( ~  P(x3 lxl)P(x21x~)P(x~) 

>(ZP(x4lY3, x2))l. (11) 
I( 4 
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The initial partition of  X into (Y, Z) = ({Xl . . . . .  x4}, {xs}) yields the separator 
set S = Or 710z - Hx = {x3 }, which results in the decomposit ion of Equation (9). 
In the right-hand invocation of  f in Equation (9), we have X = {xl . . . . .  x4} and 
Hx = {x3}, and the partition of X into (Y, Z)  = ({Xl . . . . .  x3}, {x4}) yields the 
separator set S = 0y AOz - Hx = {x2} and produces the decomposition illustrated 
in Equations (10). Applying now the function f as given by Definition 1 results 
in Equation (1 1). 

2.3. An Implementation of Recursive Decomposition 

To facilitate the description of the algorithm that implements the function f ,  
we introduce some additional terminology. We call the set S the summation set. 
We call Hx the instantiation set, because it contains all the instantiated variables 
in a given invocation f ( X ,  H)).  We use instantiation cache to denote a table 
that stores the value of f ( X ,  H~() indexed by the instantiated variables in the set 
Hx. We call X - Hx the variable set, because it represents the variables that are 
uninstantiated when f ( X ,  H~;) is invoked. Finally, we call X the total set. 

Suppose that decomposit ions of a network are performed recursively, beginning 
with Hx = 0 and with X = X, until single terms of the form P(x I Zrx) are 
encountered. Call this a complete decomposition of a given belief network. 5 By 
starting with Hx = 0 at the top level of the decomposition, we create a complete 
decomposit ion that can be used to calculate P(Q')  for any Q c X.  The complete 
decomposit ion of  a network can be represented as a binary tree of  records, where 
each record contains a summation, evaluation, instantiatmn, and variable set. We 
call this tree the decomposition tree or d-tree. Figure 2(a) shows a complete d-tree 
for the network of Figure 1, corresponding to the decomposit ion of Equation (1 l). 
Notice that the d-tree also includes the summation over xs, since the decomposit ion 
corresponds to the invocation of f ( X ,  0). Each node of the tree corresponds to a 
record containing four sets of  variables and two pointers to the children records. 
Also, associated with every record is the instantiation cache storing the values of 
f ( X ,  H~x), indexed by the values of the variables in Hx. In other words, for a 
given instantiation H ) ,  the corresponding cache entry stores the value returned by 
f given H ) .  For example, the ~r(x3) in Equation (6) corresponds to the cache of 
the record R 3, with x3 the instantiation set. 

In Figure 3 we give a schematic description of the algorithm implementing 
the function f by making use of the tree structure just described. As already 
mentioned, summation, evaluation, and instantiation sets are variables local to 
the currently accessed record, and do not need to be passed as arguments. The 
argument to the function is the pointer i to the current record. The global vari- 
able co keeps track of the instantiated nodes in X,  and the global variable Q' 
stores the query of which the algorithm is computing the probability. In any 

5 In general, there are many complete decompositions of a belief network. 
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RI 
Summation Set 

Evaluation Set 

lnstantiation Set 

Variable Set 

R ~  R3 

R4 ~ R5 

(a) (b) 

F i g u r e  2. The  decompos i t ion  tree for the s imple  network o f  Figure 1. (a) Each node in 
the d-tree is called a record and conta ins  four sets and two pointers to the children. (b) The  
shaded  records  cor respond to the active subtree for the calculat ion o f  P(x~). 

f u n c t i o n  f(i) 
i n p u t :  
loca l  vars:  

global vats :  

b e g i n  

i 
Hx, S 
ctlche 

i~,., iz 
~o 

Q' 

the pointer to the current record 
instantiation and summation set 
the cache for the current record 
the pointers to the two children of record i 
the current instantiation of X 
the query set, i.e., we are computing P (Q ' )  

i f  i = 0 r e t u r n  1 /* end of the recursion, leaf reached */  
s , , m  + c a c h e [ ~ [ / / x ] ]  

i f  sum = --1 t h e n  /* -1 denotes a reset cache entry */  

for each instantiation S ~ of S consistent with Q' do 

w[S ]  * -  S '  

. . . . . . .  +f(~) × f(~=) 
e n d  /* for */  

e n d  /* then */  
r e t n r n  3 tlEr~ 

e n d  /* function f */  

F i g u r e  3. The  a lgor i thm that imp lemen t s  the funct ion  f .  
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recursive invocation of f ,  the cache entry for the current instantiation of its 
associated Hx is accessed to check if the needed value of f has already been 
computed. The current instantiation of Hx is determined by the values of the 
corresponding nodes in co, given by co[Hx], and the corresponding cache en- 
try is denoted by cache[co[Hx]]. If the cache entry contains the desired value, 
that value is returned; otherwise it must be computed. The for loop in Figure 
3 corresponds to the summation over the instantiations of the summation set S 
of Equation (8). Notice that the loop condition has the additional constraint that 
the instantiation of S must be consistent with the instantiation of Q. That is, 
if S contains nodes that are also in Q (i.e., S A Q # 0), those nodes need to 
be instantiated as specified by Q,.6 Once the loop is completed, the result of 
the computation is stored in the appropriate cache entry, and the result is re- 
turned. 

An efficient way of using the algorithm of Figure 3 is the following. The 
tree is first initialized, i.e., the function f(X, 0) is called, corresponding to the 
summation over the whole joint probability space. The function f should clearly 
evaluate to 1. As a side effect, all the cache entries of each record are initialized 
to their initial (more general) values. When a query P(Q') is submitted, we 
do not need to recompute f for all the records of the tree, but only for those 
records for which Q' may affect the value returned by f .  In fact, it is possible 
to determine this set of records before actually carrying out the computation. A 
record has its associated invocation of f affected by Q' if its variable set V = 
X - Hx contains some of the nodes in Q. We call the set of affected records 
the active subtree, denoted with A(Q). Formally, if we denote the variable set 
of a record r with Vr, the active subtree for a given query P(Q') is defined as 
A(Q) = {r I Vr A Q ¢ 0}. For all the records in .A(Q), the function f needs to 
be actually computed. For all the other records, the values stored into their cache 
can be retrieved. Figure 2(b) shows the active subtree .A({x5 }) for the calculation 
of P(x'5). 

We can illustrate the rationale behind this technique with an example. Consider 
again the decomposition corresponding to Figure 2(a), which we recall below 
(notice that we now include the summation over xs, since this equation allows for 
the initialization of the decomposition tree): 

f(X,O)=~-~x~ [~--~x5 P(xslx3)~--~x~ (~xt P(x3lxl)P(x2lx,)P(xJ) 

x ~-~ P(xglx3,x2))]. (12) 
X4 

Consider now the calculation of P(x'5) from Example 1. Using the decomposition 

6We need the additional constraint because the instantiation set Hx associated to a given record is 
determined at initialization time, when invoking f(X, ~1), and does not al low for the clamped nodes 
in Q'. 
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tree of  F igure  2(a), results in the fo l lowing equation:  

f('~'{x;}):~x~ [P(xsIx3)~x2 (~xl 
~f4 

(13) 

Note  that the only dif ference be tween Equat ion (13) and Equat ion (l  2) is in the 

summat ion  over  xs, which is missing in Equat ion (13). It corresponds to the record 

R2 in Figure  2(a). The  summat ion  over  x2 corresponding to the record R3 remains 
the same. 

3. BOUNDED RECURSIVE DECOMPOSITION 

In the previous section, we illustrated an algori thm for bel ief -network inference 

by recursive decomposi t ion ,  and we presented an implementa t ion  of  the algori thm. 
As we pointed out in the introduction, exact  probabil ist ic inference with be l ie f  

networks is NP-hard,  which means  that there are instances in which inference by 

recursive decompos i t ion  still results computa t ional ly  intractable. 

In this section, we discuss bounded RD, an inference algori thm based on R D  
which,  in order to reduce the computat ional  cost of  inference,  computes  interval 

bounds on the marginal  probabil i ty of  a specified set of  nodes. The method  assumes 

that it is possible  to perform the comple te  decompos i t ion  and init ial ization of  the 

network,  as illustrated in the previous section. If  the network is such that not 
even a comple te  decompos i t ion  and init ialization is computa t ional ly  feasible,  the 

method  is not app l i cab le ]  
In what  fol lows,  we first present  an example  that illustrates the main idea on 

which the method  is based. We then give a formal  descript ion o f  the method,  and 

finally illustrate the use of  Markov  simulat ion in t ightening probabil i ty bounds. 

EXAMPLE 3 Consider  again the network of  Figure  l ,  and the calculat ion of  

P (x5 = T)  [for brevity, P (x;)]  as descr ibed in Example  I, where we introduced the 
use of  the cached values in ~ (x3) to avoid redundant  computa t ion  when calculat ing 

P (x; ').  As  already ment ioned,  a (x3) corresponds to the cache associated to record 
R3, and the values it stores correspond to the results o f  the summat ion  in the 

7Remember that a complete decomposition is a decomposition resulting from the invocation of /' 
starting with Hx = 9J, and X = A" until single terms of the form P(x ] rex) are encountered. The 
initialization of the d-tree consists of initializing the cache entries of each record in the decomposition 
tree. There might be cases when the connectivity and the size of the network are such that even the 
initialization of the decomposition tree is computationally infeasible. For example, for a fully connected 
network containing 100 binary nodes, a cache of size 299 is needed, thus making the initialization of 
the cache entries not feasible given the current resource constraints. 
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x3 

T 
F 

or(x3) x3 

0.628 T 
0.372 F 

O'* (X3) 

0.403 
0.085 

Figure 4. The values of or(x3) and 
cr*(x3) as computed in Example 3, 
Equations (14) and (15) respectively. 

following equation for the different values assigned to x3: 

2 X1 

Consider now the calculation of P(x5 = T, x4 = T) [for brevity, P(x~, x~)]. The 
values stored in ~(x3) need to be recomputed, since they do not allow for the fact 
that x4 is now clamped. If we denote the newly computed values with or* (x3), the 

probability of interest can be computed as P(x~, x~4) = Y~x3 P(x'5 I x3) cr*(x3), 
where cr*(x3) is given by the following summation: 

Figure 4 gives the values of o(x3) and ~r*(x3), and we can see that 0 _< cr*(x3) _< 
cr (x3) holds for all x3, since ~r* (x3) is obtained from cr (x3) by simply removing the 
summation over x4. This suggests that we could use the values stored in cr (x3) as 
upper bounds on the values stored in cr*(x3), to compute upper and lower bounds 
on the probability P(x; ,  x~4). An application of this strategy is illustrated in the 
following equations, where we show the computation of the upper bound Pv and 
lower bound Pc on P(x; ,  x~4) obtained by computing cr*(x3 = T) only, and by 
using the cached value of or(x3 = F) as an upper bound, and 0 as a lower bound, 
on the value of cr*(x3 = F) (the numerical probabilities used in the computation 
are taken from Figure 1): 

Pv(x;,x~4) = P(x~5 Ix3 = T) cr*(x3 = T) 

+P(x~5 Ix3 ~ -  F) ~7(x3 = F) = 0.198, (16) 

t ! PL(X5, X 4) = P(X~5 Ix3 = T) cr*(x3 = T) + 0  = 0.161. (17) 

The application of this method allows for a reduction in computation of about 
50%. Notice that the choice of the instantiation of x3 for which to compute or* (x3) 
is very important. Had we chosen to compute cr*(x3 = F) instead, and to use the 
cached value of or(x3 = T) as an upper bound on the value of cr*(x3 = T), the 
resulting bounds on P(x~5, x~4) would be [0.008, 0.26]. This example illustrates 
how critical the selection of the proper instantiations can be, which is a point to 
which we will return. 
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3.1. Computation of Probability Bounds 

As explained in Section 2.3, the strategy for answering a query of the form 
P(Q') is to reset all the records of  the decomposition tree in the active subtree 
,A(Q), and to recompute the function f for those records, while retrieving the 
values stored in the cache for all the other records. The strategy, which we call 
d-tree-based recursive decomposition, is summarized: 

s ( x , H ) )  = 

cache[H)] if not reset, 

Z f ( Y '  Hv/H'~u~oj)f(Z, Hz/tl'xU~oj) otherwise, 
~oj ~ f2 (S) 
wj ~q~x 

(18) 

where S is the current summation set, q is the set S C) Q, and q'  denotes its 
instantiation consistent with Q', i.e., q' = (S A Q)/Q,. Notice that the source of 
inefficiency in the computation of the function f is in the possibly large number of 
instantiations of  the summation set S. The idea, informally introduced in Example 
3 (where S ---- {x3}), is to select a subset of the instantiations of S (x3 = T in 
the example) on which to perform exact computation, and to retrieve the values 
of  f calculated at initialization time for the remaining instantiations (x3 = F in 
the example). These initialization values represent an upper bound on the actual 
values that would be returned if the function f were actually computed. In fact, 
the following lemma is straightforward to prove: 

LEMMA 1 Consider an invocation of f ( X, Hj; ) for any Hx and X satisfying 
Definition 1. For any Kx c_ 2( such that Kx D Hx, and for any instantiation 
g '  x of Kx such that K' x D_ Hj;, the following relation holds: 

0 < f ( X ,  K'x) < U(X, H)). (19) 

Proof AccordingtoDefinition 1, f (X, K'x) = Y~x/~, P(X),and f (X, H) ) = 
~ x / .  i P(X). Since K} ~ H) ,  it lbllows that the set of instantiations X/K,~ is 

a subset of X/H,~. We can thus write f ( X ,  H)) = Y~x/K,~ P(X) + Y~a P(X) = 
f ( X ,  K'x) + Y~.A P(X),  where A is the set of instantiations in X/HI -- X/K'~. 
Since Y~A P(X) >__ O, this concludes the proof. • 

Let us denote with -f(X I H) )  the value stored at initialization time into the ith 
cache entry of the record corresponding to the total set X. Lemma 1 tells us that, 
when computing P(Q') for some Q ~ 2(, the exact calculation of any f ( X ,  H)) 
in the active subtree A ( Q )  is upper-bounded by the corresponding -f(X [ i Hx ), the 
value stored at initialization time. In fact, by looking at Equation (18), we see 
that when Q ~ 13, the calculation of  f ( X ,  H)) corresponds to the calculation 
of  f ( X ,  H~ U q'). We can then apply Lemma 1 by setting Kx = Hx t3 q and 

K tx  = Kx /H~xUq, .  
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Let us apply this result to the calculation of f for a single record in the decompo- 
sition tree, where the relevant sets of the record are its total set X, its instantiation 
set Hx, and its summation set S. With (g21, g22) we denote an arbitrary partition 
of the set ~ (S) of  all instantiations of  S. The upper bound fu and the lower bound 
fL on the value of f (X ,  H~), for any Hx i, can be computed as follows: 

S~(X, H~) = ~ f 0 " ,  H~ j) f ( Z ,  H~ j) 
wjE~l 
co j I:=q'x 

+ ~ 7(YIH~Jlf(Z HzJ), (20) 
wj~fa2 

fL(X, H I ) =  ~ f (Y ,  Hiv j) f ( Z ,  HzJ)+O, (21) 
WjE~21 
o,j ~q'x 

where we have used the simplifying notation Hiv j = Hy/o,,uHj and H zij = 
Hz/,o, uH~. Notice that in Equations (20) and (21), we assume t~at the recur- 
sive invocations of f in the summation over f21 return exact values. However, if 
we apply the above idea to any recursive invocation of f ,  the two equations for 
the upper and lower bounds need to be rewritten as follows: 

fu (X,  g~¢) = Z fu(Y'  HYJ) fu(Z ,  Hz j) 
WjE~t 
Wj I=q'x 

+ ~ 7(YIH~/) 7(ZlHzJ), (22) 
wj~fa2 
o, j ~q'~ 

fI.(X,H~¢)= Z f1"(Y'H~j) ft '(Z'HzJ) +0" (23) 
mjE~t 
~j ~q'~ 

We can then apply Equations (22) and (23) to every record in .A(Q) to compute 
interval bounds on the point-value of  P(Q') for any Q c p(. To compute interval 
bounds on the conditional probability p(Qi I R') of any Q and R subsets of 2(, 
we first need to compute the marginals p(Qi, R') for every Qi ~ f2(Q). Let us 
denote with Pu(Q i , R') and PL(Q i , R') the upper and lower bounds on the exact 
value of  P ( Oi, R') respectively. Bounds on the conditional probability P ( Qi [ R') 
can be computed as follows: 

pt/(Qi l R,) = Pv(Q i, R') (24) 
Pu(Q i, R') + Y~k¢i PL(Q k, R ' ) '  

pL(Qi I R, ) = PL(Q i, R') (25) 
PL(Q i, R') -I- Y~k:~i Pu(Q '~, R') 
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3.2. Partition of f~(S) by Markov Simulation 

So far, we have not specified how to determine the partition (f21, f22) of a given 
S2 (S), that is, how to determine which instantiations of  a given summation-set to 
consider for exact computation. The partition of the summation set instantiations 
needs to be computed for each of the records in the active subtree for the current 
query. The choice of the right partitions is crucial, and it strongly affects the 
tightness of the interval bounds. In this section we present a method that makes 
use of Markov simulation to generate highly probable instantiations. However, 
other methods can be readily adopted. 

The general algorithm to perform this task is illustrated in Figure 5. The al- 
gorithm iterates through a loop. At each iteration, a complete instantiation of the 
network is generated, that is, every node in the network is instantiated. Let us call 
one of these complete instantiations a sample. Every sample identifies a unique 
instantiation of the summation-set of each record in A(Q). If  w 6 f2(2() is the 
sample generated, the corresponding instantiation of a certain summation set S 
is S' = S/(o. If S' does not already belong to the partition component ~ j  of the 
corresponding record, it is added to it, and it is removed from fa2. This process is 
repeated for each record in A(Q), and it terminates when the desired number k of 
summation set instantiations has been generated. The input parameter k specifies 
the total number of instantiations to be included in the ~1 of  the summation sets 
in the active subtree .A(Q). The total number N of possible instantiations of the 
summation sets in A ( Q )  is given by N = }-~.re.a(Q) I~ (Sr)i, where Sr denotes the 
summation set of record r. 

Therefore the number ofinstantiations included in f21 is given by ZrE.A(Q) ]~1 ,r I 

(where ~] .r  denotes the partition component f2~ for record r), and the algorithm 
terminates when this number is greater than k. The other input to the algorithm 
is the query set Q [e.g., if we want to compute P(A' I B'), the query set will be 
Q=AtAB] .  

The algorithm of  Figure 5 provides a general schema for partitioning the summa- 
tion sets in A ( Q ) .  The crucial step is the generation of the samples of the network. 
The most straightforward solution would be to generate samples randomly. While  
having the advantage of requiring no overhead (i.e., no time is spent looking for a 
particular instantiation), this solution may result in poor convergence of the inter- 
val bounds (experimental results supporting this conclusion are presented in the 
next section). The approach we have adopted makes use of Markov simulation. 
Markov simulation tends to generate samples that are highly probable given the 
evidence [e.g., if we wish to compute P(A' I B'), the set B is the evidence set]. 

We constrain the simulation process so as to avoid the generation of redundant 
samples, by which we mean instantiations that do not add any element to the 
f2j partition component of any record in the active subtree. According to this 
definition, if $ = UreUt(Q) S~ is the set of nodes contained in summation sets of 
the active subtree, all the samples differing only in the value assigned to nodes in 
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p r o c e d u r e  partitionS(k, Q) 
input: k the desired number of instantiations 

Q the set of query nodes 
c o u n t e r  +-- 0 
w h i l e  c o u n t e r  < k d o  

w *-- g e n e r a t e ~ a m p l e ( X ,  t~, P) 
for  each r 6 A(Q) do  

let ( ~ ,  fl~) be the current partition of f~(S.) 
S ' , -  S./~ 
i f  S' ~ ~1 t h e n  

n~ ~- ~ u {S'} 

~2 ~- n2 - {S'} 

c o u n t e r  ~ counter  +1 
if counter > k then exit from partitions 

e n d  /* if */ 
e n d  /* for */ 

e n d  /* while */ 
e n d  /* partitionS */ 

Figure 5. The algorithm to compute the partition (f2~, g22) of f2 (S~) for each record r in 
the current active subtree .A(Q). 

PC" -- S are redundant .  The first constraint  is thus to generate only samples that 
differ in the value of at least one node in S.  However,  even when enforcing this 
constraint ,  the possible number  of  redundant  samples is still high .8 The concept  
is better explained with an example.  Consider  an active subtree of two records 
only, r~ and r2, and suppose that the summat ion  set of  each record contains  a 
s ingle binary node, xl or x2, respectively. The two samples (xl = 0, x2 = 0) 
and (xl = 1, x2 = 1) already exhaust the space of  possible instantiat ions of the 
two summat ion  sets [i.e., in both records we have f21 = f2 (Sx)],  and every other 
of the 22 possible  instantiat ions of  (xl,  x2) is redundant .  In general,  given an 
active subtree of n records, each with a summat ion  set conta in ing a single binary 
node, the m i n i m u m  possible number  of samples necessary to exhaust the space of 
summat ion-se t  instantiat ions is always 2 (e.g., the samples 00 .  • - 0 and 11 • • • 1), 
while the number  of dist inct  samples of n binary variables is 2". 

The generat ion of redundant  samples is an unnecessary overhead that we want  to 
avoid. Therefore,  we associate with every summat ion  set in .A(Q) a tree structure 
that keeps track of the instantiat ions of Sx already in the corresponding f21, and we 
rely on these structures to force the s imulat ion process to generate nonredundant  
samples only. An example  of a tree for a generic summat ion  set conta in ing three 
binary nodes is depicted in Figure 6. The tree keeps track of the summat ion-se t  
instant iat ions already generated,  and prevents Markov s imulat ion from generat ing 

SThe exact number of reduntant samples, assuming binary variables only, is 2 ISI - N, where N is the 
total number of possible instantiations of summation sets in A(Q), defined previously. 



66 Stefano Monti and Gregory E Cooper 

T•• samples generated to produce 
XI 

T ~ F ~  . . . . .  the tree to the left: :I" F 
X2 z, :T, z~ =T, z~ =T 

zl =T, z2 =r, za:f 

X3 
zl :r, z~=f, z~: f 

Figure 6. An example of a tree structure accounting for the summation-set instantiations 
generated. It corresponds to the hypothetical summation set S = {xl, x2, x3}, where all the 
nodes are binary. 

them again. If, for example, given the tree in Figure 6, in the next sample we set 
xj --  T, then the assignment x2 = T is not considered, since the corresponding 
path in the tree is blocked (which means that all the possible samples containing 
the sequence xl ---- T, x2 = T have already been generated). The overhead due to 
such bookkeeping is negligible, and it is largely offset by the cost we would incur 
should we not constrain the simulation process. 

4. E V A L U A T I O N :  E X P E R I M E N T A L  RESULTS 

In this section we describe the results of  some experiments we conducted with 
a prototype implementation of  bounded-RD. The prototype is written in C++ and 
runs on a Sun Sparc20 running Solaris 2.3. All  the experiments are performed 
on the bel ief  network ALARM, a multiply connected network originally developed 
to model anesthesiology problems that may occur during surgery [6]. It contains 
37 nodes/variables and 46 arcs. The nodes take between two and four distinct 
values. Of these nodes, 16 are evidence nodes, 8 are disease nodes, and 13 are 
intermediate pathophysiological  nodes. Notice that, given the network size, the use 
of approximate methods is superfluous, since exact methods can perform inference 
in this network efficiently (in a time in the order of  milliseconds). The results we 
present here must thus be interpreted in relative terms, keeping in mind that the 
actual application of  the algorithm here proposed would become advantageous in 
larger or more highly connected networks. 

The experiments are aimed at evaluating the performance of the algorithm in 
terms of  response time and in terms of convergence of  the bounds. To this purpose, 
a large number of queries are submitted, and the average performance over this set 
of queries is measured. Figure 7 shows the general structure of the algorithm used 
for the simulation. Evidence sets of  different cardinalities are selected randomly, 
and their instantiation is generated by logic sampling. Given a set of evidence 
nodes E,  queries of  the form P (xi ] E')  are submitted, for each of the eight disease 
nodes xi and for all the possible instantiations of  each disease node. This process is 
repeated for every possible cardinality of the evidence set, and for several cycles for 
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i n p u t :  

79 the  set of the  disease nodes of the network 
£ the set of  the  evidence nodes  of  the network 

b e g i n  

f o r  hUm.evidence = rnin-evidenee t o  maz-evidenee d o  
repeat  hum_cycles t imes 

E 4-- select hum-evidence evidence nodes r andomly  f rom £ 
E ~ ~ ixtstantiate E by logic sampl ing  
f o r  each disease-value of each disease in 79 d o  

compute P(dlsease=disease-vaiue I E ' )  
end 

e n d  
end 

end 

Figure 7. The basic algorithm used in the experiments. 

each selected cardinality. In particular, the parameter num_cycles is set to 10 in all 
the experiments, while rain-evidence and max-evidence vary as described below. 
The cardinality of  the evidence set is important in that it affects the convergence 
of the bounds; therefore we give the performance of  the algorithm for different 
cardinality ranges. 

In Figure 8 we show the average convergence of the bounds (measured as upper- 
bound-  lower-bound) as a function of the parameter k/N,  where both k and N 
are formally defined in Section 3. The ratio k/N measures the proportion of  
summation-set instantiations considered for exact computation (i.e., the propor- 
tion of  instantiations included in the f21 partition components of the summation 
sets in the active subtree). When k = N, all the possible instantiations are included 
in the f21 partition components, and both upper and lower bound converge to the 
exact point-value probability. Figure 8 shows four plots, corresponding to differ- 
ent evidence-set cardinality ranges. The curve labeled "1 to 5" plots the average 
convergence of the bounds for queries having an evidence-set containing between 
one and five nodes. The three other plots are for different-size evidence sets. 
Figure 8 shows that the convergence of the bounds decreases as larger evidence 
sets are considered. However, when a large number of nodes are instantiated, 
the exact algorithm usually outperforms the approximate algorithms in terms of  
inference time. For this reason, in the remaining experiments we limit the maxi- 
mum evidence-set size to eight nodes, which represents 50% of the total number 
of  evidence nodes in the ALARM network. 

Figure 9 compares the convergence of the bounds of  bounded RD using Markov 
simulation and bounded RD with random instantiation of the summation sets. The 
convergence is here plotted as a function of time, and the average time of exact 
computation is also plotted (the straight vertical line). We can see that the bounds 
produced by bounded RD with Markov simulation converge faster than the ones 
produced by random instantiation of the summation sets. Notice that bounded RD 
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Figure 8. Plot of the average bounds interval 
(i.e., upper-bound- lower-bound) as a function of 
the proportion of summation-set instantiations in- 
cluded in ~21. The label "n to m" indicates that the 
corresponding curve measures the average bounds 
interval over queries with evidence set containing 
a number of nodes between n and m. 

with Markov simulation on the average computes the exact probability in less time 
than bounded RD with random instantiation (the time for exact inference of the two 
algorithms corresponds to the intersection of the respective curves with the x-axis). 

Figure 10 shows the time requirements of the different algorithm components 
(namely, Markov generation of samples, and computation of interval bounds), and 
compares them with the time requirements of the basic RD algorithm. As explained 
in Section 3, Markov simulation is constrained so as to avoid generating redundant 
instantiations. Besides "constrained" Markov simulation we plot "unconstrained" 
Markov simulation (i.e., Markov simulation also generating redundant samples), 
and you can see that the overhead due to constraining the simulation is negligible. 

Figures 1 1 and 12 show the absolute and relative error of Markov simulation 
as a function of time. The absolute error is defined as le - Pl, where e is the 
probability estimate and p is the exact point-value probability. The relative error 
is defined as le - Pl/P. The time range is the same as the time range of bounded 
RD, that is, we are interested in the accuracy of Markov simulation within the time 
boundaries determined by bounded RD. 

Finally, Figure 13 shows a plausible scenario where bounded RD and Markov 
simulation might be profitably used together. In the example, the probability of 
interest is P(xl6 = 0 I x2 = l,Xll = l ,xl3 -- 1,x14 = 0). Figure 13 shows the 
upper and lower bound of this probability as computed by bounded RD, together 
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Figure 9. Average convergence of the bounds (measured as 
upper-bound- lower-bound) as a function of CPU time, for 
queries with evidence set containing between one and eight 
nodes. The convergence of bounded RD with instantiation of 
the summation sets by Markov simulation is compared with 
the convergence of bounded RD with random instantiation of 
the summation sets. The vertical bar indicates the average time 
for exact computation. 

with the estimation produced by Markov simulation. Notice that the estimation 
initially falls within the probabili ty bounds, and crosses the upper bound after 
approximately 40 ms. At that point the bound is still wide, but the point-value 
estimation suggests that the upper bound is the closest to the exact probability. 
Consider  a scenario in which a decision based on the probabili ty computed above 
needs to be taken, and the decision threshold is close to 0. The exact probabili ty 
for this specific case is computed in about 70 ms, and the lower bound computed 
by bounded RD is about 0.10 after only 30 ms. Assuming that the threshold for 
the decision at stake is below 0.10, it means that the optimal decision can still be 
made by saving about 60% of the computation time. 

5. RELATED W O R K  

In this section we briefly review some relevant approximate algorithms. They all 
qualify as incremental-bounding algorithms in that they all compute successively 
narrower interval bounds as more resources are allocated to the inference task. 
Algori thms similar in some respects to ours are localized partial evaluation (LPE) 



70 Stefano Monti and Gregory E Cooper 

0.15- ~ "c. markov" m 
"u. markov" f 

• "bounded RD" m /  
._:. " " m e " - -  "exact RD" ~ "  

./... = 0.10 
E 

O.O! 

O,O i - i • i • i • i • i • i • D • I • i - i 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

propor t ion of instant ia t ions (k /N)  

Figure  10. Average CPU time of the different al- 
gorithm components as a function of k/N,  the pro- 
portion of instantiations included in f21. The label 
"c. markov" stands for "constrained" Markov sim- 
ulation, and the label "u. markov" stands for "un- 
constrained" Markov simulation. The horizontal 
bar indicates the average time for exact computa- 
tion. 
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Figure  l l .  Average absolute error over conditional 
probabilities of the form P(xi I E) for all disease nodes 
xi, and for evidence sets E containing between one and 
eight nodes, as a function of CPU time. 



Bounded Recursive Decomposition 71 

14.0" ~ " " 

12.0' 

lO.0- 

8.0- 

6.0- 

4.0 
I'5 2'5 3'5 4 S 

CPU time (ms.) 

F i g u r e  12. Average re lat ive error  over  cond i t iona l  
probabi l i t ies  o f  the fo rm P(xi I E) for  al l  disease 
nodes xi ,  and for evidence sets E containing between 
one and eight nodes, as a function of CPU time. 

1.0- 

0.8- 

• ~- 0.6- 
J~  
m 

u ~  

0 

~. 0.4- 

/ • upper 

0.2"nn J - Markov 

~ . v - -  . . . .  • , • , 
0.00 0. I  0 0.20 0,30 

CPU time (sec.) 

Figure  13. An example of how bounded RD and 
Markov simulation can complement each other in 
the estimation of the probability of a given event. 



72 Stefano Monti and Gregory F. Cooper 

[28], the SPI algorithm [27], bounded cutset conditioning [29], and Poole's search- 
based algorithm [26]. 

LPE [28] is based on a standard message propagation technique. It generates 
bounds by considering only a subset of  the nodes in the network, and produces suc- 
cessively narrower bounds by iterating over successively larger subsets of nodes. 
The messages (the ,k and 7r in Pearl's notation) from outside the selected subset 
are expressed as [0, i] bounds, and in order to reduce their adverse effect on the 
width of the bounds to be computed, a technique is used that takes advantage of 
the dependency between these messages. 

The SPI algorithm [27] is similar to our algorithm in the use of an evaluation 
polytree to factorize the calculation of the probability of interest (similar to our de- 
composition tree), and in the caching of the intermediate terms to avoid redundant 
computations. On the other hand, the SPI search strategy is markedly different in 
that it is based on assumptions about the nature of the distribution so as to estimate 
the mass of the yet-to-be-computed terms. 

Bounded conditioning is a version of cutset conditioning which computes prob- 
ability bounds by considering only a subset of the possible assignments to the 
cutset nodes [29]. Like bounded-RD, it is modular in that the search for the most 
probable assignments to consider is clearly separated from the update algorithm, 
thus allowing for the adoption of different search techniques [33]. 

Poole's algorithm computes probability estimates by enumerating only the 
most likely complete instances (i.e., assignments to all nodes) [26]. Critical to 
the method is the search algorithm for finding the most likely instances. Poole 
proposes an efficient top-down search strategy which works well when applied 
to extreme distributions, though it becomes very inefficient for less extreme 
distributions. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we present a new algorithm for inference in belief networks that 
combines an incremental-bounding algorithm with a simulation-based algorithm 
to compute interval bounds on conditional probabilities. The algorithm inherits 
all the desirable properties of exact recursive decomposition which are illustrated 
in detail in [1, 34]. Among them are: 

(1) Flexibility. The algorithm can be easily combined with other exact and 
approximation techniques to develop hybrid algorithms. For example, decompo- 
sition could be performed until a singly connected network is encountered. At that 
point, other inference methods, such as Pearl's message passing [3], could be used. 
As another example, we might combine the recursive decomposition method with 
clique-propagation techniques, such as Jensen's algorithm [18]. 

(2) Modularity. In RD the inference algorithm is clearly separated from the 
decomposition algorithm needed for the construction of  the decomposition tree. 
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As researchers develop more efficient algorithms for finding small d-separators (a 
problem which can be easily translated into the problem of finding small vertex 
separators), we can immediately apply these results towards decreasing the run- 
time complexity of belief-network inference. In bounded-RD we introduce a new 
dimension into the modularity of the technique, in that the computation of bounds 
is clearly separated from the search strategy for the generation of summation-set 
instantiations. In this framework, it becomes easy to adopt alternative search 
strategies. One such strategy is the application of the polynomial algorithm pro- 
posed by Goldszmidt in [33] to generate the most probable instantiations. Another 
technique is backward simulation as defined in [35], which is reported to perform 
well when the evidence "dominates" the priors. 

(3) Efficiency. Shachter et al. in [36] conjecture the polynomial-time equiva- 
lence of  RD and the clustering algorithms [ 18, 19], which are generally considered 
the fastest exact inference algorithms currently available for belief-network infer- 
ence. Our experience in applying RD and clustering algorithms to perform infer- 
ence on ALARM indicate that the two algorithms are comparable in inference speed. 

In the evaluation illustrated in Section 4, we presented the results of our exper- 
iments. We would like to stress again that the issue of whether the bounds are 
narrowed enough to allow a significant reduction in computation time depends 
on the decision problem that is being solved. For some problems, the bounds 
could be wide, and one could still make an optimal decision, because the decision 
threshold is near one extreme (0 or 1). The RD-bounded algorithm provides for 
the possibility of taking advantage of such situations, when they exist. 

The evaluation of bounded RD that is reported in this paper is preliminary, and 
a more extensive set of  experiments over a large variety of network structures 
and probability distributions need to be performed in order to be able to draw 
any conclusions on the general behavior of the algorithm, and on its suitability to 
specific network topologies and probability distributions. Nontheless, the current 
results suggest that the approach has promise as a practical tool for belief-network 
inference. 
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