
NORTH- HOLLAND

Bounded Recursive
Decomposition:

A Search-Based Method for
Belief-Network Inference
Under Limited Resources

Stefano Monti and Gregory E Cooper
Intelligent Systems Program and Section of Medical Informatics,

University of Pittsburgh, Pennsylvania

ABSTRACT

This paper presents a new inference algorithm for belief networks that combines a
search-based algorithm with a simulation-based algorithm. The former is an extension of
the recursive decomposition (RD) algorithm proposed by Cooper, which is here modified
to compute interval bounds on marginal probabilities. We call the algorithm bounded-RD.
The latter is a stochastic simulation method known as Pearl's Markov blanket algorithm.
Markov simulation is used to generate highly probable instantiations of the network nodes
to be used by bounded-RD in the computation of probability bounds. Bounded-RD has the
anytime property, and produces successively narrower interval bounds, which converge in
the limit to the exact value.

KEYWORDS: Bayesian belief networks, belief updating, incremental bound-
ing algorithms, simulation

1. INTRODUCTION

Belief networks [3] and influence diagrams [4] are powerful formalisms for
modeling and reasoning with uncertainty. They have been extensively used in a
large variety of applications ranging from medical diagnosis to fault diagnosis in

Address correspondence to Ste[ano Monti, lntelligent Systems Program, University of Pittsburgh, B50A
Lothrop Hall, 190 Lothrop St., Pittsburgh, PA 15261. E-maih s m o n t i @ i s p , p i t t . edu .

Received October 1995; accepted December 1995

International Journal of Approximate Reasoning 1996; 15:49-75
(g) 1996 Elsevier Science Inc. S0888-613X/96l$15.00
655 Avenue of the Americas, New York, NY 10010 PII S0888-613X(96)00012-0

50 Stefano Monti and Gregory E Cooper

complex machinery [5-10], stimulating the development of efficient techniques
for probabilistic inference in belief networks.

Several algorithms have been devised for probabilistic inference with belief
networks, and when applied to specific network topologies, these algorithms can be
computat ionally tractable [11, 12]. Among the tractable methods are those based
on assumptions about the nature of the probabili ty distribution to be modeled, such
as noisy-o~ gates [3], similarity networks [13, 14], and the additive belief-network
model [15]. However, in its general formulation, the problem of inference in bel ief
networks, both exact and approximate, is NP-hard [16, 17].

The worst-case intractability, while not invalidating the research on exact tech-
niques for minimizing inference time, makes the research on approximate inference
methods particularly important. Besides the class of exact algorithms [1, 12, 18-
20], there are two main classes of approximate methods l" (1) stochastic simulation
methods, which compute an estimate of the exact probabilities by sampling the
space of possible instantiations of the network [2, 22, 23], and (2) search-based
approximate methods, which search for the most probable instantiations in this
space [24-26]. Most of the algorithms belonging to the last class can also be char-
acterized as incremental bounding algorithms, since they compute successively
narrower upper and lower bounds on the probability of interest [27-29]. The rate
at which these bounds are narrowed is generally contingent upon the existence of
a relatively small number of probable instantiations that cover a large portion of
the probabili ty space, which in turn depends on the asymmetry of the individual
prior and conditional probability distribution in the network [30].

The main motivation for our work stems from the consideration that simulation-
based algorithms and search-based algorithms reflect two approaches to inference
that are complementary. On the one hand, simulation-based methods yield a
point-value estimate of the probability of interest. On the other hand, search-
based methods provide us with correct interval bounds on the exact probability,
and the width of the interval is a clear gauge of how useful these bounds can be
to the reasoning process. When facing a decision problem, a probability interval
may be sufficient to select the optimal decision. If not, the estimate may be used to
make the decision in a time-critical situation. Assuming we have access to interval
bounds on the probability of interest, a first and immediate way of controlling the
accuracy of a point-value estimation is to test whether it falls within the given
bounds. At the same time, assuming the estimation does fall within the computed
bound, it represents the best first guess on the probability of interest.

In this paper, we present a new inference algorithm for belief networks that com-
bines a search-based algorithm with a simulation-based algorithm. The former is
an extension of the recursive decomposition (RD) algorithm proposed by Cooper

l An alternative and less explored approach, which we do not consider in this paper, is based on the
manipulation of the network structure, by removing selected edges so as to reduce the connectivity of
the network [21].

Bounded Recursive Decomposition 51

in [1], which is here modified to compute interval bounds on marginal probabilities.
We call the algorithm bounded-RD. The latter is a stochastic simulation method,
usually referred to as straight simulation, which is also known as Pearl 's Markov
blanket algorithm [2]. Markov simulation is used to generate highly probable
instantiations of the network nodes to be used by bounded-RD in the computation
of probabili ty bounds. Bounded-RD has the anytime property, and produces suc-
cessively narrower interval bounds, which converge in the limit to the exact value.

The remainder of this paper is organized as follows: In Section 2 we briefly
review the belief-network formalism, and illustrate the recursive decomposit ion
algorithm, which is described in more detail in [1]. In Section 3, we describe
bounded-RD, and explain how the algorithm makes use of stochastic simulation
to try to maximize the tightness of the interval bounds to be computed. In Section
4 we present the results of some experiments we conducted with a test-bed im-
plementation of the algorithm, and in Section 5 we briefly discuss some relevant
related work. Finally, in Section 6 we conclude the paper with a short summary
and some suggestions for further work.

2. B A C K G R O U N D

2.1. Basic Concepts and Notation

A belief network is defined by a triple (G, f2, P) , where G = (X, E) is a
directed acyclic graph with a set of nodes X = {xl xn } representing domain
variables, 2 and with a set of arcs E representing dependencies among domain
variables; f2 is the space of possible instantiations of the domain variables3; and
P is a probabili ty distribution over the instantiations in f2. Given a node x c X,
we use nx to denote the set of parents of x in X. The family Ox of a node x is
defined as the set {x} t3 rrx. In general, the family of a set X c X, denoted by Ox,
is the union of the families of the nodes in X, i.e., Ox = Ux~X Ox.

In Figure 1, we give an example of a simple network structure, derived from
[31], which we use throughout the paper to illustrate basic concepts. By "reading"
the network structure, and by giving a causal interpretation to the links displayed,
we see that metastatic cancer (xl) is a cause of brain tumor (x3), and that it can also
cause an increase in total serum calcium (xz). Furthermore, brain tumor can cause
papilledema (x s), and both brain tumor and an increase in total serum calcium can
cause a patient to lapse into a coma (x4).

The key feature of belief networks is their explicit representation of conditional
independence among events (domain variables). In particular, each variable is

21n this paper, we make no distinction between the network nodes and the variables they represent.

3 An instantiation w of all n variables in X is an n-uple of values {X 1 Xn } such that xi = Xi for

i = 1 n.

52 Stefano Monti and Gregory E Cooper

P(~,,) = 0.2
X1 XI: metastatic cancer P(z~ [z~) = 0.7

/ ~ P(z: I~t) = 0.1
X2: total serum calcium P(z~ I z t) = 0.6

X3: brain tumor P(~:~]~t) = 0.2
X4: coma

X2 X3 P(z4[~2,z3) = 0.8

\ . / \ P(=~ l~ ,~ ,) = 0.4
P(z, 1~2,~) = 0.1

P(zblz3) = 0.4
X4 X5 P(z6 I~-s) = 0.1

Figure 1. A simple belief network, with set of nodes X = {xl, x2, x3, x4, xs} , parent
sets 7rx] = 0, 3Tx2 = 7rx3 ~'~ {X I }, 7~X4 = {X2, X3}, 7rx5 = {X3}, and families 0q = {xl },
0~2 = {Xl,X2}, 0x3 = {xl, x3}, 0x 4 = {x2, x3, x4}, and Ox5 = {x3,xs}. All the nodes
represent binary variables, taking values from the domain {True, False}. We use the
notation Yi to denote (xi = False). The probability tables give the values of p (x i I 7r~i)
only, since p(2-i I 7rx,) = 1 - p(x i I 7rxi).

independent of its nondescendants given its parents. This property is usually

referred as the M a r k o v c o n d i t i o n , and it allows us to express the probabil i ty dis-

tribution P by means of probabil i ty tables associated with the domain variables.
That is, each node xi in X is augmented with a probabili ty table containing the

probabil i t ies o f the node ' s values condi t ioned on its parents (i.e., the table asso-

ciated to the node xi stores the probabil i ty distribution P (x i] T r x ~) , where rrx, is
empty if xi is a node without parents). Figure I shows the probabili ty table for

each node in the network.

The probabil i ty o f any instantiation in f2 can then be computed from the prob-

abilit ies in the be l ie f network. In fact, it can be shown [3, 32] that the jo in t
probabil i ty o f any particular instantiation of all n variables in a bel ief network can
be calculated as follows:

P(X, Xn) = [' I P(Xi I 7rx,).
i=1

(1)

The comple te set of condi t ional independence assertions implied by a ne twork

structure can be determined by means o f the concept of d-separation, a graphical

character izat ion introduced by Pearl in [3]:

If A, B, and D are three disjoint subsets o f nodes in the directed acyclic

graph G, the set D is said to d-separate A from B, if for every path be tween
a node in A and a node in B one o f the fo l lowing condi t ions holds: i) the

path contains a node e with converging arrows and neither e nor any of its

descendants be long to D; or ii) the path contains a node e that does not
have converg ing arrows, and e belongs to D.

Bounded Recursive Decomposition 53

It can be proved that d-separation actually characterizes all and only the condi-
tional independence assertions that follow from satisfying the Markov condition
in a belief network [3]. The concept of d-separation is important because through
the identification of small d-separators we can decompose the network into prob-
abilistically independent subnetworks, and their reduced size makes them more
manageable and easier to understand. In the next section we will see how the
identification of proper d-separators is essential to the effective application of our
inference algorithm.

The phrase probabilistic inference using belief network usually refers to the
calculation of conditional probabilities of the form P(H' I E'), where H ' and E '
are instantiations of the subsets H and E of X. The calculation of P(H' I E') is
also called a query. When the conditioning set E is empty, the problem reduces
to the computation of the marginal probability P(H'). By applying Equation (1),
P(H') can be calculated as follows:

P(H')= Z P(x, x,,): 52 H (xi (2)
N - H X - H i : l

where N - H denotes the set difference (i.e., X - H = {x] x ~ N, x ~ H}).
When the conditioning set E is not empty, we can still apply Equation (2) to the
calculation of P (H' [E'), since P (H' I E') = P (H', E') / P (U), and P (H', E')
and P(E') can both be computed by Equation (2). The calculation of Equation (2)
by exhaustive enumeration can be performed for trivial networks only, since the
number of instantiations to be enumerated is exponential in the number of nodes
in the network.

2.2. Belief Network Inference by Recursive Decomposit ion

Belief network inference by recursive decomposition is a divide-and-conquer
technique that performs the calculation of Equation (2) by recursively decomposing
the network, and by mapping the resulting decomposition into a corresponding
factorization of the summation in the equation. The decomposition is aimed
at reducing the number of operations needed (multiplications and additions) by
eliminating the redundancies inherent in Equation (2).

EXAMPLE 1 We introduce the technique with a simple example using the
belief network of Figure 1. Suppose we wish to calculate P(x5 = T) [for brevity,
P(x~)]. The application of the brute-force approach of Equation (2) to compute
P(x~) yields

P(x~) = Z P(x~lx3)P(x4lx3, x2)P(x3 I x~)P(x~_ I x,)P(x~). (3)
xl ,...,x4

Note that variable x3 is a d-separator for the network, because according to the
Markov condition, given the value of x3, the variable x~ is probabilistically in-
dependent of the variables xj, x2, x3, x4. We could thus select x3 as a separator

54 Stefano Monti and Gregory E Cooper

variable, to perform the same calculation as in Equation (3) by decomposing the
summation as follows:

P(Xf5)~X~ (P(xI5IX3) XIZ, X2,X4 P(x4Ix3'x2)P(x3Ix])P(x2Ix|)P(x|))" (4)

Instantiating the variable x3 in the outer sum renders the factor P(x' 5 [x3) inde-
pendent of the second inner sum. The evaluations in Equation (4) are performed
from the inside outward, and the complete evaluation of Equation (4) requires
15 additions and 50 multiplications, while Equation (3) requires 15 additions and
64 multiplications. Carrying the example further, we see that the variable x2, to-
gether with the variable x3 already instantiated, is a d-separator for the subnetwork
{xl x4}, which is the set of variables composing the second sum of Equation
(4). Selecting xe as the new separator variable results in the decomposition

P(x'5):~x3 [P(x'slx3)~x~ (~x P(x3lx,)PCx2lxl)P(x,)

× Z P(x4lx3, x2))]. (5)
X4

The complete evaluation of Equation (5) requires 11 additions and 22 multiplica-
tions, representing a considerable reduction from the number of operations needed
when applying the brute-force approach of Equation (3). Assume we cache the
values of the summation ~-~x2 ["" "] indexed by the value assigned to x3, and let us
refer to these values with or(x3). If we now wish to calculate P(x~'), for some
X H ! 5 ¢ xs, we can use the cached or(x3), since their value is independent of the
particular value assigned to x~. 4 We can then use Equation (6) to calculate the
probabili ty of interest:

P(x~st) = Z P(x~' [x3) or(x3), (6)
X3

which requires 1 addition and 2 multiplications, representing a 15-fold reduction
in the number of additions and a 32-fold reduction in the number of multiplications
from the numbers required by the brute-force approach given by Equation (3).

Belief-network inference by recursive decomposit ion is based on a systematic
application of the decomposit ion method informally introduced in the example
above. By looking at Example 1, we can see that every step in the decomposit ion
corresponds to the partition of a set of nodes, and to the determination of a d-
separator for the partition components. In fact, the decomposit ion that leads to
Equation (4) from Equation (3) is obtained by partitioning the set {Xl xs} into
the two sets {xs} and {Xl x4}, and by selecting x3 as the d-separator of these
two sets. Likewise, the decomposit ion that leads to Equation (5) from Equation

4For the sake of the explanation, assume that xs has more than two values; otherwise the probability
of interest could simply be calculated as P(x~ ~) = 1 - P(x~).

Bounded Recursive Decomposition 55

(4) is obtained by decomposing the set {xl X4} into the two sets {xl, x2, X3}
and {x4}, and by selecting the set {x2, x3} as their d-separator. Notice also that x5
is already instantiated when performing the first step of the decomposition, and
both x3 and x5 are already instantiated when performing the second step of the
decomposit ion.

The decomposit ion process just described can be effectively formalized by
means of the function f , which we define below together with the main theo-
rem that establishes how f can be recursively decomposed. To this purpose, we
need to introduce some additional terminology. For any set X c Pc', we denote
with f2 (X) the set of all possible instantiations of X, and with X' and X i arbitrary
instantiations of X, where the latter notation is used when we need to distinguish
between different instantiations. Given X and Y as two subsets of X, let X/y,
denote the partial instantiation of set X obtained by instantiating the nodes in
X f3 Y as specified by Y'. For example, if X = {xl, X2}, Y = {x2, X3}, and
Y' = {(x2 = T, x3 = F)}, then X/r , = {(xl = T, x2 = T), (Xl = F, x2 = T)}.
That is, X/r , represents the set of possible instantiations of X where x2 is clamped
to T.

DEFINITION 1 Let 2(be the set of all variables in a belief network, let X be a
subset of ¢(, and let Ox denote the family set of X (i.e., Ox = Ux~X Ox). Given a
subset Hx ~ 2(such that (Hx t3 X) = Ox, and given an arbitrary instantiation
H~ of Hx, we define the function f as follows:

f (X ' H t x) = Z l-'[P (x l r r x) ' (7)
X / . , x x ~ X

where the summation is taken over all the possible instantiations of X - Hx,
since the variables in Hx are instantiated as specified by H~¢.

From Equation (7), we can see that when X = Pc', the invocation of f (X , H~)
corresponds to the calculation of the marginal probabili ty P(H~). The following
theorem establishes the way function f can be recursively decomposed.

THEOREM 1 Given the invocation of f (X, H~x) for any Hx and X satisfying
Definition l, and given any partition (Y, Z) of X, the set S = (Or A 0z) - Hx
renders the following equation valid."

:(x, u ' j = f(v, uy/s,O.x) f (z , (8)
S

where Hv = Ov N (S U Hx), Hz = Oz Cl (S U Hx).

A proof of the theorem can be found in [1]. In Equation (8), the summation
is over all the instantiations S' of S. Notice that Hr/s,ul4 x is a full instantiation
of Hv, since by construction Hv c S U Hx, and is consistent, since Hx A S =
0. Likewise, Hz/s,uH, x is a consistent full instantiation of Hz. Basically, the
theorem establishes that it is possible to find a set (S U Hx) that renders the
components of the partition (Y and Z) conditionally independent of the remaining

56 Stefano Monti and Gregory E Cooper

belief-network variables. That is, given S and Hx as defined in Theorem 1, the
variables in the set Y are conditionally independent of the variables in the set
1 , - (S U Hx U Y). Analogously, the variables in the set Z are conditionally
independent of the variables in the set 1 ' - (S U Hx U Z). This comes as no
surprise, since it can be proved that the set SU Hx d-separates each of Y and Z from
the remaining belief-network variables [1]. Notice that the theorem does not say
how the partition (Y, Z) should be chosen, and in general, the number of possible
partitions is large. The selection of an appropriate partition is the most delicate
issue in the application of RD, and the efficacy of the method largely depends on it.

As we previously mentioned, the theorem actually provides a method for calcu-
lating the marginal probability P(Q') of any subset Q of,I/ . The value of P(Q') is
obtained by invoking f(X, H~), with X = 1,, Hx = Q, and H x = Q'. Theorem
1 provides a way of decomposing f, by partitioning the set X into two subsets
1/and Z, and by recursively applying f to the partition components. The recur-
sion terminates at each function invocation f(X, H;x) in which PXr = 1, and the
variable x in X and its parents are instantiated. At this point, f(X, Hi() evaluates
directly to P (x' F rr~). As long as we require that the set Y and the set Z in the parti-
tion (Y, Z) each contain at least one node, the first argument of function f becomes
smaller at progressively deeper levels of the recursion. Thus, we must eventually
reach invocations of f of the form f(X, H~) in which IXI = 1. Let x designate
the sole element in X. We know that the parents o fx must be instantiated, because
it follows from Definition 1 that Hx D Q_ Ox - X = 0~ - {x} = 7r~. I f x is instan-
tiated, we return P(x I rr~) as discussed. I f x is not instantiated, we set Y = {x}
and apply Equation (8) once more, with Z = Hz = 91 and S = {x}. At this point,
f (Y , H i) returns P(x I 7r~), and f(Z, Hz) = f(91, 0) evaluates to 1 by definition.

EXAMPLE 2 We can apply the method just described to the calculation of
P(x5 = T) of Example l, by invoking f(X, H'x) with X = 1, and H~(=
x~. Provided we first partition 2(into (Y, Z) = ({xj x4}, {xs}), and we
further partition Y into the two components {xl x3} and {x4}, we obtain the
same decomposit ion of Equation (5). The recursive application of Theorem 1 is
illustrated in

f(X, Xs) = Z f({xs}, {x3, x~}) f ({x l , x2, x3, x,}, {x3}) (9)
X

= Z /({xs}, {x3, x~}) Z f ({ x l , x2, x3} {x2, x3})f(lx4}, {x2, x3})
X~, X2

(lo)

: ~ [P(x~lx3) ~x2 (~ P(x3 lxl)P(x21x~)P(x~)

>(ZP(x4lY3, x2))l. (11)
I(4

Bounded Recursive Decomposition 57

The initial partition of X into (Y, Z) = ({Xl x4}, {xs}) yields the separator
set S = Or 710z - Hx = {x3 }, which results in the decomposit ion of Equation (9).
In the right-hand invocation of f in Equation (9), we have X = {xl x4} and
Hx = {x3}, and the partition of X into (Y, Z) = ({Xl x3}, {x4}) yields the
separator set S = 0y AOz - Hx = {x2} and produces the decomposition illustrated
in Equations (10). Applying now the function f as given by Definition 1 results
in Equation (1 1).

2.3. An Implementation of Recursive Decomposition

To facilitate the description of the algorithm that implements the function f ,
we introduce some additional terminology. We call the set S the summation set.
We call Hx the instantiation set, because it contains all the instantiated variables
in a given invocation f (X , H)). We use instantiation cache to denote a table
that stores the value of f (X , H~() indexed by the instantiated variables in the set
Hx. We call X - Hx the variable set, because it represents the variables that are
uninstantiated when f (X , H~;) is invoked. Finally, we call X the total set.

Suppose that decomposit ions of a network are performed recursively, beginning
with Hx = 0 and with X = X, until single terms of the form P(x I Zrx) are
encountered. Call this a complete decomposition of a given belief network. 5 By
starting with Hx = 0 at the top level of the decomposition, we create a complete
decomposit ion that can be used to calculate P(Q') for any Q c X. The complete
decomposit ion of a network can be represented as a binary tree of records, where
each record contains a summation, evaluation, instantiatmn, and variable set. We
call this tree the decomposition tree or d-tree. Figure 2(a) shows a complete d-tree
for the network of Figure 1, corresponding to the decomposit ion of Equation (1 l).
Notice that the d-tree also includes the summation over xs, since the decomposit ion
corresponds to the invocation of f (X , 0). Each node of the tree corresponds to a
record containing four sets of variables and two pointers to the children records.
Also, associated with every record is the instantiation cache storing the values of
f (X , H~x), indexed by the values of the variables in Hx. In other words, for a
given instantiation H) , the corresponding cache entry stores the value returned by
f given H) . For example, the ~r(x3) in Equation (6) corresponds to the cache of
the record R 3, with x3 the instantiation set.

In Figure 3 we give a schematic description of the algorithm implementing
the function f by making use of the tree structure just described. As already
mentioned, summation, evaluation, and instantiation sets are variables local to
the currently accessed record, and do not need to be passed as arguments. The
argument to the function is the pointer i to the current record. The global vari-
able co keeps track of the instantiated nodes in X, and the global variable Q'
stores the query of which the algorithm is computing the probability. In any

5 In general, there are many complete decompositions of a belief network.

58 Stefano Monti and Gregory F. Cooper

RI
Summation Set

Evaluation Set

lnstantiation Set

Variable Set

R ~ R3

R4 ~ R5

(a) (b)

F i g u r e 2. The decompos i t ion tree for the s imple network o f Figure 1. (a) Each node in
the d-tree is called a record and conta ins four sets and two pointers to the children. (b) The
shaded records cor respond to the active subtree for the calculat ion o f P(x~).

f u n c t i o n f(i)
i n p u t :
loca l vars:

global vats :

b e g i n

i
Hx, S
ctlche

i~,., iz
~o

Q'

the pointer to the current record
instantiation and summation set
the cache for the current record
the pointers to the two children of record i
the current instantiation of X
the query set, i.e., we are computing P (Q ')

i f i = 0 r e t u r n 1 /* end of the recursion, leaf reached */
s , , m + c a c h e [~ [/ / x]]

i f sum = --1 t h e n /* -1 denotes a reset cache entry */

for each instantiation S ~ of S consistent with Q' do

w[S] * - S '

. +f(~) × f(~=)
e n d /* for */

e n d /* then */
r e t n r n 3 tlEr~

e n d /* function f */

F i g u r e 3. The a lgor i thm that imp lemen t s the funct ion f .

Bounded Recursive Decomposition 59

recursive invocation of f , the cache entry for the current instantiation of its
associated Hx is accessed to check if the needed value of f has already been
computed. The current instantiation of Hx is determined by the values of the
corresponding nodes in co, given by co[Hx], and the corresponding cache en-
try is denoted by cache[co[Hx]]. If the cache entry contains the desired value,
that value is returned; otherwise it must be computed. The for loop in Figure
3 corresponds to the summation over the instantiations of the summation set S
of Equation (8). Notice that the loop condition has the additional constraint that
the instantiation of S must be consistent with the instantiation of Q. That is,
if S contains nodes that are also in Q (i.e., S A Q # 0), those nodes need to
be instantiated as specified by Q,.6 Once the loop is completed, the result of
the computation is stored in the appropriate cache entry, and the result is re-
turned.

An efficient way of using the algorithm of Figure 3 is the following. The
tree is first initialized, i.e., the function f(X, 0) is called, corresponding to the
summation over the whole joint probability space. The function f should clearly
evaluate to 1. As a side effect, all the cache entries of each record are initialized
to their initial (more general) values. When a query P(Q') is submitted, we
do not need to recompute f for all the records of the tree, but only for those
records for which Q' may affect the value returned by f . In fact, it is possible
to determine this set of records before actually carrying out the computation. A
record has its associated invocation of f affected by Q' if its variable set V =
X - Hx contains some of the nodes in Q. We call the set of affected records
the active subtree, denoted with A(Q). Formally, if we denote the variable set
of a record r with Vr, the active subtree for a given query P(Q') is defined as
A(Q) = {r I Vr A Q ¢ 0}. For all the records in .A(Q), the function f needs to
be actually computed. For all the other records, the values stored into their cache
can be retrieved. Figure 2(b) shows the active subtree .A({x5 }) for the calculation
of P(x'5).

We can illustrate the rationale behind this technique with an example. Consider
again the decomposition corresponding to Figure 2(a), which we recall below
(notice that we now include the summation over xs, since this equation allows for
the initialization of the decomposition tree):

f(X,O)=~-~x~ [~--~x5 P(xslx3)~--~x~ (~xt P(x3lxl)P(x2lx,)P(xJ)

x ~-~ P(xglx3,x2))]. (12)
X4

Consider now the calculation of P(x'5) from Example 1. Using the decomposition

6We need the additional constraint because the instantiation set Hx associated to a given record is
determined at initialization time, when invoking f(X, ~1), and does not al low for the clamped nodes
in Q'.

60 Stefano Monti and Gregory E Cooper

tree of F igure 2(a), results in the fo l lowing equation:

f('~'{x;}):~x~ [P(xsIx3)~x2 (~xl
~f4

(13)

Note that the only dif ference be tween Equat ion (13) and Equat ion (l 2) is in the

summat ion over xs, which is missing in Equat ion (13). It corresponds to the record

R2 in Figure 2(a). The summat ion over x2 corresponding to the record R3 remains
the same.

3. BOUNDED RECURSIVE DECOMPOSITION

In the previous section, we illustrated an algori thm for bel ief -network inference

by recursive decomposi t ion , and we presented an implementa t ion of the algori thm.
As we pointed out in the introduction, exact probabil ist ic inference with be l ie f

networks is NP-hard, which means that there are instances in which inference by

recursive decompos i t ion still results computa t ional ly intractable.

In this section, we discuss bounded RD, an inference algori thm based on R D
which, in order to reduce the computat ional cost of inference, computes interval

bounds on the marginal probabil i ty of a specified set of nodes. The method assumes

that it is possible to perform the comple te decompos i t ion and init ial ization of the

network, as illustrated in the previous section. If the network is such that not
even a comple te decompos i t ion and init ialization is computa t ional ly feasible, the

method is not app l i cab le]
In what fol lows, we first present an example that illustrates the main idea on

which the method is based. We then give a formal descript ion o f the method, and

finally illustrate the use of Markov simulat ion in t ightening probabil i ty bounds.

EXAMPLE 3 Consider again the network of Figure l , and the calculat ion of

P (x5 = T) [for brevity, P (x;)] as descr ibed in Example I, where we introduced the
use of the cached values in ~ (x3) to avoid redundant computa t ion when calculat ing

P (x; '). As already ment ioned, a (x3) corresponds to the cache associated to record
R3, and the values it stores correspond to the results o f the summat ion in the

7Remember that a complete decomposition is a decomposition resulting from the invocation of /'
starting with Hx = 9J, and X = A" until single terms of the form P(x] rex) are encountered. The
initialization of the d-tree consists of initializing the cache entries of each record in the decomposition
tree. There might be cases when the connectivity and the size of the network are such that even the
initialization of the decomposition tree is computationally infeasible. For example, for a fully connected
network containing 100 binary nodes, a cache of size 299 is needed, thus making the initialization of
the cache entries not feasible given the current resource constraints.

Bounded Recursive Decomposition 61

x3

T
F

or(x3) x3

0.628 T
0.372 F

O'* (X3)

0.403
0.085

Figure 4. The values of or(x3) and
cr*(x3) as computed in Example 3,
Equations (14) and (15) respectively.

following equation for the different values assigned to x3:

2 X1

Consider now the calculation of P(x5 = T, x4 = T) [for brevity, P(x~, x~)]. The
values stored in ~(x3) need to be recomputed, since they do not allow for the fact
that x4 is now clamped. If we denote the newly computed values with or* (x3), the

probability of interest can be computed as P(x~, x~4) = Y~x3 P(x'5 I x3) cr*(x3),
where cr*(x3) is given by the following summation:

Figure 4 gives the values of o(x3) and ~r*(x3), and we can see that 0 _< cr*(x3) _<
cr (x3) holds for all x3, since ~r* (x3) is obtained from cr (x3) by simply removing the
summation over x4. This suggests that we could use the values stored in cr (x3) as
upper bounds on the values stored in cr*(x3), to compute upper and lower bounds
on the probability P(x; , x~4). An application of this strategy is illustrated in the
following equations, where we show the computation of the upper bound Pv and
lower bound Pc on P(x; , x~4) obtained by computing cr*(x3 = T) only, and by
using the cached value of or(x3 = F) as an upper bound, and 0 as a lower bound,
on the value of cr*(x3 = F) (the numerical probabilities used in the computation
are taken from Figure 1):

Pv(x;,x~4) = P(x~5 Ix3 = T) cr*(x3 = T)

+P(x~5 Ix3 ~ - F) ~7(x3 = F) = 0.198, (16)

t ! PL(X5, X 4) = P(X~5 Ix3 = T) cr*(x3 = T) + 0 = 0.161. (17)

The application of this method allows for a reduction in computation of about
50%. Notice that the choice of the instantiation of x3 for which to compute or* (x3)
is very important. Had we chosen to compute cr*(x3 = F) instead, and to use the
cached value of or(x3 = T) as an upper bound on the value of cr*(x3 = T), the
resulting bounds on P(x~5, x~4) would be [0.008, 0.26]. This example illustrates
how critical the selection of the proper instantiations can be, which is a point to
which we will return.

62 Stefano Monti and Gregory F. Cooper

3.1. Computation of Probability Bounds

As explained in Section 2.3, the strategy for answering a query of the form
P(Q') is to reset all the records of the decomposition tree in the active subtree
,A(Q), and to recompute the function f for those records, while retrieving the
values stored in the cache for all the other records. The strategy, which we call
d-tree-based recursive decomposition, is summarized:

s (x , H)) =

cache[H)] if not reset,

Z f (Y ' Hv/H'~u~oj)f(Z, Hz/tl'xU~oj) otherwise,
~oj ~ f2 (S)
wj ~q~x

(18)

where S is the current summation set, q is the set S C) Q, and q' denotes its
instantiation consistent with Q', i.e., q' = (S A Q)/Q,. Notice that the source of
inefficiency in the computation of the function f is in the possibly large number of
instantiations of the summation set S. The idea, informally introduced in Example
3 (where S ---- {x3}), is to select a subset of the instantiations of S (x3 = T in
the example) on which to perform exact computation, and to retrieve the values
of f calculated at initialization time for the remaining instantiations (x3 = F in
the example). These initialization values represent an upper bound on the actual
values that would be returned if the function f were actually computed. In fact,
the following lemma is straightforward to prove:

LEMMA 1 Consider an invocation of f (X, Hj;) for any Hx and X satisfying
Definition 1. For any Kx c_ 2(such that Kx D Hx, and for any instantiation
g ' x of Kx such that K' x D_ Hj;, the following relation holds:

0 < f (X , K'x) < U(X, H)). (19)

Proof AccordingtoDefinition 1, f (X, K'x) = Y~x/~, P(X),and f (X, H)) =
~ x / . i P(X). Since K} ~ H) , it lbllows that the set of instantiations X/K,~ is

a subset of X/H,~. We can thus write f (X , H)) = Y~x/K,~ P(X) + Y~a P(X) =
f (X , K'x) + Y~.A P(X), where A is the set of instantiations in X/HI -- X/K'~.
Since Y~A P(X) >__ O, this concludes the proof. •

Let us denote with -f(X I H)) the value stored at initialization time into the ith
cache entry of the record corresponding to the total set X. Lemma 1 tells us that,
when computing P(Q') for some Q ~ 2(, the exact calculation of any f (X , H))
in the active subtree A (Q) is upper-bounded by the corresponding -f(X [i Hx), the
value stored at initialization time. In fact, by looking at Equation (18), we see
that when Q ~ 13, the calculation of f (X , H)) corresponds to the calculation
of f (X , H~ U q'). We can then apply Lemma 1 by setting Kx = Hx t3 q and

K tx = Kx /H~xUq, .

Bounded Recursive Decomposition 63

Let us apply this result to the calculation of f for a single record in the decompo-
sition tree, where the relevant sets of the record are its total set X, its instantiation
set Hx, and its summation set S. With (g21, g22) we denote an arbitrary partition
of the set ~ (S) of all instantiations of S. The upper bound fu and the lower bound
fL on the value of f (X , H~), for any Hx i, can be computed as follows:

S~(X, H~) = ~ f 0 " , H~ j) f (Z , H~ j)
wjE~l
co j I:=q'x

+ ~ 7(YIH~Jlf(Z HzJ), (20)
wj~fa2

fL(X, H I) = ~ f (Y , Hiv j) f (Z , HzJ)+O, (21)
WjE~21
o,j ~q'x

where we have used the simplifying notation Hiv j = Hy/o,,uHj and H zij =
Hz/,o, uH~. Notice that in Equations (20) and (21), we assume t~at the recur-
sive invocations of f in the summation over f21 return exact values. However, if
we apply the above idea to any recursive invocation of f , the two equations for
the upper and lower bounds need to be rewritten as follows:

fu (X, g~¢) = Z fu(Y' HYJ) fu(Z , Hz j)
WjE~t
Wj I=q'x

+ ~ 7(YIH~/) 7(ZlHzJ), (22)
wj~fa2
o, j ~q'~

fI.(X,H~¢)= Z f1"(Y'H~j) ft '(Z'HzJ) +0" (23)
mjE~t
~j ~q'~

We can then apply Equations (22) and (23) to every record in .A(Q) to compute
interval bounds on the point-value of P(Q') for any Q c p(. To compute interval
bounds on the conditional probability p(Qi I R') of any Q and R subsets of 2(,
we first need to compute the marginals p(Qi, R') for every Qi ~ f2(Q). Let us
denote with Pu(Q i , R') and PL(Q i , R') the upper and lower bounds on the exact
value of P (Oi, R') respectively. Bounds on the conditional probability P (Qi [R')
can be computed as follows:

pt/(Qi l R,) = Pv(Q i, R') (24)
Pu(Q i, R') + Y~k¢i PL(Q k, R ') '

pL(Qi I R,) = PL(Q i, R') (25)
PL(Q i, R') -I- Y~k:~i Pu(Q '~, R')

64 Stefano Monti and Gregory F. Cooper

3.2. Partition of f~(S) by Markov Simulation

So far, we have not specified how to determine the partition (f21, f22) of a given
S2 (S), that is, how to determine which instantiations of a given summation-set to
consider for exact computation. The partition of the summation set instantiations
needs to be computed for each of the records in the active subtree for the current
query. The choice of the right partitions is crucial, and it strongly affects the
tightness of the interval bounds. In this section we present a method that makes
use of Markov simulation to generate highly probable instantiations. However,
other methods can be readily adopted.

The general algorithm to perform this task is illustrated in Figure 5. The al-
gorithm iterates through a loop. At each iteration, a complete instantiation of the
network is generated, that is, every node in the network is instantiated. Let us call
one of these complete instantiations a sample. Every sample identifies a unique
instantiation of the summation-set of each record in A(Q). If w 6 f2(2() is the
sample generated, the corresponding instantiation of a certain summation set S
is S' = S/(o. If S' does not already belong to the partition component ~ j of the
corresponding record, it is added to it, and it is removed from fa2. This process is
repeated for each record in A(Q), and it terminates when the desired number k of
summation set instantiations has been generated. The input parameter k specifies
the total number of instantiations to be included in the ~1 of the summation sets
in the active subtree .A(Q). The total number N of possible instantiations of the
summation sets in A (Q) is given by N = }-~.re.a(Q) I~ (Sr)i, where Sr denotes the
summation set of record r.

Therefore the number ofinstantiations included in f21 is given by ZrE.A(Q)]~1 ,r I

(where ~] .r denotes the partition component f2~ for record r), and the algorithm
terminates when this number is greater than k. The other input to the algorithm
is the query set Q [e.g., if we want to compute P(A' I B'), the query set will be
Q=AtAB] .

The algorithm of Figure 5 provides a general schema for partitioning the summa-
tion sets in A (Q) . The crucial step is the generation of the samples of the network.
The most straightforward solution would be to generate samples randomly. While
having the advantage of requiring no overhead (i.e., no time is spent looking for a
particular instantiation), this solution may result in poor convergence of the inter-
val bounds (experimental results supporting this conclusion are presented in the
next section). The approach we have adopted makes use of Markov simulation.
Markov simulation tends to generate samples that are highly probable given the
evidence [e.g., if we wish to compute P(A' I B'), the set B is the evidence set].

We constrain the simulation process so as to avoid the generation of redundant
samples, by which we mean instantiations that do not add any element to the
f2j partition component of any record in the active subtree. According to this
definition, if $ = UreUt(Q) S~ is the set of nodes contained in summation sets of
the active subtree, all the samples differing only in the value assigned to nodes in

Bounded Recursive Decomposition 65

p r o c e d u r e partitionS(k, Q)
input: k the desired number of instantiations

Q the set of query nodes
c o u n t e r +-- 0
w h i l e c o u n t e r < k d o

w *-- g e n e r a t e ~ a m p l e (X , t~, P)
for each r 6 A(Q) do

let (~ , fl~) be the current partition of f~(S.)
S ' , - S./~
i f S' ~ ~1 t h e n

n~ ~- ~ u {S'}

~2 ~- n2 - {S'}

c o u n t e r ~ counter +1
if counter > k then exit from partitions

e n d /* if */
e n d /* for */

e n d /* while */
e n d /* partitionS */

Figure 5. The algorithm to compute the partition (f2~, g22) of f2 (S~) for each record r in
the current active subtree .A(Q).

PC" -- S are redundant . The first constraint is thus to generate only samples that
differ in the value of at least one node in S. However, even when enforcing this
constraint , the possible number of redundant samples is still high .8 The concept
is better explained with an example. Consider an active subtree of two records
only, r~ and r2, and suppose that the summat ion set of each record contains a
s ingle binary node, xl or x2, respectively. The two samples (xl = 0, x2 = 0)
and (xl = 1, x2 = 1) already exhaust the space of possible instantiat ions of the
two summat ion sets [i.e., in both records we have f21 = f2 (Sx)], and every other
of the 22 possible instantiat ions of (xl, x2) is redundant . In general, given an
active subtree of n records, each with a summat ion set conta in ing a single binary
node, the m i n i m u m possible number of samples necessary to exhaust the space of
summat ion-se t instantiat ions is always 2 (e.g., the samples 00 . • - 0 and 11 • • • 1),
while the number of dist inct samples of n binary variables is 2".

The generat ion of redundant samples is an unnecessary overhead that we want to
avoid. Therefore, we associate with every summat ion set in .A(Q) a tree structure
that keeps track of the instantiat ions of Sx already in the corresponding f21, and we
rely on these structures to force the s imulat ion process to generate nonredundant
samples only. An example of a tree for a generic summat ion set conta in ing three
binary nodes is depicted in Figure 6. The tree keeps track of the summat ion-se t
instant iat ions already generated, and prevents Markov s imulat ion from generat ing

SThe exact number of reduntant samples, assuming binary variables only, is 2 ISI - N, where N is the
total number of possible instantiations of summation sets in A(Q), defined previously.

66 Stefano Monti and Gregory E Cooper

T•• samples generated to produce
XI

T ~ F ~ the tree to the left: :I" F
X2 z, :T, z~ =T, z~ =T

zl =T, z2 =r, za:f

X3
zl :r, z~=f, z~: f

Figure 6. An example of a tree structure accounting for the summation-set instantiations
generated. It corresponds to the hypothetical summation set S = {xl, x2, x3}, where all the
nodes are binary.

them again. If, for example, given the tree in Figure 6, in the next sample we set
xj -- T, then the assignment x2 = T is not considered, since the corresponding
path in the tree is blocked (which means that all the possible samples containing
the sequence xl ---- T, x2 = T have already been generated). The overhead due to
such bookkeeping is negligible, and it is largely offset by the cost we would incur
should we not constrain the simulation process.

4. E V A L U A T I O N : E X P E R I M E N T A L RESULTS

In this section we describe the results of some experiments we conducted with
a prototype implementation of bounded-RD. The prototype is written in C++ and
runs on a Sun Sparc20 running Solaris 2.3. All the experiments are performed
on the bel ief network ALARM, a multiply connected network originally developed
to model anesthesiology problems that may occur during surgery [6]. It contains
37 nodes/variables and 46 arcs. The nodes take between two and four distinct
values. Of these nodes, 16 are evidence nodes, 8 are disease nodes, and 13 are
intermediate pathophysiological nodes. Notice that, given the network size, the use
of approximate methods is superfluous, since exact methods can perform inference
in this network efficiently (in a time in the order of milliseconds). The results we
present here must thus be interpreted in relative terms, keeping in mind that the
actual application of the algorithm here proposed would become advantageous in
larger or more highly connected networks.

The experiments are aimed at evaluating the performance of the algorithm in
terms of response time and in terms of convergence of the bounds. To this purpose,
a large number of queries are submitted, and the average performance over this set
of queries is measured. Figure 7 shows the general structure of the algorithm used
for the simulation. Evidence sets of different cardinalities are selected randomly,
and their instantiation is generated by logic sampling. Given a set of evidence
nodes E, queries of the form P (xi] E') are submitted, for each of the eight disease
nodes xi and for all the possible instantiations of each disease node. This process is
repeated for every possible cardinality of the evidence set, and for several cycles for

Bounded Recursive Decomposition 67

i n p u t :

79 the set of the disease nodes of the network
£ the set of the evidence nodes of the network

b e g i n

f o r hUm.evidence = rnin-evidenee t o maz-evidenee d o
repeat hum_cycles t imes

E 4-- select hum-evidence evidence nodes r andomly f rom £
E ~ ~ ixtstantiate E by logic sampl ing
f o r each disease-value of each disease in 79 d o

compute P(dlsease=disease-vaiue I E ')
end

e n d
end

end

Figure 7. The basic algorithm used in the experiments.

each selected cardinality. In particular, the parameter num_cycles is set to 10 in all
the experiments, while rain-evidence and max-evidence vary as described below.
The cardinality of the evidence set is important in that it affects the convergence
of the bounds; therefore we give the performance of the algorithm for different
cardinality ranges.

In Figure 8 we show the average convergence of the bounds (measured as upper-
bound- lower-bound) as a function of the parameter k/N, where both k and N
are formally defined in Section 3. The ratio k/N measures the proportion of
summation-set instantiations considered for exact computation (i.e., the propor-
tion of instantiations included in the f21 partition components of the summation
sets in the active subtree). When k = N, all the possible instantiations are included
in the f21 partition components, and both upper and lower bound converge to the
exact point-value probability. Figure 8 shows four plots, corresponding to differ-
ent evidence-set cardinality ranges. The curve labeled "1 to 5" plots the average
convergence of the bounds for queries having an evidence-set containing between
one and five nodes. The three other plots are for different-size evidence sets.
Figure 8 shows that the convergence of the bounds decreases as larger evidence
sets are considered. However, when a large number of nodes are instantiated,
the exact algorithm usually outperforms the approximate algorithms in terms of
inference time. For this reason, in the remaining experiments we limit the maxi-
mum evidence-set size to eight nodes, which represents 50% of the total number
of evidence nodes in the ALARM network.

Figure 9 compares the convergence of the bounds of bounded RD using Markov
simulation and bounded RD with random instantiation of the summation sets. The
convergence is here plotted as a function of time, and the average time of exact
computation is also plotted (the straight vertical line). We can see that the bounds
produced by bounded RD with Markov simulation converge faster than the ones
produced by random instantiation of the summation sets. Notice that bounded RD

68 Stefano Monti and Gregory F. Cooper

1.0-
~ ~ "I to 5"

~' . " ,&~, , ' -~ • "1 to 8"

0.8-

o.6-

.

.~ 0.4-

.~
c

o.2-
. Q

0.0
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

propor t ion of instant ia t ions (k /N)

Figure 8. Plot of the average bounds interval
(i.e., upper-bound- lower-bound) as a function of
the proportion of summation-set instantiations in-
cluded in ~21. The label "n to m" indicates that the
corresponding curve measures the average bounds
interval over queries with evidence set containing
a number of nodes between n and m.

with Markov simulation on the average computes the exact probability in less time
than bounded RD with random instantiation (the time for exact inference of the two
algorithms corresponds to the intersection of the respective curves with the x-axis).

Figure 10 shows the time requirements of the different algorithm components
(namely, Markov generation of samples, and computation of interval bounds), and
compares them with the time requirements of the basic RD algorithm. As explained
in Section 3, Markov simulation is constrained so as to avoid generating redundant
instantiations. Besides "constrained" Markov simulation we plot "unconstrained"
Markov simulation (i.e., Markov simulation also generating redundant samples),
and you can see that the overhead due to constraining the simulation is negligible.

Figures 1 1 and 12 show the absolute and relative error of Markov simulation
as a function of time. The absolute error is defined as le - Pl, where e is the
probability estimate and p is the exact point-value probability. The relative error
is defined as le - Pl/P. The time range is the same as the time range of bounded
RD, that is, we are interested in the accuracy of Markov simulation within the time
boundaries determined by bounded RD.

Finally, Figure 13 shows a plausible scenario where bounded RD and Markov
simulation might be profitably used together. In the example, the probability of
interest is P(xl6 = 0 I x2 = l,Xll = l ,xl3 -- 1,x14 = 0). Figure 13 shows the
upper and lower bound of this probability as computed by bounded RD, together

Bounded Recursive Decomposition 69

"Z"

0

Q>
c).
CL

v

c

_Q

1.00-

0 . 8 0 -

0.60"

0.40-

0 . 2 0 -

0 . 0 0

~ ~ , ~ I exact RD
I ~ I to 8 (random)

o.ooo o.b2s' o.Gso' o.bTs" o.~oo o.~2s oTlso

CPU time (sec.)

Figure 9. Average convergence of the bounds (measured as
upper-bound- lower-bound) as a function of CPU time, for
queries with evidence set containing between one and eight
nodes. The convergence of bounded RD with instantiation of
the summation sets by Markov simulation is compared with
the convergence of bounded RD with random instantiation of
the summation sets. The vertical bar indicates the average time
for exact computation.

with the estimation produced by Markov simulation. Notice that the estimation
initially falls within the probabili ty bounds, and crosses the upper bound after
approximately 40 ms. At that point the bound is still wide, but the point-value
estimation suggests that the upper bound is the closest to the exact probability.
Consider a scenario in which a decision based on the probabili ty computed above
needs to be taken, and the decision threshold is close to 0. The exact probabili ty
for this specific case is computed in about 70 ms, and the lower bound computed
by bounded RD is about 0.10 after only 30 ms. Assuming that the threshold for
the decision at stake is below 0.10, it means that the optimal decision can still be
made by saving about 60% of the computation time.

5. RELATED W O R K

In this section we briefly review some relevant approximate algorithms. They all
qualify as incremental-bounding algorithms in that they all compute successively
narrower interval bounds as more resources are allocated to the inference task.
Algori thms similar in some respects to ours are localized partial evaluation (LPE)

70 Stefano Monti and Gregory E Cooper

0.15- ~ "c. markov" m
"u. markov" f

• "bounded RD" m /
._:. " " m e " - - "exact RD" ~ "

./... = 0.10
E

O.O!

O,O i - i • i • i • i • i • i • D • I • i - i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

propor t ion of instant ia t ions (k /N)

Figure 10. Average CPU time of the different al-
gorithm components as a function of k/N, the pro-
portion of instantiations included in f21. The label
"c. markov" stands for "constrained" Markov sim-
ulation, and the label "u. markov" stands for "un-
constrained" Markov simulation. The horizontal
bar indicates the average time for exact computa-
tion.

0.135 - " "

o 0.125

e~
_=
o v)

O.l l

0.105
1 '0 2'0 3'0 4'0 0

CPU time (ms.)

Figure l l . Average absolute error over conditional
probabilities of the form P(xi I E) for all disease nodes
xi, and for evidence sets E containing between one and
eight nodes, as a function of CPU time.

Bounded Recursive Decomposition 71

14.0" ~ " "

12.0'

lO.0-

8.0-

6.0-

4.0
I'5 2'5 3'5 4 S

CPU time (ms.)

F i g u r e 12. Average re lat ive error over cond i t iona l
probabi l i t ies o f the fo rm P(xi I E) for al l disease
nodes xi , and for evidence sets E containing between
one and eight nodes, as a function of CPU time.

1.0-

0.8-

• ~- 0.6-
J~
m

u ~

0

~. 0.4-

/ • upper

0.2"nn J - Markov

~ . v - - • , • ,
0.00 0. I 0 0.20 0,30

CPU time (sec.)

Figure 13. An example of how bounded RD and
Markov simulation can complement each other in
the estimation of the probability of a given event.

72 Stefano Monti and Gregory F. Cooper

[28], the SPI algorithm [27], bounded cutset conditioning [29], and Poole's search-
based algorithm [26].

LPE [28] is based on a standard message propagation technique. It generates
bounds by considering only a subset of the nodes in the network, and produces suc-
cessively narrower bounds by iterating over successively larger subsets of nodes.
The messages (the ,k and 7r in Pearl's notation) from outside the selected subset
are expressed as [0, i] bounds, and in order to reduce their adverse effect on the
width of the bounds to be computed, a technique is used that takes advantage of
the dependency between these messages.

The SPI algorithm [27] is similar to our algorithm in the use of an evaluation
polytree to factorize the calculation of the probability of interest (similar to our de-
composition tree), and in the caching of the intermediate terms to avoid redundant
computations. On the other hand, the SPI search strategy is markedly different in
that it is based on assumptions about the nature of the distribution so as to estimate
the mass of the yet-to-be-computed terms.

Bounded conditioning is a version of cutset conditioning which computes prob-
ability bounds by considering only a subset of the possible assignments to the
cutset nodes [29]. Like bounded-RD, it is modular in that the search for the most
probable assignments to consider is clearly separated from the update algorithm,
thus allowing for the adoption of different search techniques [33].

Poole's algorithm computes probability estimates by enumerating only the
most likely complete instances (i.e., assignments to all nodes) [26]. Critical to
the method is the search algorithm for finding the most likely instances. Poole
proposes an efficient top-down search strategy which works well when applied
to extreme distributions, though it becomes very inefficient for less extreme
distributions.

6. CONCLUSIONS AND FUTURE WORK

In this paper we present a new algorithm for inference in belief networks that
combines an incremental-bounding algorithm with a simulation-based algorithm
to compute interval bounds on conditional probabilities. The algorithm inherits
all the desirable properties of exact recursive decomposition which are illustrated
in detail in [1, 34]. Among them are:

(1) Flexibility. The algorithm can be easily combined with other exact and
approximation techniques to develop hybrid algorithms. For example, decompo-
sition could be performed until a singly connected network is encountered. At that
point, other inference methods, such as Pearl's message passing [3], could be used.
As another example, we might combine the recursive decomposition method with
clique-propagation techniques, such as Jensen's algorithm [18].

(2) Modularity. In RD the inference algorithm is clearly separated from the
decomposition algorithm needed for the construction of the decomposition tree.

Bounded Recursive Decomposition 73

As researchers develop more efficient algorithms for finding small d-separators (a
problem which can be easily translated into the problem of finding small vertex
separators), we can immediately apply these results towards decreasing the run-
time complexity of belief-network inference. In bounded-RD we introduce a new
dimension into the modularity of the technique, in that the computation of bounds
is clearly separated from the search strategy for the generation of summation-set
instantiations. In this framework, it becomes easy to adopt alternative search
strategies. One such strategy is the application of the polynomial algorithm pro-
posed by Goldszmidt in [33] to generate the most probable instantiations. Another
technique is backward simulation as defined in [35], which is reported to perform
well when the evidence "dominates" the priors.

(3) Efficiency. Shachter et al. in [36] conjecture the polynomial-time equiva-
lence of RD and the clustering algorithms [18, 19], which are generally considered
the fastest exact inference algorithms currently available for belief-network infer-
ence. Our experience in applying RD and clustering algorithms to perform infer-
ence on ALARM indicate that the two algorithms are comparable in inference speed.

In the evaluation illustrated in Section 4, we presented the results of our exper-
iments. We would like to stress again that the issue of whether the bounds are
narrowed enough to allow a significant reduction in computation time depends
on the decision problem that is being solved. For some problems, the bounds
could be wide, and one could still make an optimal decision, because the decision
threshold is near one extreme (0 or 1). The RD-bounded algorithm provides for
the possibility of taking advantage of such situations, when they exist.

The evaluation of bounded RD that is reported in this paper is preliminary, and
a more extensive set of experiments over a large variety of network structures
and probability distributions need to be performed in order to be able to draw
any conclusions on the general behavior of the algorithm, and on its suitability to
specific network topologies and probability distributions. Nontheless, the current
results suggest that the approach has promise as a practical tool for belief-network
inference.

A C K N O W L E D G M E N T S

We would like to thank Mark Peot, Marek Druzdzel, and the anonymous review-
ers for providing useful comments on a preliminary version of this manuscript.

References

1. Cooper, G. F., Bayesian belief-network inference using recursive decomposition, Tech.
Report KSL-90-05, Section of Medical lnformatics, Stanford Univ., 1990.

2. Pearl, J., Evidential reasoning using stochastic simulation of causal models, Artificial
Intelligence 32, 247-257, 1987.

74 Stefano Monti and Gregory E Cooper

3. Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inter-
ference, Morgan Kaufmann, 1988.

4. Howard, R. A., and Matheson, J. E., Influence diagrams, in Readings in Decision
Analysis, Chapter 38 (R. A. Howard and J. E. Matheson, Eds.), 763-771, 1984.

5. Andreassen, S., Woldbye, M., Falk, B., and Andersen, S. K., Munin--a causal proba-
bilistic network for interpretation of electromyographyc findings, Proceedings of lOth
International Joint Conference on AI, Milan, Italy, 1987.

6. Beinlich, I., Suermondt, H., Chavez, H., and Cooper, G. E, The ALARM monitoring
system: A case study with two probabilistic inference techniques for belief networks,
2nd Conference of A1 in Medicine, Europe, London, England, 247-256, 1989.

7. Carenini, G., Monti, S., and Banks, G., An information-based Bayesian approach to
history-taking, 5th Conference of A1 in Medicine, Europe, Pavia, Italy, 129-138, 1995.

8. Cooper, G. E, Current research on the development of expert systems based on belief
networks, Appl. Stochastic Models Data Anal. 5, 39-52, 1989.

9. Heckerman, D. E, Horwitz, E. J., and Nathwani, B. N., Toward normative expert
systems: Part I. The Pathfinder Project, Methods Inform. Med. 31(2), 90-105, 1992.

10. Matzkevich, I., and Abramson, B., Decision analytic networks in artificial intelligence,
Management Sci. 41 (1), 1-22, Jan. 1995; h t t p : //www. aua i . o r g / d n a i - b d a , ps. Z.

11. Kim, J. H., and Pearl, J., A computational model for causal and diagnostic reasoning
in inference engines, Proceedings of8th 1JCAI, Karlsruhe, West Germany, 190-193,
1983.

12. Pear•• J.• Fusi•n• pr•pagati•n• and structuring in be•ief netw•rks•Arti•cia• •nte••igenc e•
29, 241-248, 1986.

13. Heckerman, D. E., A tractable algorithm for diagnosing multiple diseases, in Uncer-
tainty in Artificial Intelligence 5, 163-171, 1990.

14. Heckerman, D. E., Probabilistic similarity networks, Networks 20, 607-636, 1991.

15. Dagum, P., and Galper, A., Additive belief network models, Proceedings of 9th Con-
ference of Uncertainty in AI, 91-98, 1993.

16. Cooper, G. E, The computational complexity of probabilistic inference using Bayesian
belief networks, Artificial Intelligence 42, 1990.

17. Dagum, P., and Luby, M., Approximating probabilistic inference in Bayesian belief
networks in NP-hard, Artificial Intelligence 60, 141-153, 1993.

18. Jensen, E V., Lauritzen, S. L., and Olesen, K. G., Bayesian updating in causal proba-
bilistic networks by local computation, Comput. Statist. 4, 269-282, 1990.

19. Lauritzen, S. L., and Spiegelhalter, D. J., Local computations with probabilities on
graphical structures and their application to expert systems, J. Roy. Statist. Soc. 50,
157-224, 1990.

20. Peot, M. A., and Shachter, R. D., Fusion and propagation with multiple observation in
belief networks, Artificial Intelligence 48,299-318, 1991.

Bounded Recursive Decomposition 75

21. Kj~erulff, U., Reduction of computational complexity in Bayesian networks through
removal of weak dependencies, Proceedings of the l Oth Conference of Uncertainty in
Artificial Intelligence, San Francisco, CA, 374-382, 1994.

22. Chavez, R. M., and Cooper, G. E, A randomized approximation algorithm for proba-
bilistic inference on Bayesian belief networks, Networks 20, 661-685, 1990.

23. Henrion, M., Propagating uncertainty by logic sampling in Bayes' networks, Pro-
ceedings of the AAAI Workshop on Uncertainty in Artificial Intelligence, Philadelphia,
1986.

24. Henrion, M., Search-based methods to bound diagnostic probabilities in very large
belief nets, Proceedings of the 7th Conference of Uncertainty in AI, 142-150, 1991.

25. Santos, E., and Shimony, S. E., Belief updating by enumerating high-probability
independence-based assignments, Proceedings of the l Oth Conference of Uncertainty
in AI, 506-513, 1994.

26. Poole, D., The use of conflicts in searching Bayesian networks, Proceedings of the 9th
Conference of Uncertainty in AI, 359-367, 1993.

27. D'Ambrosio, B., Incremental probabilistic inference, Proceedings of the 9th Confer-
ence of Uncertainty in AI, 301-308, 1993.

28. Draper, D. L., and Hanks, S., Localized partial evaluation of belief networks, Proceed-
ings of the lOth Conference of Uncertainty in AI, 170-177, 1994.

29. Horvitz, E. J., Suermondt, H. J., and Cooper, G. F., Bounded conditioning: Flex-
ible inference for decision under scarce resources, Proceedings of 5th Workshop of
Uncertainty in AI, Windsor, Ontario, 182-193, 1989.

30. Druzdzel, M., Some properties of joint probability distributions, Proceedings of the
lOth Conference of Uncertainty in Artificial Intelligence, 187-194, 1994.

31. Cooper, G. E, NESTOR: A computer-based medical diagnostic that integrates causal
and probabilistic knowledge, Tech. Report HPP-84-48, Stanford Univ., Palo Alto, CA,
1984.

32. Shachter, R. D., Intelligent probabilistic inference, in Uncertainty in Artificial Intelli-
gence 1 (L. N. Kanal and J. E Lemmer, Eds.), Amsterdam, North-Holland, 371-382,
1986.

33. Goldszmidt, M., Fast belief update using order-of-magnitude probabilities, Proceed-
ings of the 11th Conference of Uncertainty in AI, 1995.

34~ Cooper, G. E, A recursive-decomposition method for solving AI graph problems, Tech.
Report SMI-93-1, Dept. of Medicine, Univ. of Pittsburgh, 1993.

35~ Fung, R., and Del Favero, B., Backward simulation in Bayesian networks, Proceedings
of the lOth Conference of Uncertainty in AI (R. Lopez de Mantras and D. Poole, Eds.),
San Francisco, CA, Morgan Kaufmann, 227-234, 1994.

36. Shachter, R. D., Andersen, S. K., and Szolovits, P., Global conditioning for probabilistic
inference in belief networks, Proceedings of the lOth Conference of Uncertainty in AI,
514-522, 1994.

