
Binary Classifier Calibration Using an Ensemble of Linear Trend 
Estimation

Mahdi Pakdaman Naeini* and Gregory F. Cooper†

*Intelligent Systems Program, University of Pittsburgh

†Department of Biomedical Informatics, University of Pittsburgh

Abstract

Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. 

In this paper we present a new non-parametric calibration method called ensemble of linear trend 
estimation (ELiTE). ELiTE utilizes the recently proposed ℓ1 trend ltering signal approximation 

method [22] to find the mapping from uncalibrated classification scores to the calibrated 

probability estimates. ELiTE is designed to address the key limitations of the histogram binning-

based calibration methods which are (1) the use of a piecewise constant form of the calibration 

mapping using bins, and (2) the assumption of independence of predicted probabilities for the 

instances that are located in different bins.

The method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus, 

it can be applied with many existing classification models. We demonstrate the performance of 

ELiTE on real datasets for commonly used binary classification models. Experimental results 

show that the method outperforms several common binary-classifier calibration methods. In 

particular, ELiTE commonly performs statistically significantly better than the other methods, and 

never worse. Moreover, it is able to improve the calibration power of classifiers, while retaining 

their discrimination power. The method is also computationally tractable for large scale datasets, 

as it is practically O(N log N) time, where N is the number of samples.

1 Introduction

This paper focuses on developing a new non-parametric calibration method for post-

processing the output of commonly used binary classification models to generate accurate 

probabilities. Obtaining accurate probabilities is crucial in many real world decision making 

and data mining problems. Decision theory provides a rationale basis for intelligent agents 

to make decisions [29] in which the utilities and probabilities are combined in determining 

the actions that maximize expected utility. In many of decision problems, the probabilities 

need to be well-calibrated in order to achieve the goal of finding the best action. The 

predicted probabilities of a forecaster are well-calibrated if they are close to the objective 

probabilities (i.e., the frequency of the events in the long run). More specifically, we say that 

a classification model is well calibrated if events predicted to occur with probability p do 
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occur about p fraction of the time, for all p. This concept applies to binary as well as multi-

class classification problems.

Producing well-calibrated probabilistic predictions is critical in many areas of science (e.g., 

determining which experiments to perform), medicine (e.g., deciding which therapy to give 

a patient), business (e.g., making investment decisions), and many others. In data mining 

problems, obtaining well-calibrated classification models is crucial not only for decision-

making, but also for combining the output of different classification models [3]. It is also 

useful when we aim to use the output of a classifier not only to discriminate the instances 

but also to rank them [36, 19, 14]. Research on learning well calibrated models has not been 

explored in the data mining literature as extensively as has, for example, learning models 

that have high discrimination (e.g., high accuracy).

There are two main approaches to obtaining well-calibrated classification models. The first 

approach is to build a classification model that is intrinsically well-calibrated ab initio. This 

approach can restrict the designer of the data mining model by requiring major changes in 

the objective function (e.g., using a different type of loss function) and can potentially 

increase the complexity of the associated optimization program that learns the model. The 

other approach is to rely on existing discriminative data mining models and then calibrate 

their output using post-processing methods. This approach has the advantage that it is 

general, flexible, and it frees the designer of a data mining algorithm from modifying the 

learning procedure and the associated optimization method [25]. However, this approach has 

the potential to decrease discrimination when increasing calibration, if care is not taken. The 

method we describe in this paper is shown empirically to improve calibration of different 

types of classifiers (e.g., LR, SVM, and NB) while maintaining their discrimination 

performance well.

In general, there are two main applications of postprocessing calibration methods. First, they 

can be used to convert the outputs of discriminative classification methods with no apparent 

probabilistic interpretation to posterior class probabilities [27]. An example is an SVM 

model that learns a discriminative model that does not have a direct probabilistic 

interpretation. In this paper, we show this use of calibration to map SVM outputs to well-

calibrated probabilities. Second, calibration methods can be applied to improve the 

calibration of predictions of a probabilistic model that is miscalibrated. For example, a naïve 

Bayes (NB) model is a probabilistic model, but its class posteriors are often miscalibrated 

due to unrealistic independence assumptions [24]. The method we describe is shown 

empirically to improve the calibration of NB models without reducing their discrimination. 

The method can also work well on calibrating models that are less egregiously miscalibrated 

than are NB models.

2 Related work

Existing post-processing binary-classifier calibration models can be divided into parametric 

and non-parametric methods. Platt’s method is an example of the former; it uses a sigmoid 

transformation to map the output of a classifier into a calibrated probability [27]. The two 

parameters of the sigmoid function are learned in a maximum-likelihood framework. The 

Naeini and Cooper Page 2

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2017 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method was originally developed to transform the output of an SVM model into calibrated 

probabilities. It has also been used to calibrate other type of classifiers [24]. The method 

runs in O(1) at test time, and thus, it is fast. Its key disadvantage is the restrictive shape of 

sigmoid function that rarely fits the true distribution of the predictions [20].

A popular non-parametric calibration method is the equal frequency histogram binning 

model, which is also known as quantile binning [34]. In quantile binning, predictions are 

partitioned into B equal frequency bins. For each new prediction y that falls into a specific 

bin, the associated frequency of observed positive instances will be used as the calibrated 

estimate for P(z = 1|y), where z is the true label of an instance that is either 0 or 1. Quantile 

binning can be implemented in a way that allows it to be applied to large scale data mining 

problems. Its limitations include (1) bins inherently pigeonhole calibrated probabilities into 

only B possibilities, (2) bin boundaries remain fixed over all predictions, (3) there is 

uncertainty in the optimal number of the bins to use, (4) predictions are independent within 

different bins, and (5) estimated probabilities will have abrupt changes at the boundary of 

the bins [35].

The most commonly used non-parametric classifier calibration method in machine learning 

and data mining applications is the isotonic-regression-based calibration (IsoReg) model 

[35]. To build a mapping from the uncalibrated output of a classifier to the calibrated 

probability, IsoReg assumes the mapping is an isotonic (monotonic) mapping following the 

ranking imposed by the base classifier. The commonly used algorithm for isotonic 

regression is the Pool Adjacent Violators Algorithm (PAVA), which is linear in the number 

of training data instances [2]. An IsoReg model based on PAVA can be viewed as a 

histogram binning model [35] where the position of the boundaries are selected by fitting the 

best monotone approximation to the train data according to the ordering imposed by the 

classifier. There is also a variation of the isotonic-regression-based calibration method for 

predicting accurate probabilities with a ranking loss [23]. In addition, an extension to IsoReg 

combines the outputs generated by multiple binary classifiers to obtain calibrated 

probabilities [37]. While IsoReg can perform well on some real datasets, the monotonicity 

assumption it makes can fail in real data mining applications1 [25].

Recently, we introduced a new non-parametric Bayesian binary classifier calibration method 

called ABB [25]. ABB addresses the main drawbacks of the quantile binning method by 

considering all possible binning models induced by the training instances. In order to find 

calibrated probabilities, ABB applies Bayesian averaging over all possible binning models 

using the K2 Bayesian model scoring [8]. The main drawback of ABB is that it is 

computationally intractable for most real world applications, as it requires O(N2) 

computations for learning the model as well as O(N2) computations for computing the 

calibrated estimate for each of the test instances2. To address this problem, we introduced a 

new non-parametric calibration model called BBQ [25]. In order to find calibrated 

probability estimates, BBQ performs selective Bayesian averaging over a collection of 

1In the limit, the correctness of the ranking imposed by the base classifier, is equivalent to presuming that the classifier has AUC equal 
to 1, which rarely happens in real world data mining applications.
2Note that the running time for the test instance can be reduced to O(1) in any post-processing calibration model by using a simple 
caching technique that reduces the numerical precision of calibrated estimates in order to decrease calibration time [26]
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different quantile binning models using the BDeU Bayesian scoring function [15]. BBQ 

requires O(N log N) computations for learning the calibration model and O(log(N)) 

computations for computing the calibrated estimate for each of the test instances [25].

All of the above histogram binning-based calibration methods (IsoReg, ABB, and BBQ) 

have the following restrictions in common: (1) The ultimate generated calibration function 

that maps the uncalibrated classifier scores to the calibrated probabilities is piecewise 

constant, (2) The estimated probabilities will have abrupt changes at the boundary of the 

bins, and (3) Predictions are assumed to be independent within different bins. This paper 

presents a new binary classifier calibration method called ensemble of linear trend 
estimation (ELiTE) that extends the above histogram binning-based calibration methods by 

assuming that the calibration function is piecewise linear3. ELiTE cast the problem of 

finding the calibration mapping as a convex optimization problem. The resulting 

optimization program will be equivalent to the recently proposed ℓ1 trend filtering signal 

approximation method [22]. It uses recently proposed alternating direction method of 

multipliers (ADMM) based optimization method to find a collection of a piecewise linear 

calibration mappings [28]. Finally, it uses the AICc scoring measure [5] to combine the 

predictions made by these models to yield more robust calibrated predictions for each of the 

test instances.

3 Method

In all the classifier calibration methods, the postprocessing step can be seen as a mapping 

function that transforms the outputs of a classification model to probabilities that are 

intended to be well-calibrated. In all of the histogram binning-based calibration models—

including quantile binning [34], isotonic-regression-based calibration (IsoReg) [35], and our 

previous Bayesian extensions to the histogram binning, ABB and BBQ, [26, 25] — the 

generated mapping function will be a piecewise constant function. In this section we 

introduce the ensemble of linear trend estimation (ELiTE) calibration method that has the 

following three main advantages relative to all the above histogram binning-based 

calibration methods: (1) ELiTE assumes that the calibration mapping function is piecewise 

linear while the mapping found by quantile binning, IsoReg, ABB, and BBQ are always 

piecewise constant, (2) ELiTE removes the restrictive assumption that probability estimates 

are independent between the neighboring bins, and (3) ELiTE automatically finds the 

boundary of the bins through an optimization algorithm by trading off the best fit of the 

training instances for the tendency to follow the same trend in probability estimates. This 

trade-off will be controlled by a regularization parameter.

Before getting into the details of the method, we define some notation. Let yi and zi define 

respectively an uncalibrated classifier prediction and the true class of the i’th instance. In 

this paper, we focus on calibrating a binary classifier’s output4, and thus, zi ∈ {0, 1} and yi 

3It is possible to generalize the method to obtain piecewise polynomial calibration functions; however, we have noticed an over fitting 
to the training data by using piecewise polynomial degrees higher than 1.
4For classifiers that output scores that are not in the unit interval (e.g., SVM), we use a simple sigmoid transformation 

 to transform the scores into the unit interval.
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∈ [0; 1]. Without loss of generality, we can assume that the instances are sorted based on the 

classifier scores yi, so we have y1 < y2 < … < yN, where N is the total number of samples in 

the training data. Borrowing the term “bin” from the histogram binning literature, we define 

each bin as the largest interval over the training data with a uniform slope of change. The 

problem of finding an optimum piecewise linear calibration mapping can be formulated as 

the following optimization program:

(3.1)

where  is ℓ0 norm defined as the number of nonzero elements of the 

vector v. Also, the vector v ∈ RN−2 is defined as the second order finite difference vector 

associated with the training data 5  and B is an optimization 

parameter that is defined as the maximum number of bins that we could have over all the 

training data (Thus, B – 1 shows the number of change points or kinks in the calibration 

mapping function). The above optimization program tries to keep the estimated probability 

pi close to zi, the true class of the corresponding training instance, while the program 

constrains the number of kinks or change points in the slope of the calibration mapping 6. 

Solving the above optimization program is intractable and requires combinatorial 

optimization methods [22]. A natural convex relaxation of this problem can be obtained by 

substituting the ℓ0 norm with the ℓ1 norm using the sparsity property of the ℓ1 norm. After 

relaxing the ℓ0 norm, it is possible to rewrite the resulting constrained optimization program 

in the following equivalent Lagrangian form:

(3.2)

Where  is the vector of calibrated probability estimates and 

. Also, λ is a positive real number that regulates the 

trade-off between the complexity of the model and the goodness of fit by penalizing the total 

variation over the slope of the resulting calibration mapping function. The above 

optimization program is equivalent to the ℓ1 (linear) trend filtering signal approximation 

model [22]. The linear trend filtering itself is a special case of the recently introduced 

adaptive piecewise polynomial trend filtering model [33] 7.

The piecewise linear trend filtering estimation has the following properties that make it an 

attractive choice for estimating the calibration mapping function: (1) The final solution to 

5Note that an element of v is zero when the slope remains the same between two successively predicted points.
6If some of the training instances obtain equal classification scores, they will be replaced by an instance with the target value z that is 
equal to the average of their corresponding zi. In this case, we form a weighted objective in the optimization program in Equation 3.1
7Note that the adaptive piecewise polynomial trend filtering model is itself a special case of generalized lasso problem [32]
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the optimization program pˆ will be a continuous piecewise linear function with the change 

points occurring on the training data [22], so the final calibration mapping function will be a 

continuous function of uncalibrated scores yi, and the estimated probabilities will not have 

any abrupt changes at the boundary of the bins, (2) Due to shrinkage property of the lasso-

based penalties, the final probability estimates in two neighboring bins will shrink toward 

each other [32], as a result it will relax the restrictive independence assumption made in 

histogram binning-based calibration models, (3) The solution path to the optimization 

program in Equation 3.2 is piecewise linear with respect to the regularization parameter λ. 

This will make it computationally efficient to find the entire path of the solutions to the trend 

filtering problem for small sample sizes [32].

There are a few different methods to solve the trend filtering optimization problem: It is 

possible to convert the trend filtering problem into the standard lasso problem and then use 

the LARS algorithm to find all the solution paths with respect to λ [11, 32]. It is also 

possible to cast the problem as a special case of the generalized lasso signal approximation 

[32], and then derive the dual program and utilize the piecewise linearity property of the 

solution path in the dual program to find the entire path of the solutions [32]. However, these 

two methods do not scale well for large N [33]. Another approach is to use coordinate 

descent methods to solve the dual program of the generalized lasso problem [33]. There are 

two specialized optimization methods designed to solve the trend filtering optimization 

problem. The first method is based on the specialized interior-point method optimization 

that was proposed by Kim et al. [22]. The method requires O(N) computations to solve a 

banded linear system of equations in each iteration of the interior-point optimization 

algorithm; in the worst-case it will solve the trend filtering for a single value of λ in O(N1.5). 

However, the authors claim that in practice the interior-point method converges in tens of 

iterations, in which case the general running time for solving the optimization problem will 

still be O(N). The other specialized optimization method for trend filtering problem is 

recently proposed by A. Ramdas et al. [28]. They introduced a specialized alternating 
direction method of multipliers (ADMM), and they showed that their method has better 

scalability and faster convergence rate for large scale problems compared to the interior-

point based method, while on the small sample sizes they have similar performance to the 

interior-point based method proposed by Kim et al. [22]. In our implementation of ELiTE, 

we use the specialized ADMM optimization method 8. For the sake of completeness, we 

briefly describe the method; more detailed information about the algorithm and the 

derivations can be found in A. Ramdas et al. [28].

In order to solve the trend filtering problem in Equation 3.2, the specialized ADMM method 

introduces a new auxiliary parameter α to rewrite the unconstrained optimization program in 

Equation 3.2 as the following constrained optimization program:

(3.3)

8The specialized ADMM code is publicly available at https://github.com/statsmaths/glmgen
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where Dk ∈ Rk−1×k is defined as follows:

and, .

The corresponding augmented Lagrangian of the optimization program in Equation 3.3 will 

be as  Using the 

augmented Lagrangian and performing some calculations [4], the ADMM iterations will be 

as follows:

.

The tricky part in the above sequential updates is the second equation related to updating the 

value of α. It requires solving an optimization problem that is equivalent to the fused lasso 

signal approximation [31]. In implementing the specialized ADMM method, Ramdas et al. 

used a computationally efficient dynamic programming method proposed by N. Johnson 

[21] that finds the fused lasso solution in O(N). They reported that ADMM iterations 

converge in a constant number of iterations. As a result, the ultimate time for finding the 

trend filtering solution will still be O(N) [28].

ELiTE employs the specialized ADMM optimization method just described to generate a 

collection of trend filtering models (one for each value of λ ranging equally in the log space 

from λmax to λmax * 10−4, where λmax is the corresponding value of λ that gives the best 

affine approximation of the calibration mapping that is 

 [22]). It then uses the Akaike information criterion 

with a correction for finite sample sizes (AICc) [5] to score each of the models 9. We use the 

unbiased estimate of the degree of freedom for each linear trend filtering model as the 

effective number of parameters in computing the scores [33]. Assume ELiTE yields the 

piecewise linear calibration models M1, M2 …, MT, where T is the total number of 

generated models by changing λ (in our experiments T = 50). For any new classifier output 

y, the calibrated prediction in the ELiTE model is defined using the following weighted 

averaging [16]:

9We also tried BIC and AIC model scoring functions. The AIC scoring shows extreme overfitting to the training data, while BIC 
results were comparable to AICc scoring. We finally chose AICc since it performed slightly better than BIC in general.
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where  is the probability estimate obtained using the trend filter model Mi for 

the uncalibrated classifier output y. Also, Score(Mi) is obtained using the AICc scoring 

function [30].

4 Experimental Setup

This section describes the set of experiments that we performed to evaluate the performance 

of the ELiTE calibration method in comparison to other commonly used calibration 

methods. The comparison methods include quantile binning [34], Platt’s method[27], 

isotonic regression[35], and BBQ, which is a Bayesian extension to the quantile binning 

method [25]. We did not include ABB in our experiments mainly because it is not 

computationally tractable for datasets that have more than couple of thousands of instances. 

Moreover, even for small size datasets, we noticed that ABB performs similarly to BBQ.

In order to evaluate the performance of the calibration methods, we use 5 different 

evaluation measures. We use Accuracy (Acc) and area under ROC curve (AUC) to evaluate 

how well the methods discriminate the positive and negative instances in the feature space. 

We also utilize the three measures of calibration: root mean square error (RMSE), maximum 
calibration error (MCE), and expected calibration error (ECE) 10 [25, 26].

MCE and ECE are computed by partitioning the output space of the binary classifier, which 

is the interval [0; 1], into K fixed number of bins (K = 10 in our experiments). The estimated 

probability for each instance is located in one of the bins. For each bin we can define the 

associated calibration error as the absolute difference between the mean value of the 

predictions and the actual observed frequency of positive instances. The MCE calculates the 

maximum calibration error among the bins, and ECE calculates expected calibration error 

over the bins, using empirical estimates. The lower the values of MCE and ECE, the better 

the calibration of a model [25, 26].

We used three common classifiers, Logistic Regression (LR), Support Vector Machines 

(SVM), and Naïve Bayes (NB) to evaluate the performance of ELiTE. In the experiments, 

we used the average over 10 random runs of 10-fold cross validation, and we always used 

the training data for calibrating the models.

5 Experimental Results

We ran two sets of experiments on 35 binary outcome classification datasets from the UCI 

and LibSVM repositories11 [1, 6]. In the first set of experiments we were interested in 

evaluating if there is experimental support for using ELiTE as a post-processing calibration 

10Note that, to be more precise, RMSE evaluates both calibration and refinement of the predicted probabilities. Refinement accounts 
for the usefulness of the probabilities by favoring those that are either close to 0 or 1 [9, 7]
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method. Table 1 shows the 95% confidence interval for the mean of the random variable X, 

which is defined as the percentage of the gain (or loss) of ELiTE with respect to the base 

classifier:

(5.4)

where measure is one of the evaluation measures AUC, ACC, ECE, MCE, or RMSE. Also, 

method denotes one of the choices of the base classifiers, namely, LR, SVM, or NB. For 

instance, Table 1 shows that by post-processing the output of SVM using ELiTE, we are 

95% confident to gain anywhere from 16% to 30% average improvement in terms of RMSE. 

This could be a promising result, depending on the application, considering the 95% CI for 

the AUC which shows that by using ELiTE we are 95% confident not to lose more than 1% 

of the SVM discrimination power in terms of AUC (Note also that the CI includes zero, 

which indicates that there is not a statistically significant difference between the 

performance of SVM and ELiTE in terms of AUC).

Overall, the results in Table 1 show that there is not a statistically meaningful difference 

between the performance of ELiTE and the base classifiers in terms of AUC. The results 

support at a 95% confidence level that ELiTE improves the performance of the LR and NB 

base classifiers in terms of ACC. Furthermore, the results in Table 1 show that by post-

processing the output of LR, SVM, and NB using ELiTE, we can make dramatic 

improvements in terms of calibration measured by RMSE, ECE, and MCE. For instance, the 

results indicate that at a 95% confidence level, ELiTE improved the average performance of 

NB in terms of ECE anywhere from 27% to 55%, which could be practically significant in 

many decision-making and data mining applications.

In the second set of experiments on real data, we are interested in evaluating the 

performance of ELiTE compared with the base classifier and other calibration methods. To 

evaluate the performance of models, we used the recommended statistical test procedure by 

Janez Demsar [10]. More specifically, we used the non-parametric testing method based on 

the FF test statistics [18], which is an improved version of Freidman non-parametric 

hypothesis testing method [13], followed by Holm’s step-down procedure [17] to evaluate 

the performance of ELiTE in comparison with other methods, across the 35 baseline 

datasets.

The results on real datasets are shown in the Figures 1-5. In these graphs, we indicate the 

average rank of each method (1 is best) and we connect the methods that are statistically 

equivalent with our target method ELiTE using a horizontal bar (e.g., in Figure 3a the 

average rank of ELiTE is 1.89, and it is performing statistically equivalent to isoreg in terms 

of RMSE; however, its performance in terms of RMSE is statistically superior to Hist, 

11The datasets used were as follows: spect, adult, breast, page-blocks, pendigits, ad, australian, colon cancer, letter unbalanced, letter 
balanced, diabetes, duke, fourclass, german numer, gisette scale, heart, ionosphere scale, liver disorders, mushrooms, sonar scale, 
splice, svmguide1, svmguide3, coil2000, balance, breast cancer, w1a, thyroid sick, scene, uscrime, solar, car34, car4, mamography, 
satimage.
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Platt’s method, BBQ, and the base classifier LR). Figure 1 shows the results of comparing 

the AUC of ELiTE with other methods. As shown, ELiTE performs significantly better than 

all other calibration methods in terms of AUC at a confidence level of α = 0.05. Also, its 

performance in terms of AUC is always statistically equivalent to the base classifier (LR, 

SVM, NB). Note that we did not include Platt’s method in our statistical test for AUC, since 

the AUC of the Platt’s method would be the same as the AUC of the base classifier; this 

pattern occurs because Platt’s method always uses a monotonic mapping of the base 

classifier’s output as the calibrated score.

Figure 2 shows the results of comparing ACC of ELiTE with the other methods. As shown, 

ELiTE performs statistically better than histogram binning and Platt’s method, as well as the 

base classifiers NB, and LR. However, ELiTE is statistically equivalent to BBQ and IsoReg, 

as well as the base classifier SVM, in our experiments over 35 real datasets. Figure 3 shows 

the results of our experiments in comparing the performance of ELiTE with other calibration 

methods in terms of RMSE. ELiTE always outperforms the base classifier and all other 

calibration methods. However, its difference with isotonic regression is not statistically 

significant, when the base classifier is LR or NB.

Figures 4, and 5 show the results of comparing ELiTE performance with the others in terms 

of ECE and MCE, respectively. They show that ELiTE performs superior to all other 

calibration methods and to the base classifier, in terms of ECE and MCE. However, its 

difference with BBQ is not statistically significant in terms of ECE when the base classifier 

is SVM or NB. Also, in terms of MCE, the difference between ELiTE and BBQ is not 

statistically significant when SVM is used as the base classifier.

Overall, in terms of discrimination measured by AUC and ACC, the results show that the 

proposed non-parametric calibration method either outperforms the other calibration 

methods or has a performance that is not statistically significantly different from the other 

methods and the base classifier. In terms of calibration performance, ELiTE is often 

statistically superior to the other methods and is never statistically significantly worse.

6 Conclusion

In this paper, we presented a new non-parametric binary classifier calibration method called 

ensemble of linear trend estimation (ELiTE) 12 that generalizes all the histogram binning-

based calibration methods. ELiTE assumes that the calibration mapping function is 

piecewise linear while the mapping found by quantile binning, IsoReg, ABB, and BBQ are 

always piecewise constant. The method is computationally tractable, as it runs in O(N log N) 

for N training instances. It can be used to calibrate many different types of binary classifiers, 

including logistic regression, support vector machines, naïve Bayes, and others. Our 

experiments show that by post-processing the output of classifiers using ELiTE, we can gain 

high calibration improvement in terms of RMSE, ECE, and MCE, without losing any 

statistically meaningful discrimination performance. Moreover, our experimental evaluation 

12An implementation of ELiTE method will be made publicly available at the following address: https://github.com/pakdaman/
calibration.git
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on a broad range of real datasets shows that ELiTE outperforms other commonly used 

binary classifier calibration methods as well as BBQ (our recently introduced Bayesian 

extension to the quantile binning method) [25].

An important advantage of ELiTE over BBQ is that it can be naturally extended to multi-

class and multi-label calibration models, similar to what has been done for the standard 

IsoReg [35]. This is an area of our current research. We also plan to investigate theoretical 

properties of ELiTE. We are interested to utilize the minimax properties of the piecewise 

polynomial trend filtering method [33] to find theoretical guarantees regarding the 

discrimination and calibration performance of ELiTE, similar to what has been proved for 

the AUC guarantees of IsoReg [12].
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Figure 1. 
Performance of each method in terms of average rank of AUC on the real datasets. All the 

methods which are not connected to ELiTE by the horizontal bar are statistically 

significantly worse than ELiTE (using an improved Friedman test followed by Holm’s step-

down procedure at a 0.05 significance level).
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Figure 2. 
Performance of each method in terms of average rank of ACC on the real datasets. All the 

methods which are not connected to ELiTE by the horizontal bar are statistically 

significantly worse than ELiTE (using an improved Friedman test at a 0.05 significance 

level).
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Figure 3. 
Performance of each method in terms of average rank of RMSE on the real datasets. All the 

methods which are not connected to ELiTE by the horizontal bar are statistically 

significantly worse than ELiTE (using an improved Friedman test followed by Holm’s step-

down procedure at a 0.05 significance level).
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Figure 4. 
Performance of each method in terms of average rank of ECE on the benchmark datasets. 

All the methods which are not connected to ELiTE by the horizontal bar are statistically 

significantly worse than ELiTE (using an improved Friedman test followed by Holm’s step-

down procedure at a 0.05 significance level).
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Figure 5. 
Performance of each method in terms of average rank of MCE on the benchmark datasets. 

ELiTE is almost always statistically superior to all other competing methods (using the 

improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance 

level).
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Table 1

The 95% confidence interval for the average percentage of improvement over the base classifiers (LR, SVM, 

NB) by using the ELiTE method for post-processing. Positive entries for AUC and ACC mean ELiTE is on 

average performing better discrimination than the base classifiers. Negative entries for RMSE, ECE, and MCE 

mean that ELiTE is on average performing better calibration than the base classifiers.

LR SVM NB

AUC [-0.01 , 0.01] [-0.01 , 0.01] [-0.01 , 0.01]

ACC [0.00 , 0.02] [0.00 , 0.01] [0.02 , 0.08]

RMSE [-0.14 , -0.02] [-0.30 , -0.16] [-0.22 , -0.11]

ECE [-0.40 , -0.18] [-0.76 , -0.56] [-0.55 , -0.27]

MCE [-0.35 , -0.12] [-0.58 , -0.33] [-0.62 , -0.39]
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