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ABSTRACT

Motivation: Disease state prediction from biomarker profiling
studies is an important problem because more accurate classification
models will potentially lead to the discovery of better, more
discriminative markers. Data mining methods are routinely applied
to such analyses of biomedical datasets generated from high-
throughput ‘omic’ technologies applied to clinical samples from
tissues or bodily fluids. Past work has demonstrated that rule
models can be successfully applied to this problem, since they
can produce understandable models that facilitate review of
discriminative biomarkers by biomedical scientists. While many
rule-based methods produce rules that make predictions under
uncertainty, they typically do not quantify the uncertainty in the
validity of the rule itself. This article describes an approach that uses
a Bayesian score to evaluate rule models.
Results: We have combined the expressiveness of rules with the
mathematical rigor of Bayesian networks (BNs) to develop and
evaluate a Bayesian rule learning (BRL) system. This system utilizes
a novel variant of the K2 algorithm for building BNs from the
training data to provide probabilistic scores for IF-antecedent-THEN-
consequent rules using heuristic best-first search. We then apply
rule-based inference to evaluate the learned models during 10-fold
cross-validation performed two times. The BRL system is evaluated
on 24 published ‘omic’ datasets, and on average it performs on
par or better than other readily available rule learning methods.
Moreover, BRL produces models that contain on average 70%
fewer variables, which means that the biomarker panels for disease
prediction contain fewer markers for further verification and validation
by bench scientists.
Contact: vanathi@pitt.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
High-throughput ‘omic’ data that measure biomarkers in bodily
fluids or tissues are accumulating at a rapid pace, and such data have
the potential for the discovery of biomarkers for early diagnosis,
monitoring and treatment of diseases such as cancer. Data mining
methods that learn models from high-dimensional data are being
increasingly used for the multivariate analyses of such biomedical
datasets. Together with statistical univariate analyses, some insights
into predictive biomarkers of disease states can be gleaned, though
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the results may not generalize due to the small sizes of available
training data, typically less than 200 samples.

Due to the large imbalance between variable dimensionality
(several thousand) and the sample size (a few hundred), there is a
need for data mining methods that can discover significant and robust
biomarkers from high-dimensional data. Rule learning is a useful
data mining technique for the discovery of biomarkers from high-
dimensional biomedical data. We have previously developed and
applied rule learning methods to analyze ‘omic’ data successfully
(Gopalakrishnan et al., 2004, 2006; Ranganathan et al., 2005). Rules
have several advantages, including that they are easy for humans to
interpret, represent knowledge modularly and can be applied using
tractable inference procedures.

In this article, we develop and evaluate a novel probabilistic
method for learning rules called the Bayesian rule learning (BRL)
algorithm. This algorithm learns a particular form of a Bayesian
network (BN) from data that optimizes a Bayesian score, and then
translates the BN into a set of probabilistic rules. The use of
the Bayesian approach allows prior knowledge (as probabilities)
to be incorporated into the learning process in a mathematically
coherent fashion. The possibility of over-fitting is attenuated by the
incorporation of prior probabilities into the rule-discovery process.
BRL outputs the predictive rule model with the best Bayesian score,
which represents the probability that the model is valid given the
data.

The remainder of the article is organized as follows. Section 2
presents the BRL algorithm and briefly reviews other popular
rule learning methods. Section 3 describes the datasets and the
experimental setup to evaluate BRL. Section 4 presents the results
of applying BRL to 24 published ‘omic’ datasets, and compares
its performance with multiple rule-learning algorithms. Section 5
presents our conclusions.

2 METHODS
In biomedical data mining, a typical task entails the learning of a
mathematical model from gene expression or protein expression data that
predicts an individual phenotype, such as disease or health. Such a task is
called classification and the model that is learned is termed as a classifier.
In data mining, the variable that is predicted is called the target variable
(or simply the target), and the features used in the prediction are called
the predictor variables (or simply the predictors). Rule learning is a useful
technique for knowledge discovery from data that is discrete.

In this article, we present a Bayesian method for learning BNs and
translating it into rules as shown in Figure 1. A rule model is a set of
rules that together comprise a classifier that can be applied to new data
to predict the target. The main contribution of this BRL method is its ability
to quantify uncertainty about the validity of a rule model using a Bayesian
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Rule Set  
0. ((M23197_at = Negative Infinity..312.500) (U46499_at = 
Negative Infinity..154.500)) ==> (@Class = 0)
 CF=0.977, Av.Cost=1.0, CF/Cost=0.977, P=0.0, 
TP=41, FP=0, Pos=47, Neg=25 

1. ((M23197_at = 312.500..Infinity) (U46499_at = 
154.500..Infinity)) ==> (@Class = 2) 
 CF=0.962, Av.Cost=1.0, CF/Cost=0.962, P=0.0, 
TP=24, FP=0, Pos=25, Neg=47 

2. ((M23197_at = 312.500..Infinity) (U46499_at = Negative 

Infinity..154.500)) ==> (@Class = 0) 

 CF=0.75, Av.Cost=1.0, CF/Cost=0.75, P=0.423, 

TP=2, FP=0, Pos=47, Neg=25 

3. ((M23197_at = Negative Infinity..312.500) (U46499_at = 

154.500..Infinity)) ==> (@Class = 0) 

 CF=0.714, Av.Cost=1.0, CF/Cost=0.714, P=0.428, 

TP=4, FP=1, Pos=47, Neg=25 

M23197

_at 

U46499

_at

@Class 

Fig. 1. A BN structure learned by BRL on the acute lymphoblastic leukemia
(ALL) versus acute myeloid leukemia (AML) dataset (Golub et al., 1999)
and its equivalent set of rules. @Class refers to the target variable that can
take on values of either 0 (ALL) or 2 (AML) in this example. Each rule is
associated with statistics from the training data (see note 1).

score. This score is used for model selection. We now discuss in detail the
BRL method. This algorithm learns BN models from the data and the model
is then translated into a set of rules with associated statistics.1 These rules are
mutually exclusive and exhaustive over the values of the predictor variables,
and hence inference using these set of rules becomes trivial. Given a new
test case, the rule that matches its values for the predictor variables is used
to infer the value of the target variable.

2.1 Bayesian networks
A BN is a probabilistic model that consists of two components: a graphical
structure and a set of probability parameters. The graphical structure consists
of a directed acyclic graph, in which nodes represent variables and variables
are related to each other by directed arcs that do not form any directed
cycles. Associated with each node (let us call it a child node) is a probability
distribution on that node given the state of its parent nodes, and all the
probability distributions for all the nodes taken together provide a factored
(and often concise) representation of the joint probability distribution over
all the variables (Pearl, 1988). Learning a BN is a two-step process
corresponding to learning the structure and the parameters of the model,

1CF refers to certainty factor or degree of belief in the rule (Shortliffe et al.,
1975; Heckerman, D., 1985), P, P-value from Fisher’s exact test; TP, number
of true positives (match both sides of the rule); FP, number of false positives
(match rule antecedent, but not consequent); Pos, number of positive
examples (match rule consequent); and Neg, number of negative examples
(do not match rule consequent). Cost measures could be incorporated, but
are not used for the experiments in this article.

and several methods have been developed to automatically learn BNs from
data (Neapolitan, 2004). Here, we use the Bayesian method called K2 (both
the K2 scoring measure and the K2 forward stepping search heuristic) for
learning BNs (Cooper and Herkovits, 1992).

The K2 scoring measure (Cooper and Herskovits, 1992) assumes that
the variables are discrete, the cases (training examples) occur independently,
there are number of cases that have variables with missing values2 and there is
a uniform prior probability distribution over the space of all possible network
structures. The K2 measure also assumes that every possible probability
distribution over the values of a node given a state of its parents is equally
likely (uniform). Under these assumptions, a closed form solution for the
Bayesian score is given by the following equation (Cooper and Herskovits,
1992):

P(D|M)=
n∏

i=1

qi∏

j=1

(ri −1)!
(Nij +ri −1)!

ri∏

k=1

Nijk !, (1)

where M is the BN structure under consideration, D the data used to learn
M, n the number of variables in M, qi the number of parent states of child
variable i, ri the cardinality (number of values or states) of variable i and
Nijk the number of instances in the training database D for which variable i
has the value k and the parents of i have the value state denoted by index j.
Also, Nij is the sum over k of Nijk .

Since it is usually computationally intractable to search over all possible
BN structures to locate the one with the highest score, a greedy search in the
space of BNs is employed. The greedy search method used by K2 (Cooper
and Herskovits, 1992), requires an ordering on the variables and a user-
specified parameter for the maximum number of parents any variable in the
network can have.

2.2 Bayesian rule learning
The BRL algorithm uses the score given by Equation (1) to learn simple BNs.
In particular, (i) BRL considers constrained BNs where the BN consists of
one child variable, which is the target to be predicted, and other variables are
parents of it; (ii) only the target node is evaluated with the Bayesian score;
and (iii) models are searched by utilizing a beam (memory of particular size)
to store high-scoring BNs. The beam refers to a restricted memory size for
storing BN structures and is implemented as a priority queue of fixed width
(beam size), where BNs are stored according to their score. This reduces the
memory requirement for heuristic, best-first search, by exploring only those
BN structures that are high scoring, while at the same time providing the
ability to improve upon greedy search with a beam size of 1.

Using the constrained structure of the algorithm in Figure 2, as illustrated
by the model shown in Figure 1, Equation (1) simplifies further to the
following equation:

P(D|M)=
q∏

j=1

(r−1)!
(Nj +r−1)!

r∏

k=1

Njk !, (2)

where q is the number of joint parent states of the target variable, r the
cardinality (number of values or states) of the target variable and Njk the
number of instances in the training database D for which the target variable
has the value k and its parents have the joint value state denoted by index j.
Also, Nj is the sum over k of Njk .

Figure 1 depicts an example of BN structure M learned by BRL,
where @Class represents a target variable and two genes M23197_at and
U46499_at are its parents. The values or expression of these genes influence
the target class. Figure 1 depicts M and the set of rules derived from M.
A rule set is defined as the conditional probability, such as the conditional
probability P(@Class | M23197_at, U46499_at) for all values of M23197_at

2Missing values can be accommodated by including an extra state for a
missing value of a variable. That extra state can be labeled, for example,
as ‘missing’. Thus, a variable with two domain values (e.g. true and false)
becomes a variable with three possible values (e.g. true, false and missing).

669



[11:53 9/2/2010 Bioinformatics-btq005.tex] Page: 670 668–675

V.Gopalakrishnan et al.

INPUT: Discrete predictor variables (X1..n) and target variable (T), an 
upper bound MAX_CONJS on the number of parents that T can have, 
beam-width b, and training data D containing m cases  
OUTPUT: A disjunction of conjunctive probabilistic IF-THEN rules 
DEFINITIONS: 
M = Bayesian Network structure; 
P(D | M) = function that returns the Bayesian score (marginal likeli-
hood) for model M and data D;
B = Beam of size b that sorts models by their score in descending 
order; 
V = Set of all variables Xi ;
F = Priority queue containing final structures (that cannot be improved 
further by adding a single variable) sorted by their scores in descend-
ing order; 
A = Subset of V containing Xi already appearing in final structures;  
Parents(M) = function that returns the set of parents Xi  of T in M.
ALGORITHM: 
1. Create model M containing just target node T and place M on 

beam B.
2. A = {} 
3. WHILE (Beam B is not Empty AND A ⊂ V) DO: 
4. M  Highest scoring model removed from B
5.  X = V – {parents(M) ∪ A}   /* Xi NOT in M or A */ 
6.       Set score_improves = false 
7.       IF  (X not empty AND 
                              | parents(M) | < MAX_CONJS) THEN 
8.             FOR (Each Xi in X) DO: 

Mnew Add Xi as parent of T in M
IF (score(Mnew, D) >  score(M, D)) THEN 

Place Mnew on B
Set score_improves = true       

   ENDIF 
  ENDFOR 

   ENDIF 
9.        IF (score_improves is false) THEN 

Place M on F
A = A ∪ {all Xi in M}

        ENDIF 
    ENDWHILE 

10. MF  First model removed from priority queue F
        FOR each possible joint state j of values for all Xi in M F 

 FOR each possible value k of target variable T 
  Calculate CF(Rjk)  ENDFOR 

 Let s = argmaxk(maxj(CF(Rjk)))
Output Rjs as: IF (Xi in state j) THEN T=s with CF(Rjs.)

ENDFOR

Fig. 2. The BRL algorithm.

and U46499_at. In the example, each of the two genes can take on two
discrete ranges of values. Hence, the total number of possible combinations
of the values for the predictor variables is four (Rules 0–3).

The Bayesian score [Equation (2)] represents the joint probability of the
model and the data under the assumption of uniform structure priors. Since
P(M |D) ∝ P(D|M), given the assumption that all models are equally likely
a priori, the Bayesian score can be directly utilized as a measure of model
uncertainty and used to prioritize and select models. Breadth-first marker
propagation (Aronis and Provost, 1997) is utilized to record the matching
statistics (or counts) and greatly speeds up the calculations by requiring
just one pass through the training data to record the counts. BRL is thus
very efficient and runs in O(n2m) time given n+1 variables and m training
examples, using the default constant values for beam size b and the maximum
conjunct parameter MAX_CONJS, which are both user-specified.

The BRL algorithm is shown in Figure 2. It takes as input a set of input
variables X, a target variable T , an upper bound on the number of parents
that T can have and training data containing vectors of values for X’s and
the corresponding value for T . The user can also provide a beam width b
that restricts the number of BNs that are in the priority queue. The default
beam width is 1000.

In Step 1, a BN containing just the target node with zero parents is created,
and it is scored using Equation (2). Step 2 initializes the list of variables X that
appear in models that have good scores and cannot have a better score by the
addition of any single parent of T . The loop condition in Step 3 checks to see
whether there are still models on the beam that can be expanded further by the
addition of a parent variable such that the score would improve. Steps 4–8

P(X=x1) = 0.7   P(T=t | X=x1) = 0.8

P(X=x2) = 0.3   P(T=f | X=x1) = 0.2

P(T=t | X=x2) = 0.4

P(T=f | X=x2) = 0.6

T

Rule Model

IF (X = x1) THEN T = t 
   CF = 4
IF (X = x1) THEN T = f
  CF = 0.25
IF (X = x2) THEN T = t 
  CF = 0.67
IF (X = x2) THEN T = f
  CF = 1.5 

Bayesian Model

X

Fig. 3. Example of a BN (left) to a set of rules (right), where the CF is
expressed as the likelihood ratio of the conditional probability of the target
value given the value of its parent variable. As seen in Rule 1, the CF is the
likelihood ratio 0.8/0.2 = 4. The two rules in the middle are automatically
pruned by BRL and only the higher CF rule for each unique rule antecedent
is retained in the rule model.

perform one-step forward search by adding one more allowed variable as
an additional parent of the target T to the structure. Specialization refers
to the addition of a parent variable (not already present) to the structure of
current model, such that the total number of parent variables in the model
does not exceed the upper bound MAX_CONJS. The default value we use
for MAX_CONJS is 5.

In Step 9, a check is made to see whether the score of the model removed
from the beam improved after all one-step specializations. If not, that model
is placed on a priority queue containing final model structures ordered
according to their Bayesian scores. Even though we store many final models
on the final priority queue, only the best scoring model is presented to the
user in the form of a rule model in Step 10. For each value of target variable
T , its probability given each state of possible values of its parent variables is
calculated from the training data. The certainty factor is calculated as shown
in Figure 3.

We perform a simple pruning in Step 10, wherein we output only the rule
with the target value that has the highest probability given the particular state
of its parent variables (Fig. 3). There are many other methods that could be
used to perform pruning of the rules generated in Step 10, such as the number
of training examples covered by the rule (Han and Kamber, 2006).

Also, we perform an optimization to increase search efficiency of the
BRL algorithm. As can be seen in Step 9, the algorithm keeps track of those
sets of variables that cannot be specialized further by addition of single
variables as parents of the target such that the Bayesian score improves. The
assumption is that if a predictor is in some final rule, then it is unlikely to
be a strong predictor in another rule. While empirically, we observe that this
assumption works well for most datasets that we have analyzed, it is certainly
possible that there are datasets for which the assumption will not work well.
Thus, extensions to this basic BRL algorithm can be explored along several
directions to overcome some of the assumptions and limitations.

2.3 Rule learning methods
For our experiments we used three readily available rule learning methods:
Conjunctive Rule Learner, RIPPER and C4.5. Conjunctive Rule Learner
is a simple rule learner that learns a set of simple conjunctive rules that
optimizes the coverage and predictive accuracy. It uses a technique called
Reduced Error Pruning (Furnkranz and Widmer, 1994) to trim an initial set
of rules to the smallest and simplest subset of rules that provide highest
discrimination. Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) was developed by Cohen (1995) and uses the REP technique in
Conjunctive Rule Learner, but performs multiple runs (Cohen, 1996). C4.5
is a decision tree learner developed by Quinlan (1994) that extends the basic
decision tree learner ID3 (Quinlan, 1986) to improve classification. These
improvements include parameterization of the depth of the decision tree,
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rule post-pruning, ability to handle continuous-valued attributes, ability to
choose the best attribute to use in growing the decision tree and an increase
in computational efficiency (Gabrilovich and Markovitch, 2004; Xing et al.,
2007).

2.4 Discretization
The rule learners described above require variables with discrete
values. We used a new discretization method called heuristic efficient
Bayesian discretization (EBD; Lustgarten, 2009), which we developed for
transforming continuous data to discrete. EBD uses a Bayesian score to
discover the appropriate discretization for a continuous-valued variable and
runs efficiently on high-dimensional biomedical datasets. Compared with
Fayyad and Irani’s (FI) discretization method (Fayyad and Irani, 1993),
which is an efficient method commonly used for discretization, EBD had
statistically significantly better performance in the evaluation report in
Lustgarten et al. (2008).

3 EXPERIMENTAL SETUP

3.1 Biomedical datasets
The performance of BRL and the three comparison rule learning
methods were evaluated on 24 biomedical datasets [21 publicly
available genomic datasets, two publicly available proteomic
datasets from the Surface Enhanced Laser/Desorption Ionization
Time of Flight (SELDI–TOF; Wright et al., 1999) mass spectrometry
platform and one University of Pittsburgh proteomic dataset, which
is a diagnostic dataset from a Amyotrophic Lateral Sclerosis study
obtained using the SELDI–TOF platform]. The datasets, along with
their type (prognostic/diagnostic), number of instances, number of
variables and the majority target-value proportions are given in
Table 1.

3.2 Data mining techniques and statistical analysis
As mentioned, for comparison, we used three rule learners, namely,
Conjunctive Rule Learner, RIPPER and C4.5 as implemented in
WEKA version 3.5.6 (Witten and Frank, 2005). We used two
versions of BRL, namely, BRL1 (beam size set to 1) and BRL1000
(beam size set to 1000). We used heuristic EBD for discretization;
the discretization cutpoints were learned from the training set and
then applied to both the training and test sets. We implemented EBD
in Java, so that it can be used in conjunction with WEKA.

We evaluated the rule learning methods using 10-fold cross-
validation performed two times. The methods were evaluated using
two measures: balanced accuracy (BACC), which is the average
of sensitivity and specificity over all one-versus-rest comparisons
for every target value, and relative classifier information (RCI;
Sindhwani et al., 2001). These measures are described below.

The BACC differs from accuracy in that it compensates for
skewed distribution of classes in a dataset. BACC is defined as
follows:

BACC =
∑

c Sensitivity(c)+Specificity(c)
|C|

Sensitivity(c) = TP(c|c)

TP(c|c)+FN(¬c|c)

Specificity(c) = TN(¬c|¬c)

TN(¬c|¬c)+FP(c|¬c)

where C is the set of the target variable values, and Sensitivity(c)
[Specificity(c)] refers to the sensitivity (specificity) of the target
value c versus all other values of the target. TP(c|c) is the number of

Table 1. Biomedical datasets used for the comparison experiments

# T #C #A #S M Reference

1 D 2 6584 61 0.651 Alon et al. (1999)
2 D 3 12 582 72 0.387 Armstrong et al. (2002)
3 P 2 5372 86 0.795 Beer et al. (2002)
4 D 5 12 600 203 0.657 Bhattacharjee et al. (2001)
5 P 2 5372 69 0.746 Bhattacharjee et al. (2001)
6 D 2 7129 72 0.650 Golub et al., 1999
7 D 2 7464 36 0.500 Hedenfalk et al. (2001)
8 P 2 7129 60 0.661 Iizuka et al. (2003)
9 D 4 2308 83 0.345 Khan et al. (2001)
10 D 4 12 625 50 0.296 Nutt et al. (2003)
11 D 5 7129 90 0.642 Pomeroy et al. (2002)
12 P 2 7129 60 0.645 Pomeroy et al. (2002)
13 D 26 16 063 280 0.574 Ramaswamy et al. (2001)
14 P 2 7399 240 0.145 Rosenwald et al. (2002)
15 D 9 7129 60 0.506 Staunton et al. (2001)
16 D 2 7129 77 0.746 Shipp et al. (2002)
17 D 2 10 510 102 0.150 Singh et al. (2002)
18 D 11 12 533 174 0.150 Su et al. (2001)
19 P 2 24 481 78 0.562 van’t Veer et al. (2002)
20 D 2 7039 39 0.878 Welsh et al. (2001)
21 P 2 12 625 249 0.805 Yeoh et al. (2002)
22 D 2 11 003 322 0.784 Petricoin et al. (2002)
23 D 3 11 170 159 0.364 Pusztai et al. (2004)
24 D 2 36 778 52 0.556 Ranganathan (2005)

In the type (T) column, P signifies prognostic and D signifies diagnostic. #C represents
the number of classes, #A the number of attributes within the dataset, #S the number
of samples and M is the fraction of the data covered by the most frequent target value.
The first 21 datasets contain genomic data, whereas the last three datasets contain
proteomic data.

samples predicted to have the value c for the target variable given
that the observed value is c, FN(¬c|c) is the number of samples
predicted to have a value other than c for the target variable given
that the observed value is c, TN(¬c|¬c) is the number of samples
predicted to have a value other than c for the target variable given
that the observed value is not c and FP(c|¬c) is the number of samples
predicted to have the value c for the target variable given that the
observed value is not c.

RCI is an entropy-based performance measure that quantifies
how much the uncertainty of a decision problem is reduced by
a classifier relative to classifying using only the prior probability
distribution of the values of the target variable uninformed by
any predictor variables (Sindhwani et al., 2001). The minimum
value for RCI is 0%, which is achieved by a classifier that always
predicts the majority target-value, and the maximum value is 100%,
which is achieved by a classifier with perfect discrimination. RCI
is sensitive to the distribution of the target values in the dataset,
and thus compensates for the observation that it is easier to obtain
high accuracies on highly skewed datasets. Like the area under
the receiver operating characteristic curve (AUC), RCI measures the
discriminative ability of classifiers. We did not use AUC since there
are several interpretations and methods to compute the AUC when
the target has more than two values.

4 RESULTS
The average BACCs obtained from 10-fold cross-validation
performed two times for each of the 24 datasets are shown in Table 2.
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Table 2. BACC from 10-fold cross-validation performed two times on the
24 datasets depicted along with the overall averages (AVG) and their SD

# Conj_ RL Ripper C4.5 BRL1 BRL1000

1 98.34 98.65 100.00 100.00 100.00
2 29.83 44.20 66.91 86.22 100.00
3 47.29 54.39 60.41 50.71 54.88
4 47.46 43.92 43.47 59.29 69.15
5 30.24 32.45 37.68 41.17 47.17
6 87.42 81.83 84.50 83.75 82.75
7 81.70 81.70 81.70 97.50 100.00
8 20.70 25.54 38.56 45.00 63.75
9 41.89 47.36 42.56 61.41 74.71
10 37.19 59.83 58.96 59.92 61.24
11 26.04 29.62 38.81 45.62 48.90
12 51.76 53.40 55.53 57.08 47.50
13 51.73 62.48 70.28 65.00 68.46
14 40.81 44.81 42.93 43.31 49.63
15 43.55 46.64 46.39 54.56 57.78
16 47.13 59.48 71.69 80.50 83.17
17 40.93 47.59 40.73 82.17 74.67
18 23.91 29.88 33.80 26.95 55.78
19 40.52 55.57 48.71 76.83 77.50
20 50.22 71.30 83.81 60.00 73.75
21 40.98 43.09 42.52 49.29 51.27
22 53.54 48.19 54.92 61.59 65.07
23 44.60 57.38 50.05 64.34 53.20
24 61.99 50.79 64.47 75.83 63.33
AVG 47.57 52.80 56.64 63.66 67.65
(SD) (19.03) (17.44) (17.91) (18.45) (16.57)
GA 46.74 52.89 56.66 63.16 68.67
(SD) (20.08) (18.64) (19.06) (19.58) (17.39)
PA 53.38 52.12 56.48 67.25 60.53
(SD) (8.70) (4.74) (7.34) (7.55) (6.41)

Averages over the genomic datasets 1–21 (GA) and their SDs, as well as averages
over the proteomic datasets 22–24 (PA) and their SDs. Bold numbers indicate highest
performance on a dataset.

As can be seen from the average BACCs for the 24 datasets,
both BRL1 and BRL1000 clearly perform better than the other rule
learning methods. This holds for both the genomic datasets (1–21)
and the proteomic datasets (22–24).

We see that BRL1000 has the highest BACC on 15 datasets, while
BRL1 has the highest BACC on 4 datasets. On the remaining five
datasets, C4.5 has the highest BACC on three, ties with BRL on
one and Conjunctive Rule Learner has the highest on one. Only the
first dataset is very easy to classify by all rule learners. As seen in
Table 3, the performance of both BRL1 and BRL1000 are statistically
significantly better than C4.5, its nearest competitor in terms of
BACC. When compared with each other, BRL1000 outperforms
BRL1.

The average RCIs obtained by the various rule learning methods
are shown in Table 4. BRL1000 has the highest RCI on 19 datasets,
whereas BRL1 has the highest RCI on 3 datasets. There was one tie
among the two BRL methods and C4.5. In addition, C4.5 has the
highest RCI on one dataset. In Table 5, we compare the difference in
performance using the RCI measure between C4.5 with BRL1 and
BRL1000 and both BRL methods are statistically significantly better
than C4.5; the difference in performance using the RCI measure

Table 3. Statistical comparisons between C4.5 and the two BRL algorithms
using BACC

Comparison Average Diff. t-test
(t-score)

Wilcoxon
(Z-score)

BRL1versus 63.66 versus 7.02 0.015 0.011
C4.5 56.64 (2.624) (2.555)
BRL1000 versus 67.65 versus 11.01 0.001 0.001
C4.5 56.64 (3.988) (3.254)
BRL1000 versus 67.65 versus 3.99 0.050 0.029
BRL1 63.66 (2.071) (2.190)

We do not compare Ripper and Conjunctive Rule Learner because C4.5 and the two
BRL algorithms completely dominate on both performance measures. BRL1 stands for
BRL with beam size 1 and BRL1000 represents BRL with beam size 1000. We use
both two-sided t-test and two-sided Wilcoxon signed rank test. Those P-values that are
significant (≤0.05) are in bold and scores with a positive value favor the first method
in the comparison.

Table 4. RCI results on the 24 datasets (from 2 × 10-fold)

# Conj_RL Ripper C4.5 BRL1 BRL1000

1 93.70 93.83 100.00 100.00 100.00
2 31.58 46.79 70.83 91.27 100.00
3 0.09 4.35 6.81 4.3 20.04
4 18.35 46.16 45.69 62.31 64.1
5 0.38 0.71 1.07 65.44 75.71
6 42.64 43.64 35.37 44.28 43.02
7 71.59 71.59 71.59 85.44 100.00
8 0.56 1.22 0.45 35.56 66.77
9 16.28 64.87 58.30 84.12 85.6
10 23.63 38.02 37.47 38.07 38.25
11 4.32 21.15 27.71 32.58 43.66
12 3.13 1.85 3.01 31.07 39.7
13 13.55 50.01 61.84 51.34 62.36
14 0.17 1.01 0.61 11.14 23.57
15 5.30 24.85 24.47 36.67 42.59
16 16.12 20.34 24.52 27.53 54.65
17 33.54 39.00 33.38 67.33 36.37
18 7.25 55.32 62.59 49.89 64.21
19 19.56 26.83 23.51 37.09 41.79
20 15.39 24.92 28.75 18.39 20.83
21 0.23 0.73 0.59 12.75 7.2
22 1.02 13.94 7.21 17.82 19.02
23 9.18 17.22 12.60 40.45 57.5
24 13.61 8.84 14.66 32.26 38.39
AVG 18.38 29.88 31.38 44.88 51.89
(SD) (23.16) (25.42) (27.46) (26.38) (26.60)
GA 19.87 32.25 34.22 46.98 53.83
(SD) (24.38) (26.36) (28.24) (27.39) (27.29)
PA 7.9 13.3 11.5 30.2 38.3
(SD) (6.4) (4.2) (3.8) (11.5) (19.2)

between BRL1000 and BRL1 is statistically significant in favor of
BRL1000.

Table 6 depicts a comparison of the average number of variables
(markers) appearing in the rule models for C4.5, BRL1 and
BRL1000, when run with default parameter settings. The average
was calculated over the models generated from 20 folds (obtained
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Table 5. The statistical comparisons between C4.5 and the two BRL
implementations using RCI

Comparison Average Diff. t-test
(t-score)

Wilcoxon
(Z-Score)

BRL1 versus 44.88 versus 13.50 0.001 0.001
C4.5 31.38 (3.853) (3.376)
BRL1000 versus 51.89 versus 20.51 <0.001 <0.001
C4.5 31.38 (4.975) (3.984)
BRL1000 versus 51.89 versus 7.01 0.008 0.001
BRL1 44.88 (2.894) (3.194)

Table 6. Comparison of the average number of variables in the models
produced by C4.5 and BRL over all folds

# C4.5 BRL1 BRL1000

1 1.00 1.00 1.00
2 3.00 3.00 3.00
3 5.00 4.00 5.00
4 7.00 5.00 5.00
5 6.00 5.00 5.00
6 6.00 2.00 2.00
7 5.00 4.00 4.00
8 7.00 5.00 5.00
9 5.00 3.00 4.00
10 5.00 4.00 4.00
11 12.00 5.00 5.00
12 4.00 3.00 3.00
13 8.00 4.00 4.00
14 1.00 1.00 1.00
15 7.00 5.00 5.00
16 30.00 5.00 5.00
17 4.00 4.00 4.00
18 26.00 5.00 5.00
19 18.00 5.00 5.00
20 15.00 5.00 5.00
21 88.50 5.00 5.00
22 32.00 5.00 5.00
23 27.00 5.00 5.00
24 7.00 3.00 3.00

Average 13.72 4.00 4.08

from stratified 10-fold cross-validation repeated two times) on the
24 datasets. As shown, the BRL models have ∼70% less variables
on average in their models than C4.5.

If each predictor variable has only two discretized ranges of
values, then BRL with default parameters would generate between
23 and 25 rules on average. However, discretization could yield a
larger number of value ranges for a variable, thereby increasing the
number of rules generated by BRL. To reduce the number of rules,
we can prune rules with zero coverage, that is, those rules whose
left-hand side does not match any of the samples in the training
data. We notice that pruning does not harm BRL’s performance.
However, rule pruning could cause problems during testing, since
rules that do not match training data could still match test data.
We include an example of pruned rules and also C4.5 rules in the

Supplementary Material. The variables chosen in BRL’s predictive
models are often different from those chosen by C4.5.

4.1 Discussion
There are several advantages that accrue from BRL that are not
available in current rule learning algorithms. BRL allows for the
evaluation of the entire rule set using a Bayesian score. Using such
a score results in a whole model evaluation instead of a per rule
(or local) evaluation, which often occurs with Ripper and C4.5.
The Bayesian score allows us to capture the uncertainty about the
validity of a rule set. BRL currently uses this score only for model
selection. However, the score could be utilized in extensions to BRL
for performing inference when rule sets can be weighted by this
score, which would be a form of Bayesian model averaging.

A Bayesian approach allows incorporation of both structure and
parameter priors. When training data are scarce, such as in ‘omic’
data analysis, it is useful to incorporate prior knowledge to improve
the accuracy of learned models. For example, a scientist could
define all of the variable relationships using either a knowledge
base or restrict the possible variables with which to build the
model (Frey et al., 2005; Miriam et al., 2005). In a Bayesian
approach, a scientist might provide prior knowledge specifying
conditional independencies among variables, constraining or even
fully specifying the network structure of the BN. In addition to
providing such structure priors, the scientist might also specify
knowledge in the form of prior distributions over the parameter
values of the model. Structure priors are arguably the most useful,
however, because in our experience scientists are often more
confident about structural relationships than about parameter values.

We have not explored informative priors in this article. We
used uniform parameter and uniform structure priors. Exploring
informative structure priors in this domain is a direction for future
research.

There are different ways of representing non-informativeness
of parameters using the Dirichlet priors. We have explored one
approach, it would be useful to explore other approaches as well.

An interesting open problem is to investigate methods for BRL
rule ordering and pruning within a set of rules. For example,
pruning a set of BRL rules based on using local structure and
scores (Chickering et al., 1997; Friedman and Goldszmidt, 1996;
Visweswaran and Cooper, 2005) would be worth investigating.

A major advantage of BRL is that it can find models with fewer
variables (markers) that have equivalent or greater classification
performance than those obtained from several other rule learning
methods. Fewer variables mean fewer markers for biological
verification and subsequent validation. This is important in
biomarker discovery and validation studies that have to be designed
carefully and under tight resource constraints.

5 CONCLUSIONS
We have shown that using a BN approach to generate rule models not
only allows a more parsimonious model (in terms of the number of
variables), but also produces results that are statistically significantly
superior to common rule learning methods. It also allows the creation
of probabilistic rules that are optimized on the rule model level as
opposed to the current method of evaluation per rule. Using BN as a
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generating model also provides a coherent method for incorporating
different types of prior information and updating the rule model.

The basic BRL algorithm presented here can be extended in many
ways, which include experimenting with different priors, pruning
and rule ordering methods. The use of multiple data mining methods
to analyze biomedical ‘omic’datasets has become important as these
techniques often complement one another in terms of discoveries.
In this article, we present and evaluate a novel approach that can
complement existing methods for biomedical data mining. We hope
that researchers will find this approach useful for efficient knowledge
discovery from biomedical datasets and that future extensions will
yield additional improvements.
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