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a b s t r a c t

An epidemic curve is a graph in which the number of new cases of an outbreak disease is plotted against
time. Epidemic curves are ordinarily constructed after the disease outbreak is over. However, a good esti-
mate of the epidemic curve early in an outbreak would be invaluable to health care officials. Currently,
techniques for predicting the severity of an outbreak are very limited. As far as predicting the number
of future cases, ordinarily epidemiologists simply make an educated guess as to how many people might
become affected. We develop a model for estimating an epidemic curve early in an outbreak, and we
show results of experiments testing its accuracy.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

An epidemic is a term used in epidemiology that refers to the
appearance of new cases of a particular disease in a given human
population, during a given time period, at a rate that substantially
exceeds the expected number based on recent experience [1]. An
epidemic may affect a region, a country, or even a group of coun-
tries. If an entire continent or the entire globe is affected, we ordi-
narily call the occurrence a pandemic. A disease outbreak refers to
the occurrence of cases of a disease in excess of what would nor-
mally be expected in a particular community or geographical area.
We shall use the terms disease outbreak and epidemic
interchangeably.

An epidemic curve is a graph in which the number of new cases
of an outbreak disease is plotted against time. Usually, the time
interval is one day. Epidemic curves are ordinarily constructed
after the disease outbreak is over (if they are constructed at all).
As an example, consider the epidemic curve in Fig. 1. This curve
was constructed (after the outbreak was over) from clinically de-
fined and laboratory-confirmed cases of a food borne Cryptosporidi-
um outbreak that occurred on a Washington, DC university campus
in fall, 1998. The curve indicates a possible food contamination
through a tight clustering of cases in three days.

A good estimate of the epidemic curve during an outbreak would
be valuable to health care officials. Based on this estimate, they can
plan for sufficient resources and supplies to handle disease treat-
ment on a timely basis. When we say we are estimating the epi-
demic curve during an outbreak, we mean that, on a given day of
the outbreak, we are estimating the daily number of new outbreak
cases for days that have occurred so far and we are predicting those
ll rights reserved.
daily values for days that will occur in the future (if no measures
are taken to control the outbreak). We call the collection of these
estimates and predictions the estimate of the epidemic curve. Esti-
mation of an epidemic curve in real time is quite complex because
we need a model of the outbreak (an epidemic model), a model of
sickness behavior of individuals, and a model of the surveillance
system (any sampling inefficiency, time delays).

At present, methods for doing real-time estimation and predic-
tion of the magnitude of an outbreak are very limited. For the most
part, investigators simply do their best to intensify surveillance in
an effort to identify all cases so that the observed number of cases
is as close to the real number of cases as possible [4]. PANDA [5],
PANDA-CDCA [6], and BARD [7] can provide estimates of some out-
break characteristics such as outbreak type, source, and/or route of
transmission of the outbreak. However, none of them estimates the
epidemic curve. A model that not only detects an outbreak but esti-
mates important characteristics of the outbreak, namely its sever-
ity and duration, is developed in [8]. Knowledge of the probable
values of these variables should be more useful to public health
officials than merely knowing that an outbreak is probable. How-
ever, as discussed previously, an estimate of the epidemic curve it-
self would be better. Another shortcoming of the model developed
in [8] is that it was implemented using pharmacy data obtained
during the North Battleford, Saskatchewan Cryptosporidium out-
break in spring, 2001, and was evaluated using simulations gener-
ated by HIFIDE [9], whose simulations are based on pharmacy data
obtained during that same outbreak. Although such techniques are
often used to evaluate outbreak detection algorithms, the question
remains as to what the performance would be if the assumptions
used to create the model and the simulations were different.

The current paper addresses these shortcomings. First, the
Bayesian network model discussed here estimates the epidemic
curve itself. Second, we developed an instance of the model based
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Fig. 1. An epidemic curve for the Washington D.C. Cryptosporidium outbreak [2].
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on data obtained from a real outbreak, and we evaluated its perfor-
mance using a different real outbreak. We do this for both Cryptos-
poridium and influenza outbreaks. After discussing the model, we
show the results of evaluating its performance.

2. A model for epidemic curve estimation

The epidemic curve for an outbreak is often correlated with the
daily counts of some observable event. For example, Fig. 2a shows
an epidemic curve constructed from a sample of the population af-
fected by a Cryptosporidium outbreak in North Battleford, Saskatch-
ewan in spring, 2001. The outbreak was caused by a contamination
of public drinking water. Cryptosporidium infection causes diar-
rhea. Fig. 2b shows the weekly counts of units of over-the-counter
(OTC) antidiarrheal medicine sold at one pharmacy in North Battl-
eford during the time period affected by the outbreak. The correla-
tion between these two curves suggests that by monitoring OTC
sales of such medicine we can possibly learn something about a
Cryptosporidium outbreak at an early stage.

The model presented here is applicable to estimating the epi-
demic curve for certain types of outbreaks from the daily1 counts
of some observable event, whose daily count is positively correlated
with the daily count of outbreak cases. For example, it could be used
to estimate the epidemic curve for a Cryptosporidium outbreak from
the daily counts of units of OTC antidiarrheal medicine sold, and it
could be used to estimate the epidemic curve for an outbreak of
influenza from the daily counts of patients presenting in the ED with
respiratory symptoms. We will describe the model in its most gen-
eral form, without referring to any particular type of outbreak. The
model has two distinct components. The first component models
the causal relationships among the daily counts and the outbreak
severity, outbreak duration, and the number of days into the out-
break. The second component models the relationship between the
variables that constitute the epidemic curve and the outbreak sever-
1 Although the unit of time is usually one day, it need not be. For example, we could
use weekly counts.
ity, outbreak duration, and the number of days into the outbreak.
The two components constitute a single Bayesian network. We use
that entire network to estimate the epidemic curve from the daily
counts. For the sake of clarity, we discuss each component sepa-
rately. See [10] for an introduction to Bayesian networks.

2.1. Component one

Three important attributes of an outbreak are the following: (1)
the severity of the outbreak, which we define as how many indi-
viduals eventually becomes ill due to the outbreak; (2) the dura-
tion of the outbreak, which is the time from when the infectious
entity first appeared in the population until the last day that some-
one first showed symptoms due to the outbreak; and (3) the num-
ber of days since the outbreak began (assuming we are currently in
the midst of the outbreak). This component models the causal rela-
tionships among these variables and the daily counts of an obser-
vable event.

First, we show the network that describes the causal structure.
This structure is applicable to outbreaks of different types in differ-
ent regions. Then we show how the parameter values in the net-
work can be obtained.

2.1.1. Causal structure
The network that describes the causal structure appears in

Fig. 3. The network describes the causal relationships among
an outbreak of some disease and daily counts of an observa-
ble event that is causally related to the outbreak disease.
Next we describe the nature of each variable/node in the
network.

1) O: Represents the number of days ago since an outbreak
began. It is 0 if no outbreak has started.

2) D : Represents the duration of the outbreak. It depends on O
because if O is 0, D must be 0.

3) S : The severity of the outbreak if there is an ongoing out-
break. If the number of individuals in the population is
known, the severity would be the percent of the population



Fig. 2. An epidemic curve for a Cryptosporidium outbreak in North Battleford, Saskatchewan is in (a), while weekly OTC sales of antidiarrheal drugs at one pharmacy in North
Battleford is in (b). The data for these curves were obtained from [3].
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that eventually becomes ill due to the outbreak. However,
even if that number is not known, we can use a scale of 0
to 100 to rank the severity. Note that S is the severity if no
measures are taken to control the outbreak. S depends on
O because if O is 0, S must be 0.

4) OC[�i] : The count of the observable event due to individuals
who have the outbreak disease. For example, if the observa-
ble event is the purchase of one unit of some OTC drug, it
would be the count of units of the drug purchased by or
for individuals sick with the outbreak disease. OC[0] is the
count today, and OC[�i] is the count i days before today.
By today we mean the current day on which we are investi-
gating the outbreak. We can look back as many days as
deemed appropriate.

5) BC[�i] : The count of the observable event due to individuals
who do not have the outbreak disease (called background
counts). BC[0] is the count today, and BC[�i] is the count i
days before today.

6) TC[�i] : The total count of the observable event. TC[0] is the
count today, and TC[�i] is the count i days before today.
TC[�i] is a deterministic function of its parents, OC[�i] and
BC[�i]. That is, it is the sum of these two variables. TC[.]
denotes the variables we observe, and which are instanti-
ated in the network when we do inference. For example, if
the observable event is the purchase of one unit of some
OTC drug, and 100 units were purchased i days ago, we
would set TC[�i] to 100 when we were doing inference.

7) Day : Represents the day of the week.
8) C : Represents some relevant cyclical variable other than day

of the week (e.g. season). There could be more than one such
variable, depending on the application.

9) H : Represents hidden common causes of the observable
event. It mitigates the relationships among daily counts that
are not due to the outbreak. This is not the only way to mit-
igate this relationship. For example, in a given application it
may be best to model the background time series with edges
between the variables representing daily counts. Cheeseman
and Stutz [11] developed AutoClass to learn the range of
such hidden variables from data.

For simplicity, we described a network in which there is only
one observable event. In general, there could be more than one.
If so, for each such event there would be count variables as de-
scribed above.

2.1.2. Parameter values
The conditional probability distributions of the variables in the

network depend on the application. For the sake of concreteness,



Fig. 3. The component that models the causal relationships among the daily counts and the outbreak severity, outbreak duration, and the number of days into the outbreak.
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we give the ones for the Cryptosporidium epidemic curve estima-
tion system, whose evaluation is discussed in Section 3.2.1.

1) O: Based on data concerning real outbreaks and subjective
judgment, we assumed that there should be a Cryptosporidi-
um outbreak about once every 30 years, and that the dura-
tion of such outbreaks is uniformly distributed between 21
and 56 days. Since such outbreaks are so rare, for simplicity
we assumed there could be at most one in the past 56 days.
Therefore, P(O = 0) = 1–56/(30 � 365) and P(O = i) = 1/
(30 � 365) for 1 6 i 6 56.

2) D : If O = 0, P(D = 0) = 1; otherwise D is uniformly distributed
over all integers between 21 and 56.

3) S : If O = 0, P(S = 0) = 1; otherwise S is uniformly distributed
over all integers between 1 and 50.

4) OC[�i] : We assume that the epidemic curves for the out-
breaks under consideration are unimodal. That is, the num-
ber of outbreaks cases starts at 0, rises to a peak, and then
declines back to 0. However, along the way, there can be
daily fluctuations. Since we assume the epidemic curves
are unimodal, we also assume that the corresponding
curves of the counts of the observable event are unimodal.
For example, we assume epidemic curves for all Cryptospo-
ridium outbreaks are unimodal, and therefore the corre-
sponding curves of the counts of units of OTC
antidiarrheal medicine sold are unimodal. Similarly, we
assume epidemic curves for all influenza outbreaks are uni-
modal, and therefore the corresponding curves represent-
ing counts of patients presenting in the ED with
respiratory symptoms are unimodal. Admittedly, this is a
strong assumption. For example, some influenza outbreaks
are not unimodal. In Section 4 we discuss possible exten-
sions to the current model which could take this into
account. Furthermore, we assume that outbreaks of a given
type reach their peak about the same fraction of days into
the outbreak. Fig. 4 shows epidemic curves for the North
Battleford, Saskatchewan Cryptosporidium outbreak in
spring 2001 and the Milwaukee, Wisconsin Cryptosporidium
outbreak in spring 1993. Note that although the outbreaks
have different durations, and different peaks, they both
reach their peak about half way into the outbreak. Corre-
spondingly, we assume that the curves of the counts of
the observable event for outbreaks of the same type reach
their peak about the same fraction of days into the
outbreak.

Making the assumption just discussed, we can develop a
probability distribution for OC[0] given values of O, D, and S as
follows. We first choose some actual outbreak OutbreakOJ in
some jurisdiction OJ, which we call the outbreak jurisdiction.
This outbreak should be of the same type as the monitored out-
break. The reason is that, as we shall see, we will base our
expectations concerning the monitored outbreak on the structure
of this outbreak, and we have only assumed that all outbreaks of
the same type reach their peaks about the same fraction of days
into the outbreak. We have not assumed that outbreaks of all
types reach their peaks about the same fraction of days into
the outbreak.

It is necessary that we have daily counts of the observable event
both during the outbreak and when the outbreak is not occurring.
It is not necessary that we have counts of all occurrences of the ob-
servable event in the jurisdiction in which the outbreak took place.
For example, if the observable event is the sale of one unit of some
OTC drug, we could have counts from only several pharmacies in
jurisdiction OJ. Similarly, we assume we know the daily counts of
the observable event in some sub-region of the jurisdiction RJ for
which we are developing the system, which we call the monitored
jurisdiction.



Fig. 4. An epidemic curve for the North Battleford, Saskatchewan Cryptosporidium outbreak in spring, 2001 is in (a), while one for the Milwaukee, Wisconsin Cryptosporidium
outbreak in spring, 1993 is in (b). The curves were respectively constructed from data obtained from [3] and from [12].
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Let

a) TOJ be the sub-region of OJ from which we obtain our counts
of the observable event,

b) TRJ be the sub-region of RJ from which we obtain our counts
of the observable event,

c) BOJ be the average daily count of the observable event in TOJ

when no outbreak is occurring (called the background
count),

d) BRJ be the average daily count of the observable event in TRJ

when no outbreak is occurring,
e) DOJ be the duration of OutbreakOJ,

f) SOJ be the severity of OutbreakOJ.

We assume that TOJ is an unbiased representation of OJ with re-
gard to OutbreakOJ, and that TRJ is an unbiased representation of RJ
with regard to any outbreak that may occur in RJ.

Recall that we know the daily counts of the observable event in
TOJ during OutbreakOJ. These counts constitute a bar graph like the
one in Fig. 2b. First we subtract BOJ from each day’s count to obtain
a bar graph that estimates the daily counts due to OutbreakOJ. We
smooth this bar graph to obtain a continuous function g(t) on the
interval [1, DOJ]. Then, to create the conditional distribution of
OC[0] given values of O, D, and S, we first define the mean of
OC[0], given these values, as follows:

lðO; D; SÞ ¼ BRJ

BOJ

S
SOJ

DOJ

D

� �
gððDOJ � 1ÞðO� 1Þ=ðD� 1Þ þ 1Þ: ð1Þ
For given values of S and D, the result is a function of O whose
shape is like g(t) but which gives approximate counts of the obser-
vable event which would occur if an outbreak with duration D and
severity S took place in RJ. Wallstrom [13] offers a formal justifica-
tion for this. Intuitively, BRJ/BOJ scales the function to describe TRJ

instead of TOJ, DOJ/D scales the function to describe an outbreak
with duration D instead of DOJ, S/SOJ scales the function to describe
an outbreak with severity S instead of SOJ, and the expression in the
argument of g changes the domain of the function from [1, DOJ] to
[1, D].

Given values of S and D, the function l is a scaled replica of g.
We inserted random fluctuation by letting l be the mean of a neg-
ative binomial distribution. We set the dispersion of that distribu-
tion equal to 3.52. This value is consistent with the variances we
discovered for the background counts. This negative binomial dis-
tribution is then the probability distribution of OC[0] given values
of O, D, and S. Similarly, OC[�i] for i – 0 is assumed to have the
negative binomial distribution with dispersion 3.52 and mean gi-
ven by Eq. (1) except O is replaced by O�i.

Next we apply the technique just discussed to our Cryptospori-
dium epidemic curve estimation system. First, we obtained a bar
graph (like the one in Fig. 2b), whose values are the daily counts
of units of OTC antidiarrheal medication sold in Pharmacy A in
North Battleford during the Cryptosporidium outbreak in spring,
2001 (obtained from [10]). After subtracting the average daily
background count from the values in that bar graph, we smoothed
the resultant bar graph using cubic splines to obtain a function g(t).
Next we let DN and SN be the duration and severity of the North
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Battleford outbreak, BN be the average daily background counts of
units of antidiarrheal medicine sold in Pharmacy A in North Battl-
eford, and BC be the average daily background counts of units of
antidiarrheal medicine sold in the pharmacies monitored in Cook
County. Their values are DN = 47, SN = 35.8%, BN = 1.973, and
BC = 986. Then we set

lðO;D; SÞ ¼ BC � DN � S
BN � D� SN

� �
� gððDOJ � 1ÞðO� 1Þ=ðD� 1Þ � 1Þ

¼ 986� 47� S
1:973� D� 35:8

� �
� gð46ðO� 1Þ=ðD� 1Þ þ 1Þ

For given values of S and D, the result is a function of O whose
shape is like g(t) but which gives approximate counts of units of
antidiarrheal medicine which would be sold in the pharmacies
monitored in Cook County if an outbreak with duration D and
severity S took place in Cook County.

5) In this application, there is a single variable C that indicates
certain holidays. Specifically, the variable was given the value
‘‘high” during the four days following July 4th and the days from
December 26 through January 3, and the value ‘‘low” on all other
days.

6) H : Based on manual inspection, we determined three values
(low, medium, and high) for background sales data of antidiarrheal
medicine in Cook County.

7) BC[�i] : For each combination of values of H, Day, and C, we
computed the mean and variance of the count over all background
days corresponding to the combination of values. We then made
the conditional distribution of BC[�i], given this particular combi-
nation of values of H, Day, and C, a negative binomial distribution
with this mean and variance.

Notice that the component just described is able to detect an
outbreak of the monitored disease from the daily counts. That is,
as P(O = 0) becomes smaller, we become increasingly suspicious
of an outbreak. For example, we could detect an outbreak of Cryp-
tosporidium from the daily counts of units of OTC antidiarrheal
medicine sold. So the model presented here not only can be used
to estimate the epidemic curve, but also to detect the outbreak.

2.2. Component two

Next we describe the component that models the relationship
between the variables that constitute the epidemic curve and the
outbreak severity, outbreak duration, and the number of days into
the outbreak. As in the previous subsection, we first describe the
structure of the network, and then we show how to determine
the parameter values.
Fig. 5. The component that models the relationship between the variables which constitu
of days into the outbreak.
2.2.1. Causal structure
The structure of the network appears in Fig. 5. The variable E[0]

represents the number of individuals’ first showing symptoms of
the illness today. Again, by today we mean the current day on
which we are investigating the outbreak. The variable E[�i] repre-
sents the number of individuals first showing symptoms i days be-
fore today, while the variable E[i] represents the number of
individuals first showing symptoms i days after today. We need
sufficient variables in both directions so that we can estimate the
entire epidemic curve on any day of an outbreak. Note that the
variables for which i > 0 represent future values on the epidemic
curve (if the outbreak goes uncontrolled). These are the values
we want to predict.

2.2.2. Parameter values
Let OJ be some jurisdiction in which we have the epidemic

curve for an actual outbreak OutbreakOJ This epidemic curve is a
bar graph showing the daily disease counts during OutbreakOJ.
Examples appear in Figs. 1 and 4. Jurisdiction OJ does not need to
be the same jurisdiction used to obtain the conditional distribu-
tions of OC[i] (See Section 2.1.2). Let RJ be the jurisdiction for
which we are developing the system, and let

1) DOJ be the duration of OutbreakOJ,
2) SOJ be the severity of OutbreakOJ,
3) NOJ be the number of people in OJ,
4) NRJ be the number of people in RJ.

Using cubic splines, we first smooth the bar graph representing
the daily disease counts during OutbreakOJ to obtain a continuous
function e(t) on the interval [1, DOJ]. Then, to create the conditional
distribution of E[0], given values of O, D, and S, in a system which is
monitoring RJ, we first define the mean of E[0], conditional on
these values, as follows:

tðO; D; SÞ ¼ ðNRJ

NOJ

S
SOJ

DOJ

D
ÞeððDOJ � 1ÞðO� 1Þ=ðD� 1Þ þ 1Þ: ð2Þ

For given values of S and D, the result is a function of O whose
shape is like e(t) but which approximates disease counts which
would occur if an outbreak with duration D and severity S took
place in RJ. Intuitively, NRJ/NOJ scales the function to RJ instead of
OJ, DOJ/D scales the function to describe an outbreak with duration
D instead of DOJ, S/SOJ scales the function to describe an outbreak
with severity S instead of SOJ, and the expression in the argument
of e changes the domain of the function from [1, DOJ] to [1, D].

Given values of S and D, the function t is a scaled replica of e.
We inserted random fluctuation by letting t be the mean of a neg-
te the epidemic curve and the outbreak severity, outbreak duration, and the number
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ative binomial distribution with dispersion 3.52. This negative
binomial distribution is then the probability distribution of E[0] gi-
ven values of O, D, and S. Similarly, E[i] for i – 0 is assumed to have
the negative binomial distribution with dispersion 3.52 and mean
given by Equality 2 except O is replaced by O + i.

2.3. Combining Components One and Two

Our entire Bayesian network model consists of the two compo-
nents just described. That is, it combines the networks in Figs. 3
and 5. By doing inference in this network, we can determine the
conditional probability distributions of E[i] for all i from the ob-
served values of the variables DAY, C, and TC[i] for all i on a given
day of the outbreak. If, for example, we are currently in the 9th day
of the outbreak, the value of variable E[0] is the epidemic curve va-
lue on the 9th day of the outbreak, the value of variable E[�1] is the
epidemic curve value on the 8th day of the outbreak, the value of
variable E[1] is the epidemic curve value on the 10th day of the
outbreak, and so on. If we enter values of DAY, C, and TC[i] for all
i on the 9th day of the outbreak, we will obtain conditional proba-
bility distributions of E[0], E[�1], E[1], etc. We use the expected
values relative to these distributions as our estimates of the epi-
demic curve values.

The fact that the variables DAY and C have an effect on the condi-
tional probabilities of the variables of interest (E[i] for all i) is a subtle
matter. Initially, these variables are independent of DAY and C be-
cause the edges touching each variable labeled TC[i] are both into
TC[i]. This is called a head-to-head meeting of the edges. However,
when TC[i] is instantiated, the variables, which are above and below
it, are rendered dependent, which means OC[i] is rendered depen-
dent on the variables DAY and C. This dependency is then passed
on to the variables labeled E[i]. This matter is discussed in detail in
[10]. The following is a classic intuitive example: Suppose earth-
quakes and burglars can both cause your burglar alarm to sound,
and there is no causal relationship between earthquakes and bur-
glars. We would then create a causal (Bayesian) network with only
edges from the earthquake and burglar nodes to the alarm node. A
priori the earthquake and the burglar nodes are independent. Sup-
pose now that we learn the alarm has sounded. We would fear that
we were burglarized. However, if we later learned that there was a
mild earthquake, this event would explain away the alarm sounding,
thereby making a burglary less likely. Psychologists call this ‘‘dis-
counting”. Thus the burglar and the earthquake nodes are rendered
dependent by the instantiation of the alarm node.

For the experiments described next, we used the Bayesian net-
work package Netica (http://www.norsys.com/) to develop the
networks and perform the inference.
3. Experiments

3.1. Method

Health care officials carefully reconstructed epidemic curves for
the North Battleford, Saskatchewan Cryptosporidium outbreak in
spring, 2001 [3] and the Milwaukee, Wisconsin Cryptosporidium
outbreak in spring, 1993 [12]. Furthermore, counts of units of
OTC antidiarrheal medicine sold were available for certain phar-
macies in both jurisdictions. The North Battleford outbreak had a
severity of 35.8% and duration of 47 days, while the Milwaukee
outbreak had a severity of 25% and duration of 27 days. We devel-
oped an instance of the model using the North Battleford outbreak,
and we tested it using the Milwaukee outbreak. That is, we used
North Battleford as the outbreak jurisdiction and Milwaukee as
the monitored jurisdiction. Detection was based on the daily
counts of purchases of OTC antidiarrheal medicine.
We did not have actual epidemic curves for any influenza out-
breaks. However, we did have a large amount of data concerning
significant influenza outbreaks in two jurisdictions. Both outbreaks
started in fall, 2003 and lasted 66–68 days. One of our data sources
prefers that the jurisdictions remain anonymous. So we simply la-
beled them A and B. Our data sources are the Centers for Disease
Control and Prevention (http://www.cdc.gov) and the National Re-
tail Data Monitor system managed by RODS laboratory (http://rod-
s.health.pitt.edu). Using the durations of the outbreaks, the
influenza-like illness (ILI) curves, counts of deaths due to influenza
during the outbreaks (which were also available), and national fig-
ures concerning influenza and influenza deaths, we were able to
estimate epidemic curves for these outbreaks. We developed an in-
stance of the model using the outbreak in jurisdiction A, and we
tested it using the outbreak in jurisdiction B. That is, we used juris-
diction A as the outbreak jurisdiction and jurisdiction B as the
monitored jurisdiction. Detection was based on the daily counts
of patients presenting in the ED with respiratory symptoms. The
discussion of parameter values in Section 2 concerning the Cryptos-
poridium model applies to the influenza model except for these
modifications. (1) The probability distribution of the variable O
was as follows: P(O = 0) = 1�70/(2 � 365) and P(O = i) = 1/
(2 � 365) for 1 6 i 6 70; (2) There was no variable C representing
cyclical effects. It was assumed that there is no holiday season
and so forth that affect ED visits with respiratory symptoms.

We evaluated each instance by determining how well it esti-
mated the ‘‘gold standard” epidemic curve on given days of the
outbreak. In the case of the Cryptosporidium outbreaks, we used
the epidemic curve for the Milwaukee outbreak, which was care-
fully reconstructed by health care officials, as the gold standard.
In the case of the influenza outbreak, we used the epidemic curve
for the outbreak in jurisdiction B, which we reconstructed, as the
gold standard.

3.2. Results

We show results for estimates that are obtained about 1/5 of
the way into the outbreaks and 1/3 of the way into the outbreaks.
In the case of the Cryptosporidium outbreak these are the estimates
obtained on day 5 and day 9 of the outbreak, while in the case of
the influenza outbreak these are the estimates obtained on day
13 and day 22 of the outbreak. We consider 1/5 of the way into
the outbreak very early estimation, and 1/3 of the way into the out-
break early estimation.

3.2.1. Cryptosporidium outbreak
Fig. 6 shows the estimated epidemic curves obtained on the 5th

and 9th days of the 27 day Cryptosporidium outbreak in Milwaukee,
Wisconsin in spring, 1993. The gold standard epidemic curve is
also shown. Table 1 shows two ways of measuring the similarity
of the two sequences. If we let xi be the sequence of values in
the gold standard epidemic curve and yi be the sequence of values
in the estimated epidemic curve, we obtain

per cent error ¼ 100�

P27

i¼1
j yi � xi j

P27

i¼1
xi

:

If the sequences were the same, this value would be 0. We also
show the Pearson correlation, which is given by

1
27

X27

i¼1

xi � �x
rx

� �
yi � �y
ry

� �
;

where �x represents the average. The Pearson correlation is 1 if there
is a linear relationship between the two sequences. This value mea-
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Fig. 6. Estimates of the Milwaukee Cryptosporidium epidemic curve on days 5 and 9 of the 27 day outbreak. Values before the dotted line are estimates, while those after it are
predictions.

Table 1
Measures of similarity of estimated epidemic curves to gold standard epidemic curve
for the Milwaukee Cryptosporidium outbreak

Day Per Cent Error Pearson correlation

5 51.9 .600
9 33.9 .909

Table 2
Measures of similarity of estimated epidemic curves to gold standard epidemic curve
for the influenza outbreak in jurisdiction B

Day Per Cent Error Pearson correlation

13 91.6 .966
22 10.8 .935
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sures the correlation between the sequences, but it does not reflect
how close the values are to each other. So it only indicates whether
the curves have similar shapes.

We see that on the 5th day of the outbreak the estimated curve
decreases too early and the severity of the outbreak is underesti-
mated. It appears difficult to predict whether the outbreak will be-
come severe when it is still very early in the outbreak. One
explanation for this is that the counts that occur very early in se-
vere and moderate outbreaks may not be very different. On the
other hand, by the 9th day the estimate is fairly good.

3.2.2. Influenza outbreak
Fig. 7 shows the estimated epidemic curves obtained on the

13th and 22nd days of the 66 day influenza outbreak in jurisdiction
B in fall, 2003, while Table 2 shows the Per Cent Error and Pearson
correlation. Note that, even though the percent error as much smal-
ler on the 22nd day than on the 13th day, the Pearson correlation is
a

Fig. 7. Estimates of the influenza epidemic curve for jurisdiction B on days 13 and 22 of t
are predictions.
slightly smaller. Recall that the Pearson correlation only measures
whether the curves have similar shapes and not whether the val-
ues in the two curves are close. Looking at Fig. 7, we see that the
shapes of the two curves on the 13th day are indeed more similar
in that they both reach their peaks on about the same day. On the
22nd day the estimated curve is skewed a bit to the left of the ac-
tual curve. As was the case for the Cryptosporidium estimates, the
very early (13th day) estimate is poor, but the early (22nd day)
estimate is quite good. In this case, the severity of the outbreak
was significantly overestimated very early in the outbreak. Notice
that even the severity during the first 13 days of the outbreak was
overestimated. Recall that we do not have actual epidemic curve
values (daily counts of individuals with influenza) for the first 13
days. All we have is daily counts of patients presenting with respi-
ratory symptoms in the monitored Emergency Departments. Based
on these daily counts, the system estimates the size, duration, and
days since the outbreak started. The early ED visit counts indicated
b

he 66 day outbreak. Values before the dotted line are estimates, while those after it
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that the severity of the outbreak was greater than that which
would have been indicated by the actual (unknown) number of
influenza cases if they were known. Since the severity was overes-
timated, the entire epidemic curve was estimated to be too large,
which means the estimates on the first 13 days were be too large.

The epidemic curve estimates for both the Cryptosporidium and
influenza outbreaks were quite good about 1/3 of the way into the
outbreaks. On the other hand, while the estimate for the Cryptospo-
ridium outbreak was good about 1/5 of the way into the outbreak,
the estimate for the influenza outbreak was much too large 1/5 of
the way into the outbreak. These results indicate that perhaps,
early in the influenza outbreak, individuals presented in the ED
with respiratory symptoms more often than we would expect
based on the severity of the outbreak. It is difficult to know with
confidence why this happened. There could, for example, have
been other spurious causes of respiratory symptoms present in this
community early in this particular outbreak. Furthermore, it could
have been due to statistical variation. That is, in this particular
influenza outbreak perhaps more people than usual, who had influ-
enza, decided to go to the ED early in the outbreak. In the case of
the Cryptosporidium outbreak we monitored purchases of an
OTC medication, while in the case of the influenza outbreak we
monitored ED visits. Possibly there is less statistical variation in
the sale of OTC medication purchases than there is in ED visits.
Additional studies are needed to resolve this issue.

3.2.3. Further evaluation
Our method uses actual epidemic curves from real previous

outbreaks to construct the epidemic curves for new outbreaks.
The question remains as to whether this is useful, or if we can ob-
tain comparable results by only assuming that the curve is unimo-
dal. In [14] we only made the assumption that the epidemic curve
is unimodal, and we obtained the estimates shown in Fig. 8 for the
66 day influenza outbreak in jurisdiction B, whose estimates were
obtained using our method appear in Fig. 7. Note that the totals in
Fig. 8 are weekly and not daily totals. So it would be difficult to per-
form a detailed analysis comparing the estimates in Figs. 7 and 8.
However, using visual inspection, we can see that the estimate in
Fig. 8 is very bad on the 20th day of the outbreak, and even the
Fig. 8. Estimates of the influenza epidemic curve for jurisdiction B using the
method described in [14] which only assumes the epidemic curve is unimodal.
25-day and 30-day estimates do not appear to be as good as the
22-day estimate shown in Fig. 7. So at least for this particular out-
break the method that uses the information in a previous epidemic
curve appears to yield better results.
4. Discussion

The model presented here is an initial version of a Bayesian net-
work model that estimates an epidemic curve early in an outbreak.
Preliminary investigation with two actual outbreaks indicates it is
capable of providing informative estimates about 1/3 of the way
into the outbreaks but not about 1/5 of the way into the outbreaks.
Previously, most similar systems have been evaluated using only
simulations (See [7] and [13]). We performed our evaluation using
two types of real outbreaks.

Our preliminary results are encouraging, but they only serve to
establish some foundations in the relatively new field of epidemic
curve estimation. More extensive modeling and testing is needed.
In particular, we need to more thoroughly study the robustness
of the assumptions that the epidemic curve for an outbreak is uni-
modal, and that all outbreaks of a given type reach their peak about
the same fraction of days into the outbreak.

A possible concern is our implicit assumption concerning the
buying behavior of the population being monitored. Recall that
TOJ is the sub-region of the outbreak jurisdiction OJ from which
we obtain our counts of the observable event, and TRJ is the sub-re-
gion of the monitored jurisdiction RJ from which we obtain our
counts of the observable event, BOJ is the average daily count of
the observable event in TOJ when no outbreak is occurring, and
BRJ is the average daily count of the observable event in TRJ when
no outbreak is occurring, To model the buying behavior of individ-
uals in RJ instead of OJ we used the scaling factor BRJ/BOJ. By so
doing, we have modeled the behavior of individuals in RJ only
when no outbreak is occurring, not when one is occurring. How-
ever, we apply this scaling factor to model their buying behavior
during an outbreak. So we have implicitly assumed that individuals
in RJ react during an outbreak in the same way as individuals in OJ.
For example, suppose that on the average 10 units of a monitored
OTC drug are sold each day in RJ when there is no outbreak, and on
the average 20 units are sold in OJ when there is no outbreak. Next
suppose that an outbreak of the same duration and severity occurs
in RJ as the one that occurred in OJ. Then if 50 additional units were
sold on day 5 of the outbreak in OJ, the expected value of the num-
ber of additional units sold in RJ on day 5 is (10/20)50 = 25.

Another concern is that the estimate for the Cryptosporidium
outbreak was good at 1/5 of the way into the outbreak, whereas
the estimate for the influenza outbreak was much too large 1/5
of the way into the outbreak. We noted at the end of Section 3 that
perhaps this was due to the fact that we monitored ED visits in the
case of the influenza outbreak and OTC sales in the case of the
Cryptosporidium outbreak.

Future research could investigate the following: (1) Whether all
outbreaks of a given type do reach their peak about the same frac-
tion of days into the outbreak when the outbreaks are unimodal.
(2) Whether good results can be obtained using this model when
this assumption does not hold well, but the outbreaks are unimo-
dal. That is, perhaps the performance of the system is robust rela-
tive to this assumption. Bayesian network performance has been
shown to be robust relative to the parameters (probability distri-
butions) in the network [15]. (3) Whether we can obtain better re-
sults by building models using multiple outbreaks. For example, in
the case of influenza outbreaks, sometimes the epidemic can have
a secondary wave. In this case, no model could predict the epi-
demic curve before the onset of the second wave. By using multiple
outbreaks, we can explicitly build into the model the year-to-year
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variability in influenza outbreaks. If we ran the data against several
curves shapes, some with only one wave, and some with a second-
ary wave, we may find that an epidemic curve with a secondary
wave is more probable than one without one, once the onset of
the secondary wave occurs. (4) Whether, during an outbreak, indi-
viduals in different jurisdictions react the same way regarding
their purchases of the OTC drug being monitored (or relative to
whatever observable event we are monitoring). Future research
could investigate the robustness of the model if this assumption
does not exactly hold. (5) Whether we can obtain better results
by monitoring OTC sales than we can obtain by monitoring ED
visits.

Investigations (2) and (3) can be performed using simulated
outbreaks. Performing investigations (1), (4), and (5), will be more
difficult because they require the observation of real outbreaks.
The difficulty is that real outbreaks are rare, and the collection of
data during outbreaks had been even rarer. However, for the past
several years data on observable events related to influenza out-
breaks have been collected for four cities by the RODS Laboratory
at the University of Pittsburgh. A problem is that epidemic curves
are not available for the influenza outbreaks that occurred during
that time. Currently, we are working on a way to estimate the epi-
demic curves.

An improvement to the model would be to look at multivariate
time series (counts of several observable events) rather than only
univariate time series (counts of a single observable event). As dis-
cussed at the end of Section 2.1.1, the system can readily be mod-
ified to handle multivariate times series. We need only to include
count nodes for all observable events. Future investigations can
incorporate this improvement since data on counts of several ob-
servable events have been collected by the RODS Laboratory.
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