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Abstract 

This paper investigates Bayesian modeling of 

unknown causes of events in the context of disease-

outbreak detection. We introduce a Bayesian 

approach that models and detects both (1) known 

diseases (e.g., influenza and anthrax) by using 

informative prior probabilities and (2) unknown 

diseases (e.g., a new, highly contagious respiratory 

virus that has never been seen before) by using 

relatively non-informative prior probabilities. We 

report the results of simulation experiments which 

support that this modeling method can improve the 

detection of new disease outbreaks in a population. A 

key contribution of this paper is that it introduces a 

Bayesian approach for jointly modeling both known 

and unknown causes of events. Such modeling has 

broad applicability in medical informatics, where the 

space of known causes of outcomes of interest is 

seldom complete. 

Introduction 

Bayesian modeling of unknown causes of events is 

an important and pervasive problem. However, it has 

received relatively little research attention. In 

general, an intelligent agent (or system) has only 

limited causal knowledge of the world. Therefore, the 

agent may well be experiencing the influences of 

causes outside its model. For example, a clinician 

may be seeing a patient with a virus that is new to 

humans; the HIV virus was at one time such an 

example. It is important that clinicians be able to 

recognize that a patient is presenting with an 

unknown disease. In general, intelligent agents (and 

systems) need to recognize under uncertainty when 

they are likely to be experiencing influences outside 

their realm of knowledge. This paper illustrates a 

Bayesian approach to doing so in the context of 

disease-outbreak detection, which we briefly survey 

in the remainder of this section.  

In a typical scenario of anomaly detection, a 

monitoring system examines a sequence of data to 

determine if any recent activity can be considered a 

deviation relative to historical baseline behavior. 

Frequentist algorithms do so by deriving p values. 

However, compared with Bayesian approaches, it is 

difficult to incorporate into the analysis any prior 

information that we may have, as for example our 

prior beliefs about the size, location, and temporal 

progression of a potential outbreak. The Bayesian 
 AMIA 2009 Symposium Pr
approach introduced in this paper uses informative 

prior probabilities to model known outbreak diseases 

(e.g., influenza), and relatively non-informative 

priors to model unknown outbreak diseases. 

Bayesian approaches have been developed that 

can be applied to biosurveillance, such as hidden 

Markov models
1
. These methods can detect a wide 

range of anomaly types, but usually at the expense of 

being less effective at detecting any particular type, 

as for example an outbreak due to inhalational 

anthrax. On the other hand, we can use Bayesian 

methods to model specific diseases. A large-scale 

airborne release of inhalational anthrax has known 

spatio-temporal characteristics, such as a specific 

incubation time and a plume-like spatial distribution. 

Thus, when monitoring for such an outbreak, a 

detection algorithm can be vigilant in watching for 

these characteristics
2
. 

The number and variety of possible outbreak 

diseases that could in theory appear, but have not yet 

appeared, is so large that it is not practical to 

represent them explicitly by using disease-specific 

models, even if we could predict well what they 

might be. An example is a new, highly contagious 

respiratory virus that has never been seen before. 

This paper introduces a Bayesian approach for 

modeling both known and unknown diseases within a 

single framework. We combine an unknown-disease 

model with models of known diseases to obtain a 

hybrid modeling approach. We call this algorithm the 

Bayesian hybrid detection algorithm or the BH 

algorithm. The goal is to detect known causes of 

anomalies well and to detect unknown causes at all. 

Methods 

In this section, we describe the BH algorithm in the 

context of disease-outbreak detection. BH takes as 

input emergency department patient symptoms, such 

as cough, fever, and diarrhea, of the most recent 24 

hours. We describe an example of this algorithm in 

terms of aggregate counts of the binary symptoms 

cough vs. no cough.  

The term ED that is used below refers to 

emergency departments in the region being 

monitored. The total patients across all EDs are 

treated as a single pool. 

Let d0 represent an arbitrary member of the set of 

diseases that ED patients can have in the absence of 

any disease outbreak in the population (e.g., acute 
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appendicitis would be one such non-outbreak 

disease).  

For k > 0, let dk represent an outbreak disease we 

know about and have modeled. We model six 

outbreak diseases classified by the CDC as serious 

bioterrorism threats, plus the following diseases: 

influenza, hepatitis A, cryptosporidiosis, and asthma. 

We call these diseases CDC-A
+
 diseases. 

Let d* represent an outbreak disease that is 

unknown or unmodeled. 

An Entity-Based Disease Model: The disease model 

we use is an entity-based Bayesian network model, 

which represents all the people in the population (not 

just the ED patients). Fig 1 shows plate notation for 

this model, where the plate is used to repeat the inner 

subgraph N times, and N represents the total number 

of people in the population. Due to limited space, this 

paper focuses more on the model structure. See [3] 

for details regarding how we specify the conditional 

probability tables of the Bayesian network model. 

Let OB denote the presence of an outbreak in the 

population, and let NOB represent no outbreak. The 

node disease outbreak status represents the outbreak 

status in the population during the most recent 24-

hour period. Let O represent this node, where O = OB 

or NOB. If an outbreak occurred in the population at 

any time during the most recent 24-hour period, then 

O = OB; otherwise, O = NOB. 

The node outbreak disease in population 

represents the outbreak disease that is present in the 

population. Let OD denote this node. OD can have 

the value none (no outbreak) or dk for k > 0 (outbreak 

of known disease dk) or d* (outbreak of an unknown 

disease d*). We assume in the current model that 

different disease outbreaks would not occur 

simultaneously; however, the model could be 

extended to allow for multiple disease outbreaks. 

If O = NOB, the model represents that there is no 

disease outbreak occurring in the population in the 

last 24 hours, i.e., P(OD = none | O = NOB) = 1. If O 

= OB, the model represents that some outbreak due to 

disease dk (or d*) is occurring in the population. We 

leave discussion of specifying P(OD = dk (or d*) | O = 

OB) to the Experiments section. 

The node fraction represents the hypothetical 

fraction of the total population that has the outbreak 

disease dk and has visited the ED in the last 24 hours 

with the outbreak disease in population (if any). Let 

F denote this node. Let f denote an arbitrary value of 

F. For example, f might be 10
-4

 or 2 × 10
-5

 or any of a 

wide range of fractions.  

The values of F depend on the temporal 

progression of the outbreak disease OD and what 

type of disease OD is, because an outbreak disease in 

an earlier stage tends to affect a smaller fraction of 

the population than a disease at a later stage, and 
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some outbreak diseases tend to affect a larger fraction 

of population than other outbreak diseases. Since we 

do not represent temporal progression in the model in 

this paper, there is uncertainty in the disease stage of 

a potential outbreak disease. Thus, in this paper we 

do not model a dependency between F and OD. 

However, in general the disease model in Fig 1 could 

be readily extended to represent a dependency 

between F and OD. 

The node person_i disease represents the possible 

diseases that person i can have, given outbreak 

disease OD in the population. Let PDi denote this 

node. For the people who did not come to the ED in 

the previous 24 hours, we assume that PDi = noED. 

For the people who came to the ED in the previous 

24 hours, PDi is a random variable that can take on 

values d0, d1, …, dK, d*. 

If OD = none, a specific person i either has d0 or 

his (her) status is noED. Note that d0 represents that 

an individual (1) went to the ED during the last 24-

hour period and (2) has a non-outbreak ED disease.  

When OD = dk (for 1 ≤ k ≤ K), a specific person i 

could present to the ED with outbreak disease dk, 

present with non-outbreak disease d0, or not present 

(noED). That person cannot have another outbreak 

disease, because as mentioned in the current model 

we assume that there is at most one outbreak disease 

present in the population at any time. Similarly, when 

OD = d*, a specific person i could present to the ED 

with d*, present with d0, or not present (noED). 

Given the disease state of person i, we use the 

person_i cough state node to model the cough state 

of that person. Let Ei represent this node for a 

specific person i and let ei represent the value of Ei. 

In this paper, we represent Ei as a binary symptom of 

person i, where 1 ≤ i ≤ N. It is possible to model more 

than one symptom, and we have done so, but we 

restrict this paper to an example that contains only 

one symptom, which makes it easier to convey the 

basic approach. For people who came to the ED 

during the past 24 hours, their evidence states are 
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disease outbreak status 

(O) 
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Fig 1 Plate notation for the entity-based disease model. 
 roceedings Page - 590



cough or no cough. For people who did not visit the 

ED, our convention is to assign Ei to be the value 

unknown. 

Recall that we model the state of a binary 

symptom Ei of every person in the population. For 

the people who came to the ED, we define P(Ei = 

cough | PDi = d0) = p0, P(Ei = cough | PDi = dk) = pk, 

and P(Ei = cough | PDi = d*) = p*. The symptom state 

of a person is modeled using a Bernoulli distribution. 

Thus, we have P(Ei = no cough | PDi = d0) = 1–p0, 

P(Ei = no cough | PDi = dk) = 1–pk, and P(Ei = no 

cough | PDi = d*) = 1–p*. In the next section we 

describe how we model the distributions over the 

probability parameters p0, pk and p*. Modeling 

distributions over parameters allows us to represent 

not only the parameters themselves, which model 

disease expression, but also our uncertainty about 

what the values of those parameters should be. Both 

forms of uncertainty are important. 

The known disease-specific model (DSM): As 

stated, this model represents that a person has a 

specific disease d0 or dk (for 1 ≤ k ≤ K). Recall that p0 

(pk) represents the probability of a cough symptom 

given a person having d0 (dk). We modeled p0 and pk 

using informative priors. We assume p0 is distributed 

according to a Beta distribution, namely, p0 ~ 

Beta(α0, β0). We also assume pk ~ Beta(αk, βk).  

We estimated α0 and β0 based on real ED reports 

from a large healthcare system in Pittsburgh from 

January to December 2002. We estimated αk and βk 

based on expert assessment. See [3] for details 

regarding how we estimated these parameters. 

The unknown-disease model (UDM): This model 

represents that a person has an unknown outbreak 

disease d* that we know little about. We model p*, the 

probability of cough in a patient with d*, using a non-

informative prior. Castillo et al., as well as many 

others, suggest a non-informative prior for 

parameters defined over a finite range to be uniform 

in that range
4
. An example of this was proposed by 

Bayes himself
5
, who used a uniform [0, 1] on the 

binomial proportion parameter p. Tuyl et al. also 

suggest using the uniform prior, called the Bayes-

Laplace prior, on the binomial proportion parameter 

p to represent ignorance
6
. We model p* using an 

uniform distribution over [0, 1], or equivalently, p* ~ 

Beta(1,1). Thus, for an unknown disease, we model 

that any probability of cough is equally likely.  

Inference: The objective of inference is to derive the 

posterior probability of an outbreak occurring given 

the observed evidence. In this paper, we apply a 

common outbreak-detection measure, the likelihood 

ratio (LR) method, that is not sensitive to the prior 

probability of there being an outbreak
7
, and thus we 

do not specify disease priors here. Although these 
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priors affect the magnitude of the posterior 

probabilities, they do not affect the relative order of 

the posterior probabilities. The evaluation method 

described in this paper determines the expected 

detection time (at a specific false positive rate) based 

on the relative order of the output LRs, which yields 

the same relative order as posterior probabilities. 

Thus computing LR does not affect the detection 

performance measure of BH that we use in this paper. 

We derive the likelihood ratio LR as 

( )
( )NOBOeEP

OBOeEP
LR

==

==
=

|

| , where e denotes the status of the 

symptom cough for every person in the population. 

We further calculate LR using the following equation: 
( ) ( )

( )
.

|

||

0

0

dODeEP

OBOODPODeEP
LR

dOD

==

==
=
∑ ≠               (1) 

We derive P(E = e | OD) by setting OD to be one 

of d0, dk or d*, and then performing inference on the 

Bayesian network in Fig 1. Inference is complicated 

by the fact that P(Ei = ei | PDi) is not a point 

probability, but rather a distribution, as described 

above. Thus, in order to perform inference we needed 

to integrate over these distributions. Although space 

does not permit a detailed description of inference, 

we note that we applied a variation of the exact 

inference method given in [8], which is polynomial 

time in the number of people who came to the ED. 

Experiments 

We chose three diseases from the CDC-A
+
 diseases 

for use in the experiments we performed. The three 

diseases are cryptosporidiosis, early stage anthrax, 

and inhalation tularemia. We use each of the three 

diseases to simulate an outbreak due to disease dk for 

1 ≤ k ≤ 3, as described below. In each experimental 

simulation, for each disease we modeled one of the 

three disease symptoms among cough, headache, and 

abdominal pain. BH will take as input one symptom 

state of the population at a time, as for example 

cough vs. no cough. We selected the three diseases 

and the three symptoms because these diseases and 

their symptoms contain a wide variety of 

distributional patterns (over P(Ei | PDi)) among all 

the CDC-A
+
 diseases. 

Datasets: We obtained real ED cases for 2005 from a 

large hospital in Allegheny County, Pennsylvania. 

The mean number of patients who visited the ED of 

this hospital per day was about 130. The time series 

of real ED cases of the hospital was used to estimate 

the number of people who are expected to come to 

the ED on a given day without any disease outbreak. 

Next, we describe how we simulated one outbreak 

dataset (scenario) due to disease dk by simulating a 

specific disease symptom (out of the three) of people 

in the population. 
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The background time series of non-outbreak 

cases was simulated based on the time series of real 

ED cases. On any given day (on or after midnight 

that day and before midnight the next day), we 

sampled from Beta(α0, β0) to determine the 

probability p0 of a person having a specific symptom 

given that person had disease d0. We then sampled 

from Binomial(n0, p0) to determine the number of 

people having that symptom when there was no 

disease outbreak in the population on that day, where 

n0 is the number of people who in reality came to the 

ED on that day. These generated cases with simulated 

symptom states that we call background cases. 

Let S be a symptom of disease dk (e.g., cough). 

We simulated outbreak cases with disease dk by using 

a linear outbreak model called FLOO that is 

described in [9]. Let nk be the number of simulated 

outbreak cases generated by FLOO per day. We 

sampled from the distribution Beta(αk, βk) to 

determine the probability pk of the symptom S 

appearing in each of the nk cases. We then sampled 

from Binomial(nk, pk) to determine the number of the 

outbreak cases having disease dk and symptom S.  

We generated the onset dates of the simulated 

outbreak due to disease dk by randomly selecting 8 

dates from each of the 12 consecutive months in 

2005. We created one dataset by overlaying the 

simulated outbreak cases produced by FLOO onto the 

background ED cases starting at the onset date and 

continuing for the outbreak duration. We thus created 

8 × 12 = 96 datasets (scenarios) of outbreaks due to 

disease dk. 

In order to evaluate the BH algorithm using 

different scales of disease-outbreak scenarios, we 

generated outbreak cases using three sets of FLOO 

parameters, which correspond to a low, medium, and 

high severity of disease outbreak. For each FLOO 

parameter setting, each disease, and each symptom 

that we selected, we generated 96 datasets, as 

described above. We thus generated 3 (FLOO 

settings) × 3 (diseases) × 3 (symptoms) × 96 

(outbreak scenarios) = 2592 datasets. 

Experimental Methods: Let du and dv be two 

distinct outbreak diseases. Table 1 shows our 

experiments for one such pair of du and dv. In this 

table, both experiments have simulated outbreaks due 

to disease du. However, disease du is modeled in Exp. 

1 but not modeled (e.g., unknown) in Exp. 2. DSM 

and UDM here represent two versions of the 

detection system that are constructed by including a 

DSM and an UDM model, respectively. 

In Exp. 1, UDM models an unknown disease d*, 

as well as the known outbreak disease du. We 

conjectured that including d* here would not detract 

significantly from detecting the outbreak due to du. In 

contrast, DSM did not model d*. We expected this 
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model to detect du somewhat faster than UDM, 

because the simulated outbreak was in fact due to du, 

but we conjectured it would not be appreciably faster. 

Table 1 A 2 × 2 table that summarizes the experiments. 

 DSM UDM 

Exp. 1 

(du is 

modeled) 

Model d0, du. 

Simulate outbreak 

cases from du. 

Model d0, du, d*. 

Simulate outbreak 

cases from du. 
 

Exp. 2 

(du is not 

modeled) 

Model d0, dv. 

Simulate outbreak 

cases from du. 

Model d0, dv, d*. 

Simulate outbreak 

cases from du. 

In Exp. 2, UDM did not model du, however, the 

simulated outbreak was due to du. Nonetheless, UDM 

did model d*. We conjectured that modeling d* would 

allow UDM detect a simulated outbreak due to du 

faster than would DSM, which also did not model du. 

If the above conjectures proved true, the 

experiments would provide support that modeling an 

unknown disease (in the form of d*) provides a net 

benefit in detecting disease outbreaks. 

In each of the four experiments represented by the 

cells in Table 1, we computed the likelihood ratio LR 

using Eq. 1. For the UDM model in Exp. 1, the sum 

in Eq. 1 is taken over du and d*, and for UDM in Exp. 

2, the sum is taken over dv and d*. For DSM in Exp. 

1, the sum of OD consists only of the term du, and for 

DSM in Exp. 2, the sum of OD consists only of dv. In 

this paper, due to space limitations, we only report 

experimental results for UDM when using a uniform 

prior over the appearance of the outbreak diseases 

being modeled.  

Given the output of the likelihood ratio of an 

outbreak scenario for a specific experiment, we 

determined the detection time and false positive rate 

for various detection ratios. The detection time was 

the time from the simulated release until a detection 

ratio threshold r was exceeded. The false positive rate 

was derived as FP / M, where FP is the number of 

false positives that occurred using threshold r while 

monitoring a time series of simulated ED cases in 

which there was no (simulated) outbreak, and M is 

length in months in that time series, namely, M = 12.  

Let event G denote the following event: Given 

that an outbreak is occurring, it is due to a disease 

that is not being explicitly modeled in the detection 

system. According to Table 1, G is true in Exp. 2 and 

is false in Exp. 1. Let q be the probability that G is 

true. Recall that we wish to evaluate whether 

modeling the possibility of an unknown disease 

occurring is a net positive in detecting disease 

outbreaks. If q = 1, then modeling d* will likely be 

helpful. If q = 0, however, modeling d* will be 

useless and possibly harmful by allowing more 

chances for a false positive alert. 
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We represent models DSM and UDM in Exp. 1 as 

DSM1 and UDM1, respectively, and likewise 

represent models DSM and UDM in Exp. 2 as DSM2 

and UDM2, respectively. Let EDSM1 be the average 

detection time of DSM1 over all the experiments 

described above at a false positive rate of one per 

month, since one false positive per month is 

frequently cited as an upper bound on a tolerable rate. 

Let EDSM2 be the average detection time of DSM2 

over all the experiments described above at a false 

positive rate of one per month. Let EDSM = (1 – q) × 

EDSM1 + q × EDSM2. Define EUDM analogously. 

Results:  In order to determine the false positive rates 

under various detection thresholds, we ran the BH 

algorithm using the DSM1, DSM2, UDM1, and 

UDM2 models on the background time series of ED 

cases in 2005, which we assumed to contain no 

disease outbreaks. For each model, we selected the 

threshold r that yielded one false positive per month. 

Threshold r was applied to the output likelihood 

ratios of an outbreak scenario of a specific 

experiment to determine its detection time under one 

false positive per month. Using this procedure, we 

obtained the mean detection time of all four disease 

models over all the experiments, as shown in Table 2.  

Table 2 Mean detection time (in days) of all four disease 

models over all the experiments. 

 DSM UDM 

Exp. 1 (du is modeled) 6.05 6.18 
 

Exp. 2 (du is not modeled) 7.14 6.38 

At one false alert per month, modeling d* does not 

significantly degrade detection performance of UDM 

in Exp. 1. In Exp. 2, UDM detects the ongoing 

outbreak 18 hours faster than DSM as expected. The 

results support our conjectures above. Statistical 

analyses were conducted in [3], which also supports 

our conjectures. By solving (1 – q) × EUDM1 + q × 

EUDM2 < (1 – q) × EDSM1 + q × EDSM2, we obtain q > 

0.14. Under the assumptions introduced, this result 

indicates that if the probability is greater than 0.14 of 

an outbreak being due to an unknown disease, then 

including d* in the model is expected to decrease the 

detection time at a false-positive rate of one alert per 

month.  

Discussion and Future Work 

It seems plausible that there are disease-outbreak 

monitoring situations in which if there is an outbreak 

then the probability exceeds 0.14 of it being due to an 

unknown disease. The Olympics provide one possible 

scenario, where a bioterrorist might attempt to use a 

new infectious disease agent to maximize terror. In 

such situations, the methods described this paper 

could be beneficial. More generally, this paper has 
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introduced a new Bayesian approach for detecting 

events due to causes of any type for which we have 

little knowledge. 

Recall that the disease model in this paper does 

not model multiple disease outbreaks simultaneously. 

If this circumstance occurred, we conjecture that 

modeling d* would still improve the detection 

performance because we model d* using a uniform 

prior, which allows the disease model (UDM) to 

match a wide variety of outbreak-disease patterns. 

There are numerous ways of specifying non-

informativeness when modeling unknown diseases. 

For example, we are studying semi-informative 

priors, in which some constraints are placed on the 

parameters of a disease model (e.g., the symptom 

cough has an increased rate of occurrence, relative to 

background rates), but otherwise the parameter 

distributions are non-informative [3]. We believe the 

investigation of non-informative and semi-

informative priors holds significant promise in 

biomedical domains, where the causes of events may 

as yet be undiscovered. 
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