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Abstract 

This paper describes the application of eight statistical and machine-learning methods to 
derive computer models for predicting mortality of hospital patients with pneumonia from 
their finadings at initial presentation. The eight models were each constructed based on 9847 
patient cases and they were each evaluated on 4352 additional cases. The primary evaluation 
metric was the error in predicted survival as a function of the fraction of patients predicted 
to survive. This metric is useful in assessing a model’s potential to assist a clinician in 
deciding whether to treat a given patient in the hospital or at home. We examined the error 
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rates of the models when predicting that a given fraction of patients will survive. We 
examined survival fractions between 0.1 and 0.6. Over this range, each model’s predictive 
error rate was within 1% of the error rate of every other model. When predicting that 
approximately 30°K of the patients will survive, all the models have an error rate of less than 
1.5%. The models are distinguished more by the number of variables and parameters that 
they contain than by their error rates; these differences suggest which models may be the 
most amenable to future implementation as paper-based guidelines. Copyright 0 1997 
Elsevier Science B.V. 

Keywords: Clinical databases; Computer-based prediction; Machine learning; Pneumonia 

1. Introduction 

The construction of computer decision-support systems from patient databases 
has longed played an important role in medical informatics. For example, starting 
in the early 196Os, researchers investigated the construction from data of Bayesian 
diagnostic systems that assume conditional independence of findings given a 
disease state [14,25]. As clinical information is stored increasingly in computer 
databases, the opportunities expand for using this information to help improve 
patient care and reduce health-care costs. Often, standard statistical methods, such 
as logistic regression, are used currently to construct predictive models in 
medicine. In the last decade, however, researchers in artificial intelligence have 
developed new machine-learning methods that construct computer models from 
data. In the current journal, for instance, numerous articles within the past few 
years have appeared discussing unsupervised [10,19] as well as supervised 
[8,16,26,27] machine-learning research in medicine. Such methods have the poten- 
tial to complement and augment existing statistical techniques. To understand the 
degree to which this potential can be realized in medicine, it is important to 
compare the performance of statistical methods and machine-learning methods on 
real clinical tasks using real clinical data. This paper reports one such investiga- 
tion in the construction and application of computer models to predict patient 
mortality. The particular machine-learning methods investigated are neural-net- 
work learning, a rule-learning technique, two causal discovery methods, a simple 
Bayesian classifier, and a generalized decision-tree induction method. Two statisti- 
cal techniques, namely, logistic regression and a K-nearest neighbor method, are 
investigated as well. 

In the study reported here, we focus on predicting patient mortality in the area 
of community-acquired pneumonia. Pneumonia is an important disease that af- 
fects over 3 million people annually in the US [23]. It is the sixth leading cause of 
death in this country [24]. In 1987 it was responsible for over 900000 hospital 
admissions [23], and the resulting health-care costs that year were more than 3 
billion dollars. 
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In -the current study, we concentrate on the task of predicting mortality of 
hospitalized patients from their findings at initial presentation with pneumonia. 
Such predictions may be useful to clinicians in making decisions about where to 
treat patients with pneumonia. We want to identify as large a group of patients as 
possible who can be treated safely at home for pneumonia, because (1) this strategy 
is likely to reduce the costs of treating pneumonia, and (2) it will allow patients with 
mild cases of pneumonia to be treated at home, where typically they would be more 
comfortable. 

2. The study database 

We used the 1989 MedisGroups Comparative Hospital Database (MCHD), 
which contains information on inpatients discharged from 78 hospitals in 23 states 
in the US between July 1987 and December 1988. These data were made available 
to the project by MediQual. The MCHD was collected by MediQual primarily to 
derive hospital mortality rates that are adjusted for severity of illness; the adjust- 
ment is based on MediQual’s proprietary MedisGroups classification system. The 
MCHD contains over 250 pieces of clinical information, called key clinicaljindings 
(KCFs), which include patient demographic characteristics, history and physical 
examination findings, and laboratory and radiological results. The KCFs are 
collectled during three review periods during the hospitalization of a patient; we 
only used patient data that were collected on the admission reviews, which is 
defined as the most abnormal findings during the first 48 h of hospitalization. 
MediQual employs site-specific, trained abstracters to encode for each hospital 
patient all the above information, based on a review of the patient’s medical record. 
In addition to the KCFs, MediQual records the principal and secondary diagnoses 
for all patients. 

We used the following inclusion criteria to define patients with community-ac- 
quired pneumonia from the MCHD: (1) an ICD-9-CM principal diagnosis of 
pneumonia was present at admission, (2) patient age 18 years or more, and (3) 
admission from home or a nursing home [9]. We excluded patients with a history 
of AIDS or a known positive HIV antibody titer. Patients with HIV-related illness 
were excluded since their pneumonia etiology and outcomes are different than 
patients without this underlying illness. We also excluded patients who had been in 
the hospital within 7 days of the current admission or who had been transferred 
from another acute care hospital, because we wanted to study only primary 
admissions for community-acquired pneumonia. In total, 14 199 patients from the 
MCHD met all the eligibility criteria and composed the study cohort. 

Among the more than 250 variables in the MCHD, clinical experts (including 
author MJF) selected 46 variables with either known or postulated association with 
mortality in patients with community-acquired pneumonia. Table 1 shows the 
variables that were included. Of these 46 variables, 17 have continuous (real) 
values. For each continuous variable (e.g. sodium level) the clinical experts defined 
discrete categories of variable values according to clinically meaningful ranges of 
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Table 1 
The variables that appear in the study database and their range of values 

Variable Categories of values” 

Patient-history jindings 
Age (years) 18-106 
Gender male, female 
A re-admission to the hospital no, yes 
Admitted from a nursing home no, yes 
Admitted through the ER no, yes 
Has a chronic lung disease no*, yes 
Has asthma no*, yes 
Has diabetes mellitus no*, yes 
Has congestive heart failure no*, yes 
Has ischemic heart disease no*, yes 
Has cerebrovascular disease no*, yes 
Has chronic liver disease no*, yes 
Has chronic renal failure no*, yes 
Has history of seizures no*, yes 
Has cancer no*, yes 
Number of above disease conditions an integer from 0* to 10 
Pleuritic of chest pain no*, yes 

Physical examination jindings 
Respiration rate (resps/min) <29*, 230 
Heart rate (beats/min) I 124*, 125-150, 2 151 
Systolic blood pressure (mmHg) 560, 61-70, 71-80, 81-90, 291* 
Temperature (“C) 534.4, 34.5-34.9, 35-35.5, 35.6-38.3*, 38.4- 

39.9, 240 
Altered mental status (disorientation, lethargy, or no*, yes 

coma) 
Wheezing 
Stridor 
Heart murmur 
Gastrointestinal bleeding 

Laboratory findings 
Sodium level (mEq/l) 
Potassium level (mEq/l) 
Creatinine level (mg/dl) 
Glucose level (mg/dl) 
BUN level (mg/dl) 
Liver function tests (coded only as normal* or 

abnormal) 
Albumin level (gm/dl) 
Hematocrit 
White blood cell count (1000 cells/~l) 
Percentage bands 
Blood pH 
Blood p0, (mmHg) 
Blood pCOZ (mmHg) 

no*, yes 
no*, yes 
no*, yes 
no*, yes 

1124, 125-130, 131-149*, 2150 
<5.2*, 25.3 
<1.6*, 1.7-3.0, 3.1-9.9, 210.0 
<249*, 250-299, 300-399, 2400 
<29*, 30 to 49, 250 
SGOT I 63 and alkaline phosphatase I 499*, 
SGOT > 63 or alkaline phosphatase > 499 
12.5, 2.6-3, 23.1* 
6-20, 20.1-24.9, 25-29, 230* 
0.1-3, 3.1-19.9*, 220 
<IO*, 11-20, 21-30, 31-50, ~51 
27.20, 7.21-7.35, 7.36-7.45*, 27.46 
159, 60-70, 71-75, >76* 
<44*, 45-55, 56-64, 265 
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Table 1 (continued) 

Variable Categories of values” 

Chest X-ray findings 
Positive chest X-ray 
Lung mfiltrate 
Pleural effusion 
Pneumothorax 
Cavitation/empyema 
Lobe or lung collapse 
Chest mass 

no*, yes 
no*, yes 
no*, yes 
no*, yes 
no*, yes 
no*, yes 
no*, yes 

a The MediQual database makes no distinction between values that fall within a specified ‘normal range’, 
as indicated by an asterisk in this column, and values that are not mentioned in the medical record. Both 
are recorded at zero. Consequently, in the study database, there is no way to distinguish whether a 
variable with a value of zero has a normal value or a missing value. 

the variable. For each continuous variable, we recorded it both as a continuous and 
as a categorical variable. Thus, the total variables recorded per patient case is 
46 + 17 = 63. 

Each patient case also contains a value for a variable that we call vitul_status, 
which. indicates whether the patient died during hospitalization. In particular, 
vital_status was given the value alive if a patient was either (1) discharged or 
transferred from the hospital, or (2) alive in the hospital more than 60 days after 
hospitalization. If a patient died during the first 60 days of hospitalization, then 
vital-status was given the value expired. In the remainder of this paper, we will use 
the term study database to refer to the database of 14 199 cases that contains values 
for the 63 finding variables and the variable vital-status. 

3. Methods 

We used a randomly selected 70% of the study database to create a training set 
of 9847 cases, and we used the remaining 30% of cases as a test set of 4352 cases. 
Based on the data in the training set, we used each of the six machine-learning 
methods listed in Section 1, as well as logistic regression and a K-nearest neighbor 
method, to construct predictive models. For each case in the test set, a patient’s 
findings on admission with pneumonia were given to a model and the model 
predicted the chance (e.g. a probability) that the patient would survive (or con- 
versehi, die) during hospitalization. By our assigning a model-specific threshold to 
use for predicting survival, each model will predict a set of survivors. (As described 
in Section 3.3, one of the models predicts survival directly, without using such 
thresholds in making predictions.) We also examined the predictive accuracy of 
several hybrid models, which are described in Section 3.9. 

Using test data, we evaluated the predictive performance of each of the predictive 
models constructed from the training data. The primary evaluation metric we 
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applied was the fraction of patients predicted to Survive who died (fpsd) as a 
function of the fraction of patients predicted to survive (fps). We emphasize that fps 
denotes the fraction of patients predicted to survive by a given model, rather than 
the fraction of patients who do in fact survive. We applied each model to the test 
set in order to plot values for fpsd as a function of values for fps. We examined the 
extent to which the models have different fpsd error rates. 

The fpsd versus fps metric is useful in assessing a model’s potential to assist a 
clinician in deciding where to treat a given patient. Suppose, for instance, that we 
have a computer model that predicts a sizable percentage of patients with pneumo- 
nia will live and almost all of them do live. Such a model could be helpful in 
suggesting which patients are likely to do well when treated at home, rather than in 
a hospital’. In other words, if a predictive model has an fpsd value that is sufficiently 
low, then the model’s prediction of survival might be used as one factor in assessing, 
for example, which patients are expected to do well clinically if treated at home. The 
fps level that corresponds to such a low fpsd value would indicate the fraction of 
all pneumonia patients the model predicts will survive, and thus, could be safely 
treated at home. The accuracy of such predictions would need to be carefully 
validated, preferably through randomized trials, but at least through systematic 
study of the performance of any implementation. 

As a partial measure of model complexity, we tabulated the number of variables 
and parameters in each model. We also investigated the convergence rate of one of 
the models as the amount of training data was varied. As an indication of the 
variance of the models in predicting the vital status outcomes of difficult patient 
cases, we examined the extent to which the models made errors on the same cases. 
In addition, we examined four hybrid predictive models. 

The remainder of this section contains (1) a brief summary of each of the eight 
methods that we used to infer predictive computer models from the training set of 
9847 patient cases, (2) details regarding how we applied each method to the test set 
of 4352 cases, and (3) a description of the statistical methods we used to compare 
the models. 

3.1. A summary of the logistic regression method 

Logistic regression derives an equation of the following form: 

where V is a binary variable to be predicted, and X,, X,,. . ., X, are discrete or 
continuous predictor variables [l]. The constants PO, pi, /12,. . . , /3,, are estimated from 
the training data, typically by using an iterative maximum likelihood technique. We 
can generalize the above equation by including interaction terms in the sum, which 
are composed of a product of the Xi variables. 

’ We emphasize that other factors also generally would need to be considered, such as (1) expected 

patient morbidity, (2) expected time to recovery, (3) the patient’s home environment (e.g. whether there 

are family members that could assist the patient) and (4) the patient’s preferences. 
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3.2. The application of the logistic regression method 

The logistic regression (LR) model we used was originally constructed and 
evaluated in the study described in [9]. For additional details about the construction 
of the model and its complete specification, see that paper. 

Each of the variables in Table 1 was tested for its ability to predict uital_status. 
For each discrete variable, we used a chi-square test. For a continuous variable, we 
used a Student’s t-test on its continuous range and a chi-squared test on its 
discretized range, as defined in Table 1. These tests were applied to the entire 
database of 14 199 patient cases using a two-tailed significance level of 0.05*. These 
variables defined the set of significant univariate predictors. Adjacent value cate- 
gories of the univariate predictor variables with three or more categories were 
combined if the odds ratios of these categories were not significantly different from 
each other at the 0.1 level using a likelihood ratio statistic. 

Given the univariate predictors and their categories, a logistic regression model 
was developed as follows from the training data. The BMDP implementation of 
logistic regression [l] was applied. A forward stepping search procedure was applied 
to the test data using the set of univariate predictors to identify significant (at the 
0.05 level) multivariate predictors of vital-status, which we denote as MP. We 
added to the model all two way interactions between the multivariate predictors 
and the variables age and gender, which we denote as AGP. 

We also applied the CART procedure to identify potentially important two and 
three way interactions among the multivariate predictors in MP; we use CP to 
denote this set of predictors. In its most basic form, as applied here, the CART 
method constructs a classification tree in which each node in the tree represents a 
model variable and each branch out of a node represents a value range for that 
variable. Each leaf node of the tree predicts one of the possible values for the 
outcome variable. Thus, a path in the tree denotes a (partial) patient state, as well 
as an outcome predicted for patients in that state. The variables along any given 
path are said to interact. CART was applied with the GIN1 index and used a cost 
matrix that penalized making a false prediction of death twice as much as making 
a false prediction of survival. 

Finally, we applied a backward stepping logistic regression procedure to the 
union of the predictors in MP, AGP, and CP in order to prune those predictors 
that were not statistically significant at the 0.05 significant level. The remaining 
predictors formed the terms in the final logistic regression model, which consists of 

* The use of the entire study database of 14 199 cases (which consists of both the training and the test 
cases) to select univariate predictors for logistic regression was done for historical reasons. In particular, 
the researchers who generated the logistic regression model made a decision to use all the database cases 
in the selection process [9]. Since in the present study we are interested in making a comparison to this 
highly relevant prior work, we have included the logistic regression model here without modification. We 
note, however, that when evaluated on the test set, any model that incorporates such predictors, which 
are selected based on the entire database, has the potential to be biased. 
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This table lists the variables that appear in each of the models, except that the variables used by the 
RLjOP method are not shown, because RL/OP constructed several models with different sets of 
variables 

Variable Model 

LR HME SB PCLR K2MB NN KNN 

Patient-history findings 

Age 
Gender 
A re-admission to the hospital 
Admitted from a nursing home 
Admitted through the ER 
Has a chronic lung disease 
Has asthma 
Has diabetes mellitus 
Has congestive heart failure 
Has ischemic heart disease 
Has cerebrovascular disease 
Has chronic liver disease 
Has chronic renal failure 
Has history of seizures 
Has cancer 
Number of above disease conditions 
Pleuritic chest pain 

Physical examination findings 
Respiration rate 
Heart rate 
Systolic blood pressure 
Temperature 
Altered mental status 
Wheezing 
Stridor 
Heart murmur 
Gastrointestinal bleeding 

Laboratory Jindings 
Sodium level 
Potassium level 
Creatinine level 
Glucose level 
BUN level 
Liver function tests 
Albumin level 
Hematocrit 
White blood cell count 
Percentage bands 
Blood pH 
Blood p0, 
Blood pCOZ 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 
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X 
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X 
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X 

X 

X 
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Table 2 (continued) 
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Variable Model 

LR HME SB PCLR K2MB NN KNN 

Chest X-ray findings 
Positive chest X-ray 
Lung infiltrate 
Pleural effusion 
Pneumothorax 
Cavitation/empyema 
Lobe or lung collapse 
Chest mass 

x X 

X X 

X X X X X 

X X 

X X 

X X 

X X 

LR, logistic regression; HME, hierarchical mixtures of experts; SB, simple Bayes; PCLR, PC+LR; 
K2MB, Markov-blanket variant of K2; NN, artificial neural network model; KNN, K-nearest neighbor 
model. 

20 univariate predictors (variables) shown in Table 2, as well as nine interaction 
terms among those variables3. The full model with coefficients is described in [9]. 

3.3. A summary of the hierarchical mixtures of experts method 

The hierarchical mixtures of experts (HME) method was introduced in [ 11,121. 
This method divides the set of patients into several populations, then estimates the 
probability of survival separately for each population. The HME method constructs 
its model by an iterative expectation-maximization (EM) algorithm: it alternately 
improves the division of the patients into populations and adjusts the estimated 
proba’bility of survival for each population. In the final model, the populations can 
be viewed as the leaves of a binary classification tree. The internal nodes of this tree 
correspond to logistic regression equations, which estimate the probability that each 
patient belongs in the left or right subtree, each of which corresponds to separate 
patient subpopulations. Thus, in contrast to traditional classification-tree methods, 
the HME method allows probabilistic splits in the tree, so that, for example, a 
patient could be classified as 73% in population 1 and 27% in population 2. The 
probability for vitaZ_status = alive for such a patient would be the weighted sum of 
0.73 times the probabilistic prediction of vital_status = alive in population 1 plus 
0.27 times the prediction of being in population 2. 

3.4, The application of the hierarchical mixtures of experts method 

We applied the HME method using the 20 variables and nine variable interac- 
tions in the logistic regression model described in the previous section; some of the 
variables in Table 1 correspond to more than one regression parameter in the HME 

3 The nine interaction terms that were included in the model are as follows: Age x Gender, Age x Can- 
cer, Age x Liver_fiinction_tests, Gender x Systolic_blood_pressure, Gender x Albumin-level, BUN_ 
level x Altered_mental_statu, Gender x Sodium_level, Gender xpH, Altered_mental_status xpH. 
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model. Using the entire training set, we initially built an HME model that had a 
balanced three-level binary tree structure containing eight leaf nodes. 

This structure was then pruned as follows. To compare the current model T to 
a pruned version of T, which we denote as T,, we computed the following likelihood 
ratio Lj: 

9847 P(vital_statusiIFi, T) 
L,= n 

i= 1 P(oital_status,jFi, q) 

where Fi is the set of findings for patient i, uitaZ_statusi is the vital status outcome 
that patient i experienced, and the product is taken over all patients in the training 
set. Each possible pruning of a single node in T corresponds to some Tj; at each step, 
we choose the T, with the smallest likelihood ratio value LY After pruning a node, 
we ran the HME fitting algorithm on the pruned tree until convergence was reached. 
The pruned tree then became T, and we repeated the above process. As a heuristic, 
we stopped pruning when log(L,) > 84 for all j, where 84 is twice the number of 
parameters that each pruning saves. 

The final HME model contains three internal nodes and four leaf nodes. Each 
internal node is a logistic regression model with 40 variables and one constant, making 
a total of 41 parameters. Each leaf node contains just a single constant parameter. 
Thus, there are a total of 127 parameters in the HME model. Constructing this model 
required about 5 h of real time on a DEC Alpha workstation. 

We used the HME model to assign a probability to each of the test cases. All the 
test cases were classified in about 6 s on the same machine. The test cases were sorted 
by their probability, and a probability threshold was used to partition the cases into 
those patients predicted to live and those predicted to die. The probability threshold 
was varied to obtain a plot of fpsd versus fps. 

3.5. A summary of a rule-based method 

This section describes a method called RL/OP, which combines a rule learning 
system (RL) with a post-processing rule optimizer (OP). 

RL is a knowledge-based, rule induction program under development in the 
Intelligent Systems Laboratory at the University of Pittsburgh [4]. The rules generated 
by this program are of the form if< feature 1) and (feature 2) and . . . then predict 
the case as (class X). A feature is an attribute:value pair. Thus age is an attribute, 
while age > 80 is a feature. If a test case satisfies all of the features on the left-hand-side 
of the rule (the if part), then the rule would cause that case to be predicted as the 
class specified by the right-hand-side of the rule (the then part). The following is an 
example of a rule that predicts that a patient will survive: if (age < 23) and 
(PO, > 47.5) then predict vital-status = alive. An example which predicts expired is 
as follows: if (systolic blood pressure < 60) then predict vital-status = expired. 

RL performs a general-to-specific search of the rule-space and selects ‘good rules’ 
using the following two criteria: (a) that the rule strength be greater than a 
predetermined threshold (e.g. 0.6), and (b) the heuristic that every new rule must cover 
at least one new case. Rule strength is determined by a certainty factor (CF) which 
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is a function of the correct and incorrect predictions and the class prevalences in the 
training data. 

OP is a ruleset post-processor under development in the Section of Medical 
Infonnatics at the University of Pittsburgh [2,3]. It is designed to select a subset of 
rules from a ruleset (from any source) with the goal to improve classification on unseen 
test cases. OP selects a subset of rules from a larger ruleset using a two stage process. 
The first stage, which we call rule ordering, involves assigning an order to the rules. 
The second stage, which we call ruleset evaluation and selection, involves selecting 
a ruleset using the ordering from the first stage. The rule ordering stage begins by 
rating the strength of each of the rules, based on the user-specified costs of incorrect 
predictions and the actual predictive performance on the training data. The rule with 
the highest strength is placed at the top of the list. In order to determine the second 
rule to place on the ordered list, the algorithm recalculates the rule strength for each 
of the remaining rules, giving more weight to the cases in the database that were 
incorrectly classified by the first rule. This procedure is repeated, so that in determining 
the third rule to be placed on the ordered list, the training cases given more weight 
are those which are incorrectly classified by the first two rules, and so on. 

During the ruleset evaluation and selection stage, OP selects the single ruleset which 
performs best (i.e. has the lowest cost of incorrect predictions) on the training data. 
The first ruleset evaluated is the empty ruleset. (This corresponds to the rule predict 
all cases as expired, since the default class is vital_status = expired.) The second ruleset 
contains the first rule from the ordered list, the third ruleset contains the first two 
rules from the ordered list, and so on. 

3.6. The application of the rule-based method 

RL was run using all of the variables in Table 1, for each of certainty factor 
thresholds of 0.60, 0.80, 0.90, and 0.95. Thus, four rulesets were produced. For 
continuous variables, it determined rule-specific two-valued discretizations of those 
variables. For categorical variables, it used the values given in Table 1. The four 
rulesets were combined to form a large ruleset consisting of 738 rules. 

In this study, misclassification costs facilitated the selection of rulesets whose 
predicted total error cost was minimized. By varying the ratio of the costs of the two 
prediction errors (i.e. the ratio of number of predictions of vital-status = alive in 
patients who expired to number of predictions of vital_status = expired in patients 
who survive), we were able to build models with varying fraction of patients predicted 
to survive (fps). Because the RLjOP method provides only a categorical output (i.e. 
vital-status = alive or vital-status = expired) a different model (ruleset) is required 
for each fps value of interest. 

In our study, the rules generated by RL predicted some cases as vitaZ_status = alive 
and others as vital_status = expired. When two or more conflicting rules predicted 
the sa:me case to be both vital-status = alive and vital_status = expired, it was 
necessary for OP to use a conflict-resolution strategy to decide the class of the case. 
The conflict-resolution strategy used in this study was based on a weighted sum of 
rule strength, which is best illustrated with an example. Assume for a given case that 
two rules predict expired, and three rules predict alive. The prediction for the case 
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will be vital_status = expired, if the sum of the strengths for the rules predicting 
vital-status = expired exceeds the sum of the strengths for the rules predicting 
vital-status = alive. If no rule predicts the class of a case (or if the weighted voting 
ends in a tie), a default class is chosen. The default class used in this study is 
vital-status = expired, because this class has the least expected cost (i.e. the class 
with the least cost if all cases were predicted as that class). 

OP was run on the 738 rules for different ratios of the costs of the two prediction 
errors. As this ratio was varied from 1 to 80, OP produced rulesets that had both 
fewer cases predicted to live and lower error rates for those cases. 

RL required about 60 min of real time on a DEC 3000 workstation for each run. 
OP required approximately 5 min of processing time per cost ratio (model). All the 
cases in the test set were scored in approximately 10 s on the same machine. The 
number of rules per model ranged from 90 to 427 (average of 204 over the six 
models generated). The number of variables used in the models ranged from 35 to 
44 (average 41). The number of parameters, defined as the sum of the number of 
conditions in the left-hand-sides of all the rules in a model, ranged from 192 to 1040 
(average 475). 

3.7. A summary of a simple Bayesian class$ier 

The Simple Bayes classifier (SB) is based on the well-known version of Bayes’ 
theorem in which findings are assumed conditionally independent given a patient 
state [13,14,25]. Let V be a variable that ranges over patient states of interest. For 
example, I/ might denote a patient disease state or outcome state. In the experi- 
ments reported here, V denotes the variable vital_status. Let F = { fi, f2,..., fn) be a 
set of finding variables. For example, fi could be the patient’s age that ranges over 
the positive integers. Then let P(# v) denote the probability distribution ofA given 
patient state I/. In training SB, we designate a set of findings for inclusion in the 
model, and then we estimate P(fi] v) from the training data. Given a set of findings 
F, we can compute the posterior probability P(V]I;) as follows (under the assump- 
tion of conditional independence of the findings given that the value of V is 
known): 

where an underlined variable set indicates that each of the variables in the set is 
instantiated to some particular value. The summation is taken over all possible 
instantiations of the variables in set I’. 

3.8. The application of the simple Bayesian classljier 

We estimated P(@ital_status = alive) as the number of joint occurrences off, 
and vital-status = alive in the training set divided by the number of occurrences of 
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vital_status = alive in the training set; the probability P(~(vital_status = expired)was 
estimated in an analogous manner. The prior probability P(vital_status = alive) was 
estimated as the fraction of the training cases in which vitaZ_status has the value alive; 
the probability P(vitaZ_status = expired) was estimated similarly. 

The variables used in the SB model were taken as the 20 variables found by the 
logistic regression model (see Table 2). The SB model did not, however, use any of 
the interaction terms that were used in the logistic regression model. For each of the 
20 vanables, SB used the discrete values given in Table 1, except the variable age, 
which was discretized into the intervals O-10, 1 l-20,..., 90-100. The SB model 
contained 136 parameters consisting of prior and conditional probabilities. The model 
was constructed in approximately 3 min of real time using a DEC 5000 workstation. 
Using the same computer, about 2 min were required to classify all the cases in the 
test set. 

3.9. A summary of an independence testing method for learning belief networks 

Let G be a directed acyclic graph over a set of variables 2, and let X be in 
Parents( Y, G) if and only if there is a directed edge from X to Yin G. For discrete 
variabl’es, say that a distribution factors according to G if and only if 

P(Z) = n P( YIParents( Y, G)) 
YE2 

that is, the joint distribution over 2 is the product of the conditional distributions 
P( YjParents( Y, G)), for each Y in Z. For discrete variables, the parameters of the 
distribution are just the conditional distributions P( Y(Parents( Y, G)). Let a belief 
networh: model be a pair (G, P), where P is a probability distribution that factors 
according to G [15]. 

The factorization of P entails a set of conditional independence relations among 
variables in 2. Say that a distribution P is faithful to G if and only if it factors 
according to G, and every conditional independence true in P is entailed by the 
factorization of P according to G. We also assume that P is faithful to some directed 
acyclic graph G. There may be more than one directed acyclic graph G to which P 
is faithful, but for the purposes of predicting mortality based on patient findings (as 
opposed, for example, to predicting the effects of different therapeutic interventions) 
these different directed acyclic graphs are equivalent. 

The PC algorithm takes as input a database and optional background knowledge 
such as time order. It uses statistical tests of conditional independence relations to 
construct a pattern, which represents a set of statistically (but not causally) 
indistinguishable directed acyclic graphs. The user specifies a significance level to use 
with the statistical tests. If there are hidden variables, the PC algorithm may indicate 
that it cannot find a model without latent variables to which the data are faithful. 
The PC algorithm is asymptotically reliable if P(Z) is faithful to some directed acyclic 
graph that contains only the variables in 2 (in the sense that P(Z) is faithful to each 
of the directed acylic graphs represented by the pattern). The algorithm and 
correctness proofs are described in detail in [20,21]. 
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3.10. The application of the independence testing method for learning belief 
networks 

The goal was to find a model that minimized fpsd for a given level of fps. The 
PC algorithm uses statistical tests to construct a pattern, and the output depends 
upon the significance level chosen. One possible method for constructing a model 
would be to randomly partition the training data into a subset 1 and a subset 2, and 
then proceed as follows: 

(1) 

(2) 

(3) 

Use the PC algorithm to construct a pattern from the data in training subset 1 
for each of the following five significance levels: 0.0001, 0.0005, 0.001, 0.005, 
and 0.014. In constructing each of these belief networks, search over the all the 
variables given in Table 1, using the discrete variable values given there (except 
the variable Age, which is discussed below). 
For each of the five patterns, select a belief network that is consistent with that 
pattern and estimate the parameters of that network using the data in training 
subset 1. 
Among the five belief networks, choose the one that minimizes fpsd as a 
function of fps on training subset 2. 

The problem with the above method is two fold. First, we discovered that some 
of the patterns indicate the presence of hidden variables. Hence the pattern could 
not be turned into a model that could be estimated without latent variables (step 2 
above). Second, there were up to eight variables directly adjacent to vital_status, so 
in order to estimate the probability of vital_status conditional on the variables 
directly adjacent to it would require a very large number of parameters, which 
would make the parameter estimates unstable. For these reasons, we modified step 
2 of the algorithm in the following way. We used the adjacencies in each of the 
patterns output by the PC algorithm at the different significance levels to select 
predictor variables for a logistic regression model, under the assumption that the 
strongest predictors were the variables adjacent to vitaZ_status in the PC output. 
We call this hybrid technique the PC + LR (or PCLR) method. This approach 
greatly reduced the number of parameters needed to predict vital-status. The 
variables selected at 0.005 and 0.01 significance levels were identical. Using training 
subset 2, we found that the variables selected at the 0.001, 0.005, and 0.01 
significance levels produced very similar predictions, which were much better than 
the predictions that resulted from using variables selected at the lower significance 
levels. Since the fewest variables were selected at the 0.001 significance level, we 
used the belief network that resulted from that level; call it B. The nine variables 
included in B are shown in Table 2. In constructing B, the variable age was 

“The FCI algorithm [21] is a more general procedure that takes as input raw data and optional 

background knowledge, and assuming the data are faithful to some graph, outputs a graphical object 

that represents a set of directed acyclic graphs with latent variables that entail the conditional 
independence relations judged to hold in the data. We do not use the FCI algorithm because in many 

cases it is not obvious how to select a representative model from the class of models represented by the 

output, or how to estimate such a model. 
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represented as integer values indicating an age category in years: O-39, 40-54, 
55-63, 64-68, 69-72, 73-75, 76-79, 80-83, 84-88, and above 89. These intervals 
were chosen because they contain approximately equal numbers of patients. 

Uing a Sparcstation 20 workstation, the CPU time required to construct B was 
approximately 7 h and 15 min. The logistic regression model constructed from B 
contained ten parameters; we did not explore the inclusion of interactions terms in 
the logistic regression model. Using a Sparcstation 20, the time required for 
classilication on all the test cases using logistic regression was approximately 2 min. 

3.11. A summary of a Bayesian method for learning belief networks 

This method uses a Bayesian scoring metric and a heuristic search procedure to 
learn belief networks from data. The scoring metric assigns to a belief-network 
structure a number that is proportional to the posterior probability of that 
structure given a database of training cases (and a set of modeling assumptions). A 
greedy search procedure is used in an attempt to find a belief-network structure that 
has a relatively high score. The belief-network structure found is then parameter- 
ized (i.e. the probabilities associated with the network are estimated) using the 
training data. 

In our experiments we used the Bayesian scoring metric described in [5] in 
conjunction with a variant of the K2 search algorithm described there. The K2 
algorithm requires that the user give it an ordering 0 of the database variables. A 
variable X is a potential parent of a variable Y if and only if X is to the left of Y 
in the ordering. K2 starts with an unconnected graph and for all possible single arc 
additions consistent with ordering 0 it adds the arc that leads to the highest score 
increa,se. If no score increase can be achieved by a further arc addition, K2 stops. 
Since a total ordering of the variables is not known in our domain, we apply K2 
with rnany random node orderings. Among all the belief-network structures in- 
ferred in this manner, we select the one that has the highest score. 

Since the space of random orderings is immense for more than a few variables, 
we can further constrain the search as follows. We developed an algorithm that 
takes a single focus variable V to be predicted and places it at the rightmost end of 
ordering 0. The algorithm then applies K2 to determine the parents of V. These 
parents (call them 7~~) are taken to approximate the Markov Blanket (MB) of V5. 
Let 2 denote the set of variables consisting of V and nV We apply K2 using 
multiple random orderings on the variables in 2. Thus, K2 will derive a belief-net- 
work structure that contains just the variables in Z. We call this variant of K2 the 
K2MB method. 

s The Markov Blanket MB(v) of a variable V is a minimal set of variables that makes V 
probabilistically independent of all other variables in the model, conditioned on knowing the values of 

the variables in MB( V’). 
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3.12. The application of the Bayesiun method for learning belief networks 

We applied K2MB with vital-status as the focus variable. Table 2 shows the 
six variables in nn,,,al ,Ff_ that were selected to approximate the Markov Blanket 
of vital-status. K2MB applied K2 with 5000 random orderings on the variable 
set consisting on vital_status and nVital Slaf,,S. This search required approximately 
11 h of real time on an IBM RS6000 Model 320. There are 111 independent 
probabilities that parameterize the belief-network structure found by K2MB. 
This resulting belief network was used to perform inference on the test cases, 
which required a total of approximately 1 min of real time on the RS6000. 

3.13. A summary of a neural network method 

An artificial neural network (NN) is a generalized, non-linear, least-squares 
curve-fitting procedure that uses a network of idealized neuron-like computing 
elements as a function approximator [17,18]. Each artificial neuron takes a 
weighted sum of its inputs and passes this sum through a smooth but non-linear 
transfer function. The function is smooth so that the function computed by the 
network is differentiable, which makes training the network easier. It is non-lin- 
ear to allow the network to approximate functions more complex than simple 
linear models. 

A typical network consists of three layers of neuron-like units. The first layer 
is the input layer where measurements such as blood pressure or temperature are 
fed into the network. The second layer (often called the hidden layer) is con- 
nected to the input layer via an adapting set of weights. The purpose of the 
hidden second layer is to find a re-representation of the inputs that facilitates the 
prediction the network is learning to make. The third layer is the output layer 
where the prediction of the network is made. It is attached to the second layer 
through a second set of adapting weights. Typically, the adapting weights con- 
necting the first and second layer and the second and third layer are trained by 
a gradient descent procedure called backpropagation. During training, the inputs 
are applied to the first layer, the target prediction is applied at the output layer, 
and the internal weights of the network are adjusted so that the network’s 
prediction more closely matches the target value. This weight adjustment process 
is repeated by cycling through the training data until no further improvement 
occurs. 

Artificial neural networks are popular because (1) they are appropriate for 
many different kinds of prediction, (2) they often perform competitively with 
other more specialized models, and (3) their use often requires minimal manual 
preprocessing of the data. In other words, they are popular because they are an 
effective black-box learning procedure. The black-box nature of artificial neural 
networks, however, is also a weakness. It is difficult, for example, to inspect a 
trained network to see what it has learned, or to modify a network to incorpo- 
rate medical expertise not contained in the training data. 
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3.14. The application of the neural network method 

We used the Aspirin/MIGRAINES Neural Network Simulator, Version 6, which 
is distributed by Mitre Corporation. We will use the abbreviation NN to denote 
this method and the model it constructed. We gave NN access to all the variables 
listed m Table 1. Recall that Table 1 lists a total of 46 variables. Of these, 17 are 
continuous variables that were mapped into discrete categories. Therefore, counting 
both the continuous and discrete versions of variables, there are a total of 
46 + 1’7 = 63 variables. NN was given training data on all 63 variables. Thus, there 
was some redundancy in the variables given to NN as input. The value range of 
each variable was scaled to the interval [O,l]. Boolean inputs (e.g. Male/Female) are 
represented as O/l. Continuous inputs are scaled proportionately from 0.0 to 1.0. 
So, for example, age is scaled so that 0.0 represents the youngest patient in the 
training set and 1.0 the oldest. The output of the network predicts patient mortality 
by assigning a value to the variable vital-status. During training, an output for 
vital-status of 0.0 was used to represent survival and 1.0 was used to represent 
death. Note that although the training set contains only values of 0.0 and 1.0 for 
vital_status, we are interested in the network’s ability to predict values between 0.0 
and 1.0 so that an estimate of the probability of death can be made. 

A single artificial neural network containing 63 inputs, eight hidden units, and 
one output unit was trained using the 9847 training cases. We selected a momentum 
of 0.9 and a learning rate of 0.1, because they are typical values that are used in 
applying neural networks. We used 20000 epochs during training. The number of 
epochs was determined by partitioning the training set into two subsets. In 
particular, for different numbers of epochs a neural network was learned using 
training subset 1 and then tested using subset 2. Finally, we trained a neural 
network on the entire training set using 20 000 epochs. Training required about 24 
h of real time on a DEC Alpha workstation. The resulting network contained 
approximately 600 weights (parameters). We used this network to assign a proba- 
bility of death for each of the test cases. In performing classification, NN used as 
input all 63 variables. The test cases were sorted by their probability, and a 
probability threshold was used to partition the cases into those patients predicted to 
live and those predicted to die. 

3.15. A summary of a K-nearest neighbor method 

The -K-nearest neighbor (KNN) method is a classification/prediction technique 
which uses the training cases themselves to classify new instances instead of 
building a computational model (such as a rule base or artificial neural net) to use 
to make predictions [7]. KNN is a direct implementation of the dictum that similar 
cases should have similar outcomes. It works by finding the K training cases most 
similar ((in some sense) to the new case (its K nearest neighbors) and then assigning 
to the new case the predominant classification of those K neighbors. Thus, KNN is 
a form of case-based reasoning. To use a KNN method, one specifies K (the 
number of neighbors that will be used to make the prediction), how similarity 
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between cases is to be measured so that the K nearest cases can be found, and how 
the predictions of the K nearest neighbors are to be combined to form the 
prediction for the new case. 

3.16. The application of the K-nearest neighbor method 

We used KNN as follows to derive a probability of death (i.e. vital_status = ex- 
pired) for each patient. K is the number of neighbors in the training set used to 
estimate the probability of death for a new case. To find the K nearest neighbors we 
used a simple Euclidean distance in the 63 dimensional space defined by the 63 
available measurement@. Each variable was scaled to the same range so that all 
variables would have comparable importance in the distance calculation. Let D be 
the number of the K nearest neighbors that died. The ratio D/K estimates the 
probability of death of the patient and can be used to rank it when compared with 
other patients. In computing D/K we do not take into account the distances to the 
different neighbors; each neighbor affects the estimated probability equally, inde- 
pendent of distance to the new case. (We note that this application of KNN is 
basic; more sophisticated KNN methods using more complex distance metrics and 
combination schemes might perform better). 

In this application we are using KNN to estimate a continuous quantity, namely 
a probability. The training set, however, contains only Boolean outcomes indicating 
whether each patient lived or died. Because of this, we need to use large enough K 
to provide low variance estimates of the probability and to have sufficient resolu- 
tion for classification. As an example, if K = 5, the possible maximum likelihood 
estimates of the probability of death are 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. Since the 
probability of death is, on average, about 0.11 for the patient population in the test 
set, estimates made with K = 5 would not only have high variance, but would 
probably yield poor rankings because the probability is quantized too coarsely in 
the region where most cases will fall (0.00-0.20). Of course if K is too big, the 
neighborhoods will become too large to accurately sample small clusters in the 
space. 

Since there is no principled way to select K, we selected a value for K by using 
a cross validation with 6855 cases randomly chosen from a training set as a subset 
1 and the remaining 2992 cases from the training set as subset 2. We tried K= 10, 
25, 50, 100,200,400, and 800 using subset 1. The performance of each K value was 
evaluated by classifying the cases in subset 2. By using different probability 
thresholds for predicting a case as expired versus alive, we computed the fpsd values 
corresponding to fps values of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. KNN models with K 
equal to 200, 400 and 800 performed well, with K = 400 providing the best overall 
performance. 

6 The Euclidean distance is more appropriate for deriving nearest neighbors when using ordinal 
variables rather than nominal variables. For simplicity, however, we used the same distance metric for 
both types of variables. 
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KNN training consisted of semiautomatically exploring the predictive perfor- 
mance of using different values of K. This training required approximately 5 h of 
real tilme on a DEC Alpha workstation. The time required to classify all 4352 test 
cases with K= 400 was about 27 min on an unloaded Dee Alpha. KNN is different 
from the other models in this paper in that it uses the training database directly, 
rather than construct a model from the training data. In this sense, the number of 
parameters used by the KNN algorithm is 9847 x 63 (number of training cases 
times number of variables per case) plus 1 (the parameter K), which is equal to 
620362. Thus, by far, the KNN method uses more parameters than any other 
method described in this paper. 

We used the KNN model to assign a probability to each of the test cases. The 
test cases were sorted by their probability, and a probability threshold was used to 
partition the cases into those patients predicted to live and those predicted to die. 

3. I 7. Hybrid methods 

We also examined the predictive performance of four hybrid models that 
combine the prediction of LR, HME, PCLR, NN, and KNN, which we call the 
base models. The first hybrid model (called mean value) averages the five posterior 
probabilities of the base models, which it uses as a posterior probability to derive 
its predictions. The second hybrid model (called majority rule) predicts vital_ 
status q = alive for a patient case if three out of five of the models predicts alive, 
otherwise it predicts expired. The third hybrid model (called consensus) predicts 
vital-status = alive only if all five models predict alive, otherwise it predicts expired. 
The fourth hybrid model (called exception) predicts vital-status = alive if any of the 
five models predicts alive, otherwise it predicts expired. 

3.18. Statistical methodology 

In this section we describe the methods we used for comparing error (fpsd) rates 
and for performing a sample-size analysis based on the error rates we observed. 

3.18.1. Comparison of fpsd values 
Recall that fps denotes the fraction of patients predicted (by a model) to survive, 

and fpsd denotes the fraction of those patients who in fact died. In this paper the 
primary approach to comparing models is based on a plot of fpsd versus fps for 
each of the models. For the purpose of analysis, we assume that in the limit (as the 
test dalIabase grows in size) that for a given fps value the fpsd value of each model 
will converge to some point value. Thus, a statistical analysis based on the binomial 
distribution is applicable. We use a statistical analysis based on such ratios of 
events, that is, proportions. In particular, based on the binomial distribution, we (1) 
compute confidence intervals around fpsd values and (2) derive the statistical 
significance of the difference in fpsd values of different models at a given fps value 
(or small range of fps values). 
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A standard method for comparing the difference between two proportions is to 
use the z-approximation. Suppose, for example, that we have the proportion 
q, = m,/n,, and the proportion q2 = m,/n,. In this paper, qi is equal to fpsd of model 
i and yli is the sample size corresponding to a given fps value. The value for z is 
computed as follows [6]: 

z = (4, - %)lJP(l -p)(l/n, + l/Q) (1) 

where p is a pooled probability estimate that is computed asp = (m, + m&/(n, + n2). 
Using standard statistical tables, a value of z can be mapped into a two-sided P 
value, which gives the likelihood that the same or more extreme differences would 
be observed under the assumption of the null hypothesis that there is no difference 
in the proportions in the limit. 

The z-approximation method assumes that the proportions being compared are 
derived based on independent (non-overlapping) samples. In the current study, 
however, for a given fps value, there typically is partial overlap between the samples 
used to derive the fpsd values of different models. The partial overlap is due to each 
method selecting from a common test set those patient cases to classify as survivors. 
In general, two models so constructed will predict some, but not all, the same cases 
as survivors. If there were complete overlap, which generally there is not, then the 
McNemar test would be applicable. Suppose we assume that independent samples 
would yield the same fpsd values as those values we observe (by using partially 
independent samples), then Eq. (1) would derive P values that indicate the 
statistical significance of the differences in error rates. In analyzing the results we 
obtained, we will make this assumption, realizing, however, that it provides only a 
heuristic indication of statistical significance. We will use P* to denote a P value 
computed using Eq. (1) under the assumption. 

3.18.2. Sample-size analysis 
We perform a sample-size analysis, which derives the number of patient cases we 

would expect to need in a future study in order to detect fpsd differences between 
LR and each of the other seven models. To do so, we use the standard formula for 
computing a sample size [6] when the true proportions are assumed to be p, and pt. 
The proportion pc is the fpsd value for LR, and the proportion pt is the fpsd value 
for one of the other models. We used a two-tailed Type I error of 0.10, and a lower 
one-tailed Type II error of 0.10. The sample size is the number of cases needed for 
estimating the fpsd value for LR for a given fps level; the same number of cases 
would be needed for estimating the fpsd value for model i. 

4. Results 

4.1. Model variables 

From Table 2 in the Section 3, we observe that models contained from 6 to 46 
variables (not including discrete versions of continuous variables). The HME and 
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SB models adopted the variables used by LR’. The NN and KNN models use all 
46 variables. All the models in Table 2 contain the following five variables: has 
cancer, respiration rate, altered mental status, BUN level, and blood PH. All the 
models, except K2MB, contain the variable age. The PCLR and K2MB models use 
no chest X-ray findings. 

Logistic regression 

HME (Decision tree) 

K2MB (Bayesian network) 

PCLR (Bayesian network) 

Simple Bayesian model 

RUOP (Rule-based model) 

N Neural networks 
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Fig. 1. A plot of the fpsd error rate as a function of fps for the eight models named in the legend. Each 
vertical bar through a logistic regression data point indicates a 95% confidence interval around that 
point. Some of the letters in the plot have been moved slightly to the right or left to prevent their 
overlapping each other. 

7 Note that this adoption by HME and SB of the variables used by LR implies that the HME and SB 
models are subject to the same possible variable-selection bias as is LR, which is discussed in footnote 
2. 
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4.2. Errors in predicting patient mortality 

Fig. 1 contains a plot of fpsd versus fps for each of the models8. In the test set, 
11% of the patients died. Thus, the highest that an fpsd value can possibly be is 
11%. A vertical bar through each logistic regression data point gives the 95% 
confidence interval around that point. We used logistic regression as a reference 
model, because it is a standard method of prediction in medical studies. 

Let the term fps level denote an fps value of 0.1, 0.2,. . ., or 0.6. For the data 
plotted in Fig. 1, we grouped the fpsd errors of each model according to fps level 
to which it was closest. Thus, for example, for an fps level of 0.6, the group consists 
of the eight data points on the far right of Fig. 1. For each fps level, the standard 
deviation for the fpsd value of each model is always between 0.002 and 0.003, 
except for fpsd level 0.5 where K2MB has a standard deviation of 0.004. 

For each fps level, we compared the difference between the fpsd value of logistic 
regression (LR) to the fpsd values for each of the other methods. In every case, the 
P* value was greater than 0.109. 

For each fps level, we also compared the difference between the lowest fpsd value 
of any model at that level to the fpsd value of every other model at the level. In 
only the following two instances was the P* value less than 0.10: (1) at fps level 0.2 
the difference between the NN model and the RLjOP model has a P* value of 0.06, 
and (2) at fps level 0.5 the difference between the HME model and the K2MB 
model has a P* value of 0.04. Not surprisingly, the lowest fpsd values occurred 
with an fps level 0.1. For all the models (except K2MB), when fps is equal to 
approximately 0.1 (which corresponds to 435 patient cases) the fpsd value is no 
more than 0.0054 (which corresponds to two erroneous predictions of death). Thus, 
at an fps level of approximately 0.1, out of the 4352 cases in the test set, each model 
predicted that about 435 patients will survive, and of those patients, about 433 or 
434 did survive. 

4.3. Sample-size analysis 

Given the performance data displayed in Fig. 1, we now quantify how many 
cases we would expect to need in a future study to show a statistically significant 
difference between the LR model and each of the other models. Table 3 shows the 
total number of cases needed for each pair-wise comparison. This analysis does not 
take into account that performing multiple pair-wise comparisons generally requires 
a larger sample size for each comparison (to maintain given Type I and Type II 

s Only three points are plotted for KZMB, because this model did not predict fps levels lower than 
0.36. A posthoc analysis indicated that this was due to the variable age not appearing in the KZMB 
model. The seven other models each contained the variable age. 

9 For all statistical comparisons discussed in this section, the values for ffll and m, at fps level 0.1 were 
each less than 5. For higher fps levels, these values were at least 5, except for the value for the NN model 
at fps level 0.2, which was 2. The statistical tests discussed in Section 3.18 may not be reliable when q 
is less than 5. 
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Table 3 
A sample-size analysis that estimates the number of patient cases needed to show statistically 
significant differences in the fpsd values between LR and each of the other seven models, under the 
assumptions of a Type I and Type II error of 0.10 

fps level HME RLjOP SB PCLR NN KNN K2MB 

0.1 97 195 125 675 744319 * 128 364 ** 
0.2 * 844410 63 836 
0.3 115 594 2239013 290;61 

39 222 1 136t689 ** 
266 329 290 261 

0.4 132 518 1229013 302;36 13 384 320 494 30;;36 
0.5 135 054 2 588 132 307 480 321168 307 480 144 449 37 240 
0.6 1275 815 206 885 321 829 27 419 321 829 81 878 52 852 

An asterisk indicates that LR and the model to which it is being compared have the same fpsd value, 
and therefore a sample size estimate is not defined. A double asterisk indicates those fps levels for which 
KZMB ‘did not produce an fpsd value. 

errors) than does a single pairwise comparison; thus, the sample sizes in Table 3 
should be interpreted as lower bounds on the number of cases needed if all seven 
pairwise comparisons are made. The sample sizes in Table 3 range from 27 419 to 
2 588 132, with the mean size being 450 665 cases. 

4.4. Hybrid models for predicting patient mortality 

If the models are making errors on the same cases (or many of the same cases), 
then there would be little hope in combining the models to form a hybrid model 
that has improved predictive performance. If most such cases are different, how- 
ever, a hybrid model might do relatively well, when compared with the eight base 
models. We examined the degree to which the following five models made errors on 
the same cases: LR, HME, PCLR, NN, and KNN. 

For each of the six fps levels, we listed each case that resulted in an fpsd error 
for each of the five models. Moreover, for each fps level we tabulated the number 
of erroneously predicted cases that are shared by the five models. Each fps level is 
represented by a column in Table 4. Moreover, the errors are recorded in the rows 

Table 4 
An entry in the table indicates the number of erroneous patient survival predictions that are common 
to a given number of methods for a given fps level 

No. models fps levels 

0.1 0.2 0.3 0.4 0.5 0.6 

1 1 10 12 21 50 58 
2 0 3 8 7 11 22 
3 1 2 7 13 8 18 
4 0 0 3 5 16 13 
5 0 1 1 7 14 33 



130 G.F. Cooper et al. 1 Artijicial Intelligence in Medicine 9 (1997) 107-138 

Table 5 
Values for fps and fpsd for each of four hybrid predictive models as applied to the test set 

Hybrid mean value 

fps fpsd 

Hybrid majority rule 

fps fpsd 

Hybrid consensus 

fps fpsd 

Hybrid exception 

fps fpsd 

0.102 0.002 0.101 0.002 0.107 0.002 0.101 0.002 
0.199 0.003 0.200 0.003 0.199 0.002 0.207 0.003 
0.302 0.007 0.301 0.007 0.298 0.008 0.298 0.008 
0.397 0.016 0.402 0.015 0.404 0.016 0.401 0.013 
0.498 0.017 0.500 0.018 0.507 0.020 0.498 0.018 
0.600 0.021 0.602 0.023 0.595 0.027 0.600 0.020 

The three models are hybrids of the LR, HME, PCLR, NN, and KNN models. 

1 through 5 according to the exact number of models that made that error (at that 
fps level). For instance, column 4 of the table tabulates the errors made by the 
models at fps level 0.4. We see that 21 erroneous case predictions were made by 
exactly one system, seven were made by two systems, and so on. 

The results in row 1 of Table 4 indicate that often the five base models are 
making erroneous predictions on different cases. We examined the predictive 
performance of four hybrid models, which are described in Section 3.17. Table 5 
indicates that the four models performed comparably, although the hybrid-excep- 
tion model appears to perform slightly better than the other three. Fig. 2 shows a 
plot of the hybrid-exception performance data in Table 5, as well as a plot of the 
data from Fig. 1 for the five base models that were used to construct the 
hybrid-exception model. The plot suggests that the hybrid-exception model is 
predicting well, but not significantly better than the other five models on which it 
is based. 

For each fps level, we compared the difference between the fpsd value of the 
hybrid-exception model to the fpsd values for each of the other model results shown 
in Fig. 2. In only the following two instances was the P* value less than 0.10: (1) 
at fps level 0.6 the difference between the hybrid-exception model and the PCLR 
model has a P* value of 0.02, and (2) at fps level 0.6 the difference between the 
hybrid-exception model and the KNN model has a P* value of 0.09. 

4.5. The number of model parameters and variables 

We tabulated the number of variables and parameters in each model. A variable 
is a patient finding. The number of variables is an indication of the burden of a 
model ,regarding data input. For this purpose, we counted a continuous variable as 
only one variable; we did not count the discrete version of a continuous variable, 
since the discrete version can be computed directly from the continuous version. A 
parameter is a numerical term in a model. The number of parameters provides an 
indication of whether a computer would be needed to apply the full model in a 
feasible manner. As shown in Fig. 3, some of the models differ significantly in the 
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number of variables and parameters that they contain. The number of variables 
ranges from 6 to 46, and the number of parameters ranges from 10 to over 600. The 
K-nearest neighbor model is not included in Fig. 3, because in a sense the model 
uses the entire training database as a set of parameters, which translates to 620 362 
parameters; such a large number would make scaling the y axis of Fig. 3 difficult. 
As we discuss in Section 5, these differences in the number of variables and 
parameters suggest that some of the models may be more readily converted to 
paper-based guidelines than other models. 

4.6. Aldditional results 

The results in Sections 4.1-4.5 suggest additional questions for study. Although 
it was not practical for us to address these questions at this time using all the 

Logistic regression 

HME (Decision tree) 

PCLR (Bayesian network) _ 

Neural networks 

K Nearest neighbors 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

fraction of patients predicted to survive their pneumonia (fps) 

Fig. 2. A. plot of the fpsd error rate as a function of fps for the five base models named in the legend, 
plus the hybrid-exception model shown as E. 



132 G.F. Cooper et al. 1 Artificial Intelligence in Medicine 9 (1997) 1077138 

+ Logistic regression 

600-- H HME xr 

2 K2MB 

5 r PCLR 

E 500-- S Simple Bayesian model 

m R RUOP 

.f 

f 400 
N Neural network 

5 

S 

d 
z 300 
.o 
b 
E 

z 
z 200 P 

t 

f 1 
2 2 II 

100 

0 11.1 III, P 1.1, II II,,,,, ,111 ,111 ,111 II,, II,, 

0 5 10 15 20 25 30 35 40 45 50 

number of variables in a model 

Fig. 3. A scattergram showing the number of variables and parameters in seven of the models. The data 
point for RL/OP shows the mean values over six RLjOP models (see Section 3.6). The K-nearest 
neighbor model is not shown (see the text). 

prediction methods, we have addressed them using the NN and the KNN methods. 
This section describes the questions and the results we obtained. These results may 
be helpful in planning future extensions to the current study. 

4.7. Predictive error of neural network models as a function of training set size 

How likely would the results in Fig. 1 improve if additional training data were 
available? We partially addressed this question by performing additional experi- 
ments with the neural-network method. In particular, we randomly partitioned the 
training set into a subset 1 containing 6855 cases and a subset 2 containing 2992 
cases. From the subset 1 we randomly selected training sets of size 100, 250, 1000, 
2000, 3000, 4000, and 6000 cases. We repeated this selection process five times in 
order to generate five training sets of a given size. For each of the five training sets 
of a given size, we constructed a neural-network model and evaluated the model on 
the subset 2. We computed the mean fpsd over the five models constructed from a 
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training set of a given size. Fig. 4 shows the results, which suggest that beyond 
about 3000 cases further significant reduction of the fpsd error rate is unlikely. 
Since we used a training set of 9847 cases in the experiments summarized in Fig. 1, 
it is unlikely that additional training data (on the same variables for the same 
patient population) would further improve the performance of the NN model. 

4.8. Cross validation results for the neural network and K-nearest neighbor models 

We constructed an additional ten pairs of training and test sets of size 9847 and 
4352 cases, respectively, by random partitioning of the entire 14 199 cases in the 
study database. We constructed a NN model using each of the ten training sets, and 
we applied the model, as described in Section 3.14, to its paired test set. Thus, we 
derived ten additional fpsd data points for each fps level for the NN method. 

0.06 

0 
0 1000 2000 3000 4000 5000 6000 7( 

number of cases in the neural network training set 

Fig. 4. A plot of the fpsd error rate for neural-network models that were constructed using different size 

training sets. 
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Table 6 
Means and standard deviations derived using cross validation with 11 trials for the neural network 
(NN) method and 101 trials for the K-nearest neighbor (KNN) method 

fps value NN mean fpsd NN fpsd SD. KNN mean fpsd KNN fpsd S.D. 

0.1 0.001 0.002 0.004 0.003 
0.2 0.004 0.003 0.009 0.003 
0.3 0.009 0.002 0.015 0.003 
0.4 0.015 0.002 0.020 0.003 
0.5 0.021 0.003 0.027 0.003 
0.6 0.029 0.003 0.034 0.003 

Furthermore, we constructed an additional 100 training and test sets that we used 
to develop 100 additional fpsd data points for each fps level for the KNN method. 

Table 6 shows that the NN method outperforms the KNN method at every fps 
value. For each fps value, a t-test indicates that the difference between the mean 
fpsd of NN and KNN is significant at P < 0.01 lo This result supports the pattern . 
of relative performance between NN and KNN that is shown in Fig. 1. The 
standard deviations in Table 6 are close to those computed under the assumption 
of a binomial distribution, as described in Section 4.2; this correspondence increases 
our confidence in the validity of the statistical analysis described in that section. A 
comparison of Fig. 1 and the data in Table 6 shows that the performance of both 
NN and KNN are better in Fig. 1 than in Table 6. This result suggests that for the 
test cases used to derive Fig. 1, it was somewhat easier to predict mortality than we 
would expect for a wider sample of this domain population. We attribute this result 
to chance selection of the test cases. This pattern does suggest the possibility that 
the other methods also would perform slightly worse on a wider population sample. 

5. Discussion 

The ability to accurately predict mortality in patients with pneumonia may be 
useful to clinicians in making decisions about where to treat patients with pneumo- 
nia. We would like to identify as large a group of pneumonia patients as possible 
who could be treated safely at home. We studied a population in which approxi- 
mately 11% of the patients died of pneumonia. For the eight different models we 
studied, the results show that when 10% of the patient population is predicted to 
survive, the predictive error rate is no more than half a percent. Additional analysis 
suggests that this rate may be slightly better than we would expect on a larger 
sample of patients than the ones we tested. The lowest error rate for each fps level 
was attained by one of the three following methods: neural networks, HME, and 

lo Cross validation increases the power of the statistical comparison. Strictly speaking, the indepen- 
dence assumptions underlying the t-test are not valid: thus, these results, while informative, should be 
considered heuristic. 
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logistic: regression. The results also show, however, that all eight models tested have 
absolute error rates within 1% of each other. Significantly, most of the models’ 
error rates are sufficiently close such that a very large test database would be 
needed to reliably establish whether the rates differ statistically. 

We have compared the predictive performance of eight models constructed by 
eight methods. Thus, the results directly reflect the performance of the models, 
rather than the methods. Nonetheless, for at least one method (neural networks) 
resampling results suggest that the model’s performance is a good indication of the 
method’s performance for this domain (relative to the assumptions made in 
applying the method). Our data do not indicate how the eight methods would 
perfomn in making predictions in other medical areas, nor would it be expected of 
them to do so; additional studies would be needed to address such issues of 
robustness. 

We examined four simple hybrid models that combine the predictions of five of 
the eight base models. There was one hybrid model that predicted as well or better 
than logistic regression for all six levels of fps. While these results look promising, 
we are not able to conclude at this point that this performance difference is 
statistically reliable. Recent results do lend hope that hybrids can be found that 
perform significantly better [22] than base models. The space of possible hybrid 
models is immense and largely unexplored. As one example, consider that the 
neural network method performed relatively well in the current study, but used all 
the variables. This suggests using one of the other methods to identify the variables 
for the neural network method to use in constructing a predictive model. Many 
other hybrid combinations are possible. 

We found that the models differ markedly in the number of variables and 
parameters they contain. We emphasize, however, that in the current study we did 
not direct our efforts toward reducing the number of variables and parameters in 
models generated by the eight methods. Future research may show, for example, 
that it is possible to reduce the number of variables and parameters used in 
developing a neural network model, and yet, maintain the low predictive error rate 
of that model. Such reductions are of interest because models with a smaller 
number of variables may be more quickly and easily used by clinicians, since those 
models would require that less data be input. Models with a relatively small number 
of parameters may be more readily converted into paper-based models that could 
be used widely in current medical practice. As medical information systems become 
more widespread and comprehensive in the data they capture, the need for 
paper-based decision tools is likely to decline. Even so, paper-based models may be 
useful as medical teaching tools. One model (PCLR) in the current study required 
only nine variables and ten parameters. We have performed a preliminary conver- 
sion of this model, as well as several others described in the current paper, into 
paper-based models. In a future study, we plan to test the accuracy of these 
paper-based models for predicting mortality. 

The current paper focuses on predictions of inpatient mortality. The applicability 
of such predictions in helping decide whether a patient should be treated at home 
versus in the hospital requires making the following methodological assumption: 
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If a hospital-treated pneumonia patient has a very low probability of death, then that patient 
would also have a very low probability of death if treated at home. 

This assumption is needed for pragmatic reasons. In particular, our study data- 
base contains only information about inpatients, which is not ideal methodologi- 
cally. Some inclusion of outpatients in the database is preferable. From the 
standpoint of predictive accuracy, an ideal database would be based on a clinical 
trial in which patients were randomized to be treated either as inpatients or 
outpatients. Such a trial would, however, be unethical, because it is likely that 
(1) some of the more severely ill patients would be randomized to be treated at 
home, (2) they would have fared better if hospitalized, and (3) clinicians would 
have elected to treat them in the hospital. Appropriately then, such an ideal 
database is unlikely to ever be available. One approach to using inpatient data 
would be to make the above stated methodological assumption, with the under- 
standing that the models we build will eventually need to be evaluated as clinical 
decision aids. As one possibility, suppose that a trial is performed in which 
clinicians are randomized either to have or not to have access to such a decision 
aid in making decisions about where to treat patients who present with pneumo- 
nia. Suppose that (1) patients who are treated by clinicians using the aid do as 
well or better than patients who are not (in terms of mortality and significant 
morbidity) and (2) using the aid increases the number of patients treated at 
home, relative to not using the aid. Such a result would lend support to the 
decision aid being useful. In actual practice, the effectiveness of the tool would 
of course depend on whether physicians can and will use it. Thus, high predic- 
tive accuracy is likely to be a necessary, but insufficient, condition for producing 
decisions aids that have a positive impact on the cost and quality of patient 
care. 

The ideal database described in the previous paragraph is unlikely to ever 
exist. On the other hand, the MCHD database that we used in the current study 
contains only information about inpatients. In between would be databases that 
contain extensive observational data on pneumonia patients treated in both inpa- 
tient and outpatient settings. Indeed, such data have been collected by a PORT 
Pneumonia study. Using this data, we plan to generate and evaluate models that 
predict outcomes conditioned on whether a patient is treated as an inpatient or 
an outpatient. The outcomes we intend to examine include patient mortality, as 
well as symptom resolution, complications, and length of time to recovery. 
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