An Evaluation of Explanations of Probabilistic Inference

H.J. Suermondt* and Gregory F. Cooper**

*Section on Medical Informatics
Stanford University, Stanford, CA

**Section of Medical Informatics
University of Pittsburgh, Pittsburgh, PA

ABSTRACT

Providing explanations of the conclusions of
decision-support systems can be viewed as presenting
inference results in a manner that enhances the user’'s
insight into how these results were obtained. The ability
to explain inferences has been demonstrated to be an
important factor in making medical decision-support
systems acceptable for clinical use. Although many
researchers in artificial intelligence have explored the
automatic generation of explanations for decision-support
systems based on symbolic reasoning, research in
automated explanation of probabilistic results has been
limited.

We present the results of an an evaluation study of
INSITE, a program that explains the reasoning of
decision-support systems based on Bayesian belief
networks. In the domain of anesthesia, we compared
subjects who had access to a belief network with
explanations of the inference results, to control subjects
who used the same belief network without explanations.
We show that, compared to control subjects, the
explanation subjects demonstrated greater diagnostic
accuracy, were more confident about their conclusions,
were more critical of the belief network, and found the
presentation of the inference results more clear.

INTRODUCTION

Computers have brought about numerous improvements
in medical care, for example, through digital imaging,
automatic patient monitoring, and on-line literature access
(Shortliffe and Perreault, 1990). Medical decision-support
systems provide a means by which computers can bring
additional improvements to medical care, as additional
information resources for physicians. Decision-support
systems should not be seen as the doc-in-a-box, intended
to replace the physician, but rather, as information tools
(Shortliffe, 1982; Miller and Maserie, 1990). By
providing and organizing information that would
otherwise not be easily available, these systems may help
medical personnel to make better patient-care decisions.
Although numerous medical decision-support systems
have been developed to date, the clinical use of such
systems has been minimal so far. Teach and Shortliffe
(Teach and Shortliffe, 1981) performed a study to
determine what a medical expert system should offer
before physicians would consider using it in their practice.
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The most prominent requirement given by physicians was
the ability of the system to explain its advice.

In this paper, we discuss a system designed to provide
insight into the reasoning of decision-support systems
based on Bayesian belief networks. We present the results
of a study in which we tested the effects of the resulting
explanations on users in the domain of anesthesia.

BACKGROUND

Bayesian belief networks can be used to frame
probabilistic knowledge in a representation that is explicit
about the conditional dependencies and independencies
among variables. A belief network is a directed, acyclic
graph in which nodes represent stochastic variables and
arcs among nodes represent probabilistic dependencies.
Typically, the variables are discrete-valued; the possible
values of each variable are mutually exclusive and
exhaustive. Arcs are represented as conditional-probability
distributions. Belief networks, also known as probabilistic
influence diagrams, causal probabilistic networks, and
Bayesian networks, are described in more detail in
(Cooper, 1989; Horvitz et al., 1988; Pearl, 1988).

Belief networks can be used to determine how a set of
findings (the evidence) affects the probabilities of other,
unknown, variables. We can observe, as a finding, any
variable that is modeled in the network: symptoms (for
example, if we want to determine the probability of one or
more diagnoses), diseases (for example, if we want to
predict the probability of observing a particular
symptom), risk factors, intermediate nodes, and so on.
Given a particular set of findings, we have, for each node
in the network, a prior probability distribution (which
reflects the baseline probabilities of the possible values of
the node) and a posterior probability distribution (which
contains the probabilities given the observed findings).
We shall use the term inference result to refer to the
changes from the prior to the posterior probability
distribution for a particular variable of interest, given a set
of findings.

Reasoning under uncertainty in belief networks takes
place according to a paradigm consistent with probability
theory (Horvitz et al., 1988). Therefore, the theoretical
foundation for the conclusions of a system based on belief
networks is strong, unlike the situation in systems that
obtain results by heuristic methods (Cooper, 1989). Such
a theoretical foundation has been demonstrated to improve
the accuracy and consistency of systems’ conclusions



(Heckerman and Horvitz, 1987; Heckerman, 1990a),
which may ultimately affect our ability to obtain user
confidence in the system’s conclusions.

Traditionally, the term explanation, in the context of
automated reasoning, has had ambiguous meaning. In
some expert systems—especially systems that reason in a
goal-directed manner—the immediate goal for which a
particular finding was needed served as the explanation of
the system’s request for that finding (Shortliffe, 1976).
Thus, explanations for such systems focused primarily on
intermediate reasoning steps. In some forward-chaining
systems, on the other hand, the diagnostic conclusion of
the system was presented as the explanation of the
observed features (Miller et al., 1982). A comprehensive
view of explanation is taken in the ABEL system (Patil et
al., 1981). ABEL’s explanations include the findings to be
explained, the conclusion of the system, and the reasoning
mechanism and intermediate steps leading to the
conclusion. In this paper, we focus on the explanation of
inference results; thus, we discuss the use of evidence,
given a knowledge base, to reach conclusions.

Developers of decision-support systems that are based
primarily on symbolic reasoning have often claimed that
it is difficult, if not impossible, to explain the reasoning
of systems that reason under uncertainty using probability
theory (Davis, 1982; Clancey, 1983). Nonetheless, there
have been several probabilistic decision-support systems
that can explain their inferences to some degree. Among
the most prominent is the Glasgow-Dyspepsia
(GLADYS) system (Spiegelhalter and Knill-Jones, 1984).
The explanation for this system consists of a table that
allows the user to see which factors contribute to and
which ones conflict with the conclusion. Other examples
of probabilistic systems that can show the influence of the
various findings on the inference results are discussed in
(Cooper, 1984; Heckerman, 1990b; Henrion and Druzdzel,
1990). In this paper, we focus on a system called INSITE
(Insight about Network Structure and Inference Through
Explanation).

THE INSITE SYSTEM

We developed the INSITE system to provide users of
belief networks with a means to dissect a belief-network
inference problem, in order to answer the following
question: Why does the evidence E affect the marginal
probability distribution of variable D in the way the
system describes? An intuitive reason for such a request
for explanation is surprise. The user is confronted with the
conclusions of the decision-support system (a set of
probability distributions), and finds that these conclusions
do not meet her expectations. Among the possible causes
of such surprise are

¢ The set of findings is so large that the system user
cannot determine properly the combined effect
without analyzing which findings are most
influential.

e There is conflict among the findings, so that the

combined effect of the evidence is different from what
the user would have expected.

» The user does not have an understanding of the chains
of reasoning through which the findings affect the
variable of interest.

o There is a difference in opinion between the user and
the developers of the knowledge base regarding the
conclusions that should be drawn from the findings.

The INSITE system enhances the user’s insight into the
inference results by highlighting the relationships between
findings and conclusions, and by discussing the chains of
reasoning through which the evidence affects the variable
of interest. The resulting explanations allow system users
to examine and evaluate the knowledge base modeled in
the belief network, and to judge the appropriateness of the
inferences based on that knowledge base.

INSITE runs on an Apple Macintosh II. The system
has a graphical user interface that is standard for
Macintosh applications; the graphical display is the
primary focus of INSITE’s explanations. For more
detailed discussions (for example, of steps in chains of
reasoning), these displays are supplemented with free text
that is shown in a separate window. INSITE generates this
text automatically by combining text fragments based on
the results of its analyses, and by filling in the names of
nodes and possible values of these nodes as needed.

INSITE can explain which node is affected most
strongly by the evidence, which findings contribute to and
which ones conflict with the inference result, which
finding is most influential, how and why a particular
finding affects some other variable, what arcs and chains
of reasoning contribute to and conflict with the inference
result, and why the overall evidence did or did not affect a
particular variable of interest. For more details about
INSITE, see (Suermondt, 1992). In the remainder of this
paper, we shall discuss a study in which we evaluated the
effects of INSITE’s explanations on users of the system in
the domain of anesthesia.

AN EVALUATION STUDY OF INSITE

Whenever a new methodology sees the light, we must
determine whether the technique is merely new, or whether
it is also useful; in medical informatics, we should
determine whether the method has a potential for
contributing to medical practice. In this section, we
describe a preliminary study to determine the plausibility
that the explanations provided by INSITE can have a
beneficial effect on decisions made by users of belief-
network-based decision-support systems in medical
practice.

Due to pragmatic constraints on the scope of the
study, we chose to investigate the effects of INSITE in
one clinical domain, anesthesia, on cases for which we
knew in advance that the belief network used by
INSITE—the ALARM monitoring system—provided
reasonable conclusions. We discuss our methods and
procedures in more detail in the following subsection.
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INSITE is a domain-independent program; the system
is designed to be applicable to any belief network. To
evaluate INSITE, however, it was necessary to select a
particular belief network. We chose the ALARM belief
network (Beinlich et al., 1989). ALARM was developed
by Beinlich and associates as a research prototype of a
system that aids anesthesiologists in the interpretation of
monitor data during surgery. The network consists of 37
nodes that describe variables from cardiac and pulmonary
physiology. The input to the network consists of findings
that are monitored routinely during surgery. The output
consists of the probabilities of several anesthetic
emergency conditions. Among our reasons for selecting
ALARM are (1) the system’s diagnostic accuracy has
been evaluated previously, in which study ALARM gave
reasonable conclusions in a large percentage of cases
(Beinlich and Gaba, 1989); (2) enthusiastic clinical
collaborators were available in the Anesthesia Service at
the Palo Alto VA Hospital; and (3) there is a relative
abundance of subjects knowledgeable in anesthesia (in
comparison with alternative domains for which we had
readily available knowledge bases).

METHODS AND PROCEDURES

To evaluate INSITE’s explanations, we presented 10
abstracted clinical cases to 6 residents and to 7 fourth-year
medical students who had completed at least one clerkship
in anesthesia; we compared the case assessments of
subjects who used only ALARM to those of subjects who
used ALARM plus INSITE’s explanations of ALARM’s
conclusions.

The study had a case-by-case test-retest design; for
each case, the subjects were asked first to give their
clinical impression of the case (without use of the
computer), including the differential diagnosis, the key
abnormal findings (if any), and the action(s) to be taken
next. After establishing their baseline assessments of a
case, the subjects were given access to a computer
interpretation of the case to aid in their analysis. For each
case, one-half of the subjects were given access to
ALARM only (without explanations); the remaining
subjects not only could use ALARM, but also could use
INSITE to generate explanations of ALARM’s
conclusions. After the subjects used the computer to
interpret the case, they were asked once more to give their
impression of the case.

The unit of measure for the evaluation study is the
subject case (SC), the interpretation of a single case by a
single subject. We compared the baseline and follow-up
assessments from the batch of SCs in which only
ALARM was used (the control batch, C), to those from
the batch of SCs in which subjects had access to the
INSITE explanation facility (the intervention batch, I).

Cases Cases were designed with two criteria in mind: (1)
ALARM has to be able to diagnose each case to a degree
of accuracy that the staff anesthesiologists who were
collaborators in the study found acceptable; and (2) the

case has to be sufficiently difficult that decision support
by the computer is potentially helpful. Each case
consisted of a short vignette, describing a perioperative
situation, and a snapshot of the monitor values at the
time. The vignette contained information about the
clinical history, the procedure being performed, and the
time since surgery began. The monitor values consisted of
a set of nine findings usually available to
anesthesiologists during surgery.

After the set of 10 cases was generated, we tested the
cases on ALARM—without the INSITE explanation
facility—and verified, in each of the cases, that ALARM
identified the “correct” diagnosis as the most probable one.
We ensured that ALARM reached a reasonable conclusion
for each case to prevent misleading the subjects with the
computer’s advice. Thus, in this study, improvement in
user performance will correspond to enhanced agreement
with the computer program’s conclusions. As a result,
any improvement in user performance can be used as a
measure of the effect of the explanations: If performance
improves with ALARM only (batch C), and improves
more in ALARM plus INSITE (batch /), we can conclude
that the difference is due to the addition of INSITE’s
explanations.

Assessments The availability of the explanation
facility was determined by the presentation mode for a
case. There are two presentation modes. In control mode
(used for SCs in batch C), the subject saw the vignette
and the monitor data, and was given use of ALARM
(running under the INSITE interface, but with no
explanations) to generate probabilistic conclusions about
the case. In intervention mode (used for SCs in batch /),
the subject had the same information as control-mode
subjects, and in addition, was allowed to use INSITE to
generate explanations for ALARM’s advice.

For each case, subjects recorded a baseline and a
follow-up assessment. First, the subject was given the
vignette (describing the perioperative situation) and the
monitor data, but was not allowed to apply ALARM or
INSITE to the case. After the subject had been given
sufficient time to interpret the case, she was asked to
describe her baseline assessment of the clinical situation
by means of the baseline questionnaire. The baseline
questionnaire consists of three questions. The first
question establishes the subject’s initial impression of the
perioperative situation. The subject either can mark that
nothing appears to be abnormal, or can give a differential
diagnosis. In the second question, the subject is asked to
explain the answer to the first one: “If you suspect one or
more problems, why?” Finally, in the third question, the
subject is asked: “What would you do next?”; she is given
a choice of four options, which correspond to the
following four states of “confidence” about the case:

1. Keep monitoring the (normal) case

2. Seck information to try to determine whether there is
a problem
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3. There is a problem—try to differentiate among
possibilities

4. Treat the problem—the subject is satisfied that she
knows what is wrong

After completion of the baseline questionnaire, we entered
the case into INSITE, and, depending on the presentation
mode, the subject was allowed to obtain various pieces of
information about the case from the computer. After the
subject indicated that she had spent sufficient time
exploring the case on the computer, she was asked once
more to describe her clinical assessment of the case by
means of the follow-up questionnaire. This second
questionnaire was identical to the first one, except for the
addition of three questions in which the subjects were
asked to rate subjectively the computer’s reasoning about
the case on a seven-point scale: whether the information
provided by the computer was useless or helpful, whether
ALARM'’s model of the clinical situation was too
simplistic or sufficiently complex, and whether—aside
from ALARM'’s limitations—the information given by
the computer was confusing or clear.

Design Details Subjects were selected as follows: We
included all anesthesia residents at the Palo Alte VA
Hospital; medical students were picked randomly from a
list of fourth-year students who had completed at least one
full clerkship in anesthesia. Subjects were matched
pairwise for clinical experience in anesthesia, after which
each pair was split randomly between two groups of
subjects.

The cases were matched pairwise by difficulty (by the
staff anesthesiologist who had generated the cases). Each
pair was split randomly between two sets of cases,
resulting in two randomized sets of cases that were
matched in difficulty.

Once the groups of subjects and sets of cases were
determined, we assigned (randomly) each group of subjects
to control mode for one set of cases and to intervention
mode for the other set. Each subject saw each case in only
one mode; each subject saw one-half of the cases in
control mode and the other half in intervention mode; and
each case was seen by one-half of the subjects in control
mode and by the other half in intervention mode.

To control for a possible bias generated by the order
in which the cases were seen, we determined randomly for
each subject which presentation mode the subject would
see first. In this manner, we controlled for the fact that
responses to INSITE'’s explanations might be influenced
by previous experience with ALARM without
explanations, or that judgments about ALARM (without
explanations) might be affected by previous use of
INSITE's explanation facility. In addition, we ordered the
cases within each set randomly for each subject. Thus, we
controlled for potential biases in subjects’ responses due
to exposure to other cases in the set.

Data Interpretation We analyze the results in three
categories: diagnosis, actions, and opinions. We shall
describe briefly the variables that we study in each
category.

In the category diagnosis, we study the effects of
computer advice on the user’s differential diagnosis. For
each SC, we have two differentials: one from the baseline
assessment (written down by the subject before the
computer was applied to the case), and the other from the
follow-up assessment. For each diagnosis that appeared in
any SC, we asked a staff anesthesiologist not involved in
ALARM or INSITE to assess the correctness of the
diagnosis, given the information available in the vignette
and in the monitor data.

In the category actions, we look at the responses to
the question regarding what the subject would do next. We
study the conclusiveness of the responses on each SC. We
have two measures for this conclusiveness: (1) the
category of action, as described in the Assessments
subsection; and (2) a subjective determination, from the
changes in the list of actions, whether the subject has
become more confident. The same anesthesiologist who
determined the correctness of diagnoses assessed the
relative confidence of actions informally, taking into
account the difficulty and invasiveness of actions, as well
as the degree to which these actions are performed
routinely in the operating room.

In the third category, opinions, we study the answers
to the subjective questions on each of the SCs. The
subjective questions addressed the helpfulness of the
computer’s reasoning, the scope of ALARM’s model, and
the clarity of computer’s presentation.

RESULTS

The results of the evaluation were encouraging. Among
the striking conclusions of the study were that
explanations by INSITE

»  Prevented incorrect diagnoses from being added to the
differential diagnosis

* Led to a more critical rating of ALARM’s domain
knowledge

« Increased the confidence with which users acted

Throughout this section, we shall use the terms batch C
and batch I to refer to the SCs assessed in control mode
and to those assessed in intervention mode, respectively.

In the category diagnosis, we found that the primary effect
of INSITE was to prevent new incorrect diagnoses from
being added to the differential. We show this result in
Table 1. We can see that there are marked differences
between C and / in terms of the changes from baseline to
follow-up differential. The incorrect fraction of the
differential shrank more often in batch 7 (16 SCs, versus
13 SCs in batch C); more significantly (p = 0.01 by
Fisher’s exact test), this incorrect fraction grew in 6 SCs
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Table 1 Comparison of changes in differential diagnoses from baseline to follow-up assessments

Measure of effect C T_] significance
number of SCs in which incorrect fraction shrank 13 16

number of SCs in which incorrect fraction stayed the same 46 49

number of SCs in which incorrect fraction grew 6 0 p = 0.01
number of SCs with new incorrect diagnos;s 7 1 p = 0.03
Table 2 Comparison of changes in confidence from baseline to follow-up assessments

Measure of effect C T_ | significance
number of SCs with increased confidence (by action code) 20 24

number of SCs with unchanged confidence (by action code) 41 37 n.s.
number of SCs with decreased confidence (by action code) 4 4

number of SCs with increased confidence (by subjective assessment) 19 31

number of SCs with unchanged confidence (by subjective assessment) 36 30 p < 0.05
number of SCs with decreased confidence (by subjective assessment) 10 4

Table 3 Comparison of subjective assessments of the computer program

Measure of effect C T_| significance
number of SCs where advice was rated worse than “somewhat helpful” 16 17

number of SCs where advice was rated “somewhat helpful” 13 17 n.s.
number of SCs where advice was rated better than “somewhat helpful” 35 31

number of SCs where ALARM’s model was rated worse than “‘captures essence” 14 24

number of SCs where ALARM’s model was rated “captures essence” 41 30 p = 0.10
number of SCs where ALARM’s model was rated better than “captures essence” 9 11

number of SCs where presentation was rated worse than “clear” 20 21

number of SCs where presentation was rated “clear” 44 36 p = 0.01
number of SCs where presentation was rated better than “clear” 0 8

in batch C, whereas it never grew in batch I.* We obtain a
different perspective on the same phenomenon by looking
at the number of SCs in which the subject added incorrect
diagnoses. In batch C, there were seven SCs in which
there was at least one new incorrect diagnosis, compared
to only one such SC in batch I. This difference is
statistically significant (p = 0.03 by Fisher’s exact test).
In the category actions, we found that subjects in
batch I acted more confidently than did those in batch C.
As mentioned before, we studied two variables: the action
codes indicated by the subjects on their questionnaires, and
the subjective determinations of confidence that were
assessed by considering the subject’s actions for the SC.
We summarize the results in Table 2. Subject confidence
increases more often in batch I, and decreases more often
in batch C. This result is statistically significant only in

* Of the six SCs in which the incorrect fraction grew, three
were assessed by medical students and the other three by
residents.

the case of the subjective assessment of confidence: In
batch I, 31 SCs showed increased subject confidence,
versus 19 in batch C; on the other hand, 10 SCs in batch
C showed decreased subject confidence, versus 4 in batch /
(x2=6.0, 2 df., p < 0.05).

In the category opinions, subjects rated three aspects
of the computer program in their follow-up assessment of
each case: helpfulness of the advice, degree to which
ALARM'’s model captures the essence of the case, and
clarity of presentation. In Table 3, we show the numerical
results. From the results, it is clear that there were no
significant differences in perceived “helpfulness” of the
advice. Surprisingly, subjects found the advice more than
“somewhat helpful” more frequently in batch C (35 SCs)
than in batch 7 (31 SCs); however, this result is not
statistically significant. The subjects found that
ALARM'’s model was insufficiently detailed for the case
in 24 SCs in batch I, versus 14 SCs in batch C. This
difference in rating of ALARM’s model—even though
batches C and I used the same model—was statistically

significant (x2 =4.53, 2 d.f., p = 0.10). On the other
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hand, the clarity of the advice was rated better than “clear”
in 8 SCs in batch I, versus no SCs in batch C. The
difference in clarity rating was highly significant

(x2=8.82,2 d.f., p=0.01).

DISCUSSION

The results of this evaluation study indicate that INSITE’s
explanations have a potential for improving user
performance. The addition of explanations to ALARM’s
analyses improved subjects’ diagnostic accuracy. The
particularly telling results about diagnosis were that
subjects who saw explanations were influenced to avoid
adding incorrect diagnoses to their differential more often
than did subjects who saw no explanations. The resulting
differences in diagnostic accuracy between SCs assessed in
control mode and those assessed in intervention
(explanation) mode may be indicative of the use of the
explanation for purposes of verification (Wick and
Thompson, 1989). Verification can improve diagnostic
accuracy primarily in cases where the user originally
disagreed with ALARM’s—correct—conclusions: Thanks
to the explanations, the changes in probability indicated
by ALARM become understandable—and therefore more
credible—and are taken into account in the user’s
differential. Thus, subjects who have seen an explanation
of a case may be more likely to include diseases for which
the probability has increased, and less likely to include
diseases for which the evidence led to a decrease in
probability. The result is a more accurate user diagnosis.

The findings about user confidence indicate that
subjects who are given explanations become increasingly
confident more often than do subjects who are not given
explanations, whereas subjects who are not given
explanations become less confident more often than do
those. who receive explanations. The use of explanations
for ratification, especially in cases where the user agrees
with ALARM’s conclusions, may explain why subjects
who saw explanations became increasingly confident more
often than did those who used ALARM alone (without
explanations). On the other hand, we conjecture that a
decrease in confidence due to the computer feedback takes
place most often in cases where the user disagrees with the
computer’s analysis of the case. Since probabilistic
reasoning does not always parallel the heuristics by which
humans update their beliefs (Tversky and Kahneman,
1974), the results of probabilistic inference may be
counterintuitive if they are not explained. If, through
explanations, the user understands why ALARM reached
its conclusion, the original disagreement may not result in
a decrease in confidence; however, if it is not clear to the
user why ALARM concluded what it did, the user may act
less confidently.

Explanations did not affect substantially whether the
users rated the computer’s advice as “helpful” versus
“useless.” This is understandable if we take into account
that the advice, regardless of the explanation, is the same
in control mode as in intervention mode. However, we
would have expected users to find advice complemented by

explanations more helpful than advice without the
explanations.

Interestingly, on SCs seen in intervention mode (that
is, with explanations), subjects found ALARM’s model
overly simplistic more often than on SCs seen in control
mode. This difference may indicate another aspect of the
verification role of explanations: Even though ALARM
diagnosed the cases in the study reasonably, the
explanations demonstrated to the user how limited
ALARM’s model was, and how many alternative
possibilities were not modeled in the belief network.

On the other hand, the clarity of the advice was rated
higher on average in SCs where explanations were
available. This result is intuitive; the explanations show
the user what ALARM’s advice means for the case at
hand.

CONCLUSION

Due to pragmatic constraints on the study, we did not
have an opportunity to determine fully the areas in which
explanations of belief-network advice can have clinical
utility. Rather, this study should be viewed as a pilot
study, which gives us a first impression of the areas in
which explanations may have an effect. Among the
questions that remain for future study are the following:

1. What are the effects of INSITE in cases where the
computer’s conclusions are misleading? Does the
explanation lead to false confidence in incorrect
conclusions, or does it allow users to eliminate the
incorrect advice?

2. Does the impact of explanations on diagnostic
accuracy depend on the clinical domain? How do users
of INSITE perform in domains other than anesthesia,
as compared to control subjects?

3. In a real-world belief network in a clinical
environment, would clinicians want to use the
explanation facility (assuming that they would use
the belief-network-based system), or would they take
the computer’s conclusions for granted?

Question 3 is particularly interesting, as generation of
explanations increases the computational complexity
significantly. Thus, when there is a cost to using the
explanation facility—in terms of additional inference time,
or an actual charge—users may find verification and
ratification insufficiently valuable to justify asking for
explanations.

In summary, the explanations by INSITE led to improved
diagnostic accuracy and to increased user confidence. In
addition, they helped the users to assess ALARM’s scope
more critically. The goal of the current evaluation study
was to investigate whether INSITE can have a beneficial
effect on decisions by users of medical decision-support
systems. The results of this study—in particular, the
beneficial effect of the explanations on diagnostic
accuracy—support the hypothesis underlying INSITE, that
explanations improve users’ insight into probabilistic
inference results, and that such enhanced insight can lead
to improved decision making by medical practicioners.
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