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Abstract

Bayesian learning of belief networks (BLN) is
a method for automatically constructing belief
networks (BNs) from data using search and
Bayesian scoring techniques. K2 is a
particular iustantiation of the method that
implements a greedy search strategy. To
evaluate the accuracy of K2, we randomly
generated a number of BNs and for each of
those we simulated data sets. K2 was then
used to induce the generating BNs from the
simulated data. We examine the performance
of the program, and the factors that influence
it. We also present a simple BN model,
developed from our results, which predicts the
accuracy of K2, when given various
characteristics of the data set.

1 INTRODUCTION

Bayesian belief networks (BNs) constitute a method for
graphical representation of knowledge, based on
explicitly defining probabilistic dependencies and
independences among variables. A BN consists of a
directed acyclic graph (DAI3) that captures the
dependencies and independences among nodes
(corresponding to variables) of the graph, and a set of
functions that give each variable’s probability
distribution, conditioned on the values of its parent nodes
[Pearl 1988, Neapolitan 1990]. BNs are a state-of-the-art
formal method for probabilistic modelling in decision-
support systems [Cooper 1989].

Although BNs can reduce dramatically the number of
probabilities that must be specified for a particular
modelling task, relative to methods that do not exploit
the independence relations among the domain variables,
the knowledge acquisition (KA) problem is still
challenging. To cope with the KA "bottleneck",
researchers within the symbolic Artificial Intelligence
(A.I) Machine-learning (ML) community have developed

methods for learning representations of knowledge
automatically from collections of data sets [Shavlick
1990]. In the same spirit, researchers in the BN field
have developed techniques which when given a set of
variable observations, will try to find the BN (or
depending on the method, the class of BNs) that most
probably produced the data set (i.e., that best captures the
variables relationships) [Cooper 1992, Pearl 1993, Fung
1990, Lain I993, Singh 1993, SpiRes !992, Suzuki
1993].

The pursuit of ML methods for BN construction is
further motivated by the following applications areas: (a)
exploratory statistical analysis,    (b) comparison,
confirmation, and discovery of scientific hypotheses, (c)
partial substitution of classical multivariate analytic
techniques [Cooper 1992, Aliferis 1993].

One method for BN ML is the Bayesian learning of BNs
(BLN) method [Cooper 1992]. This method, when given
a database of observations, searches a space of BNs, and
scores them using a Bayesian scoring function. A
particular instantiation of the method is the algorithm
K2, which uses greedy search as the search strategy. K2
also requires as an input an ordering of the variables,
such that no variable later in the ordering can "cause" (be
the parent of) a variable earlier in the ordering [Cooper
1992]. It is assumed that temporal precedence and
domain knowledge suffice for the determination of such
an ordering. In the conclusions section we discuss
methods for relaxing this assumption.

The goal of the research reported in the current paper is
to investigate the accuracy of K2, and to identify data
attributes that possibly determine its accuracy using
simulated data as contrasted to real data. The problem
with real data is that frequently a gold standard (i.e., the
underlying BN process) is not known. Thus in such cases
r~earchers measure how well the ML method models the
domain indirectly, by measuring the predictive accuracy
of the produced model. For an initial evaluation of K2
using this method, see [Herskovits 1991].

Using simulated data produced by well-specified
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models (gold-standard models) on the other hand enables
us to overcome these difficulties and measure directly
how welI the ML method learns the model structure. An
admitted limitation, however, is that the simulated data
may not necessarily resemble closely the type of data we
would obtain from samples in the real world. In a
preliminary evaluation of K2 using this method, Cooper
and Herskovits used simulated data from the ALARM
network (a BN with 37 nodes and 46 arcs, developed to
model the anesthesia emergencies in the operating room
[Beinlich 1989]), to examine the number of arcs
correctly found, and erroneously added by K2, given
database sizes ranging from 100 to 10000 cases [Cooper
1992]. In this paper we describe experiments that extend
the use of simulation to obtain insight into BN learning
methods. In particular we describe the use of simulated
data from a variety of BNs and we discuss not only the
findings, but also which specific data attributes determine
the accuracy of the algorithm, and how a user can infer
the expected accuracy for a particular learning task.

2 METHODS

The experiment consists of the following parts: a)
Generation of a set of BNs, which we call the Gold
standard BNs (BNs-GS). For each belief network the
number of variables was chosen randomly from the
following values: 2, 10, 20, 30, 40, 50. The number of
arcs was chosen randomly (i.e., a uniform probability.
distribution was used), so that between 0 and 10 arcs
would point to any particular node. The
ordinality of the variables (i.e., total number of possible
values) was randomly chosen to be either two or three for
all variables in a generated BN. After the structures were
constructed, they were parameterized (i.e., conditional
probabilities functions were determined for each node)
randomly for each prior and conditional probability.
b) The set of generated BNs was given to the case
generator. For each BN, the case generator constructed a
set of simulated data using logic sampling [Henrion
1988]. The number of cases per BN was chosen randomly

between 0 and 2000 cases.
c) The sets of simulated cases were given to K2, which
constructed for each data set a BN. K2 had access to the
correct ordering of the variables for each BN-GS.
We will call the set of BNs produced by K2 the lnduced
BNs (BNs-I).
d) Finally, the sets of gold-standard BNs and the induced
BNs were compared by a statistics module, which
estimated descriptive statistics and the following two
metrics for each BN-GS and BN-I pair: percentage
of arcs in BNs-GS that are present in BNs-I (metric
M1), and ratio of number of arcs in BNs-I that are
absent in BNs-GS to the number of arcs in the
corresponding BN-GS (metric M2). Additional analyses

were performed on this output using a statistical package
and appropriate techniques [Norusis 1992]. The diagram
in Figure 1 depicts the experimental design.

BN Random Generator

Gold-standard vs Induced BNs
statisScs module

Figure 1. Flowchart of the Experimental Design

The experiment was performed using an integrated
software package supporting belief network inference,
learning, and simulated BN and case generation and
evaluation, which we have developed. The software is
written in Pascal and runs on an IBM RS 6000
workstation. For pragmatic reasons we decided to run the
program in batch mode and analyze the results which
were produced. We additionally developed using K2, a
model of K2’s accuracy (conditioned upon data
attributes) for the purposes of empirical accuracy
prediction.

3 RESULTS

A total of 67 BN pairs were generated and analyzed.
Table 1 presents the desedptive statistics for the data
attributes (number of variables, ordinality of variables,
number of arcs, number of cases). To facilitate analysis,
we additionally discretized the number of arcs and cases.
Table 2 shows the corresponding information. Tables 3
and 4 present the descriptive statsfics for the evaluation
metrics we used, both in their original and discretized
forms. As it is evident from Table 4, K2 discovered at
least 70% of the arcs 94% of the time. In 94% of the
cases, K2 did not add more than 10% arcs of the BN-GS
arcs. The mean percentage of correctly found arcs (M1)
is 91.6% and the mean ratio of superfluous arcs 0VL2) is
4.7%.
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Table l: Descdptive Statistics for Data Attributes of
BNs-GS

variable value frequency %
number of vadables 2 6.0

10 16.4
20 26.9
30 22.4
40 14.9
50 13.4

ordinality of variables 2 46.3
3 53.7

variable mean s~d.
number of arcs 60.93 36.77

number of cases 1085.49 544.97

Table 2: Descdptive Statistics for Discretized Data
Attributes

frequency distribution %

number of arcs

number of cases

0-20 16.4
21-60 37.3
61-100 25.4
>100 20.9
0-200 3.0
201-500 I7.9
501-1000 22.4
1001-1500 32.8
> 1500 23.9

Table 3: Descriptive Statistics for Evaluation Metrics

mean s.d.
M1 (%) 91.6 11.7
M2 (%) 4.7 7.6

Table 4: Descriptive Statistics for Discretized
Evaluation Metrics

value frequency distribution %
M1 0-50 % 1.5

51-70% 4.5
71-90% 28.4
91-95% 11.9
96-98% 13.4
>98% 40.3

M2 0-2% 47.8
3-5% 19.4
6-10% 26.9
11-30% 4.5
31-50% 1.5
>50% 0

We also analyzed the factors that influence the
performance of K2. The nature of the data is such that
the influences of the independem variables (number of
variables, number of arcs, number of cases and variable
ordinality) on the dependent ones (i.e., M1, M2), can
not be analyzed appropriately with a linear model.
Although we tried a number of variable transformations
on the variables, an analysis of variance/covarianco or
multiple regression model was not applicable, due to
violation of assumptions. Thus we applied a graphical
analysis of the response surface, followed by fitting a
non-linear regression model to the relationships that
were revealed by the analysis.

Graphs I and II show the relationship between number of
arcs, number of variables and number of cases for the
case where ordinality is 2 or 3 (graphs I & II
respectively). As we would expect from our design, the
number of variables is uniformly distributed across the
number of cases. For each number of variables, there is
small variation of the corresponding arcs number (since
we constrained the incoming arcs per variable in the
generation process - as described in the methods section).
Finally, the same observations hold true when ordinality
is 3, although the spread of data points is somewhat more
constrained. These graphs imply that we can eliminate
the number of arcs from further consideration, since it is
determined by the number of variables. Also they suggest
that we might want to apply two different analyses, one
for cases where variables were binary and one where they
were ternary due to the somewhat different spread of data
points.

Graph III shows the relationships between M1 & M2 and
number of cases for the complete data set (i.e., both cases
containing variables with ordinality 2 and ordinality 3).
Similar relationships exist for the subset with ordinality 2
and the subset with ordinality 3. Graph IV shows the
relationships between M1 & M2 and number of variables
for the complete data set. Again similar plots have been
produced (not shown here) for the subset with ordinality
2 and the subset with ordinality 3.

The graphs shown here support the following: (a) M1
appears to be asymptotically approaching 100% as cases
increase (graph III),
(b) M2 appears to be asymptotically approaching 0 as
cases increase (graph III),
(¢) there is no clear form of covariation of M1, M2 and
number of variables (graph IV).
In addition, even though for both binary and ternmy
variables the same nature (i.e. functional form) of
covariation exists between M1 & M2 and cases, the
function parameters should be assessed individually since
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the relevant plots (not shown here) have different spread
of data points.

and for M2 is 0.8, when we model these metrics
separately for ordinality of 2 and 3), and thus these

GRAPH I. Relationship between arcs and cases when ordinality is
2. Data points corresponding to BNs with different number of
variables are separated into 6 different groups. Numbers for each
group denote number of variables.
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GRAPH II. Relationship between arcs and cases when ordinality is
3. Data points corresponding to BNs with different numbers of
variables are separated into 6 different groups, Numbers for each
group denote number of variables.
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The next step in our analysis is to estimate parameters for
the functional relationships we identified. Since the
functional form of the relationships appears to be
exponential in character, we used the iterative algorithm
of SPSS [Nornsis 1992] to fit the following models: M1
--- 1 - e’C1"/cases and M2 = C2 e’C3~/cases. The results
of this analysis are given in Table 5. We observe that the
explained variabiliU (i.e., fit of the model) which is
indicated by R2, is quite good (mean R2 for M1 is 0.6

models can be used for the assessment of the values of
M1, M2 given the sample size we use. Finally, we used
our results and K2 to develop a BN model for predicting
the expected accuracy of K2, given data attributes. We
utilized the following ordering: [number of variables,
number of arcs, dimensionality, number of cases, M1,
M2]. The BN graph is given in Figure 2, while Appendix
I contains the conditional and prior probability
distributions.
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GRAPH III. Relationship between M1 & M2 and the number of
cases.
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GRAPH IV. Relationship between M1 & M2 and the number of
variables.
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K2 reveals the fairly complex dependences and
independence relationships among the variables, without
having any access to domain theory, or the
visual/analytical tools we utilized to reach similar
conclusions. Using this model (under the assumptions
that the underlying data generating process is a BN) we
can answer questions of the type: "If the variables are
binary and our data set consists of 1200 cases, and we
have 20 variables in the model, what is the expected
percentage of correct arcs in the model found by K2?" .
Or we can ask questions Iike: "If our data set contains ~ I0

binary variables, how many cases should we have in
order for K2 to produce 2% or less extraneous arcs?" We
can use any standard BN inference algorithm to answer
such questions [l-Ieltrion 1990].

4 CONCLUSIONS

The results of these experiments are encouraging.
Although we used a fairly small number of cases per BN,
K2 was able to find the gold standard BN with high
accuracy.
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Table 5: Non-linear R¢gression of M1, M2 by
Number of Cases

M1 = 1 - e’C1qcases
all cases ord=2     ord=3

R2 = 0.57 0.65        0.56

C1 (+ SE) = .09 ± .004 .08 ± .004 .10-a:.007

M2 = C2 e’C3~cases

all cases     ord=2 oral=3

R2 = 0.58 0.78 0.79

C2 (+ SE) = 1.27 + .33

C3 (± SE) = 0.14 + .02

1.88 +.45 2.10 +.60

0.01 ±.02    0.21 ±.02

produce (at a first pass) an ordering and then use K2
[Singh 1993].

Other methods for coping with the ordering assumption
are to use multiple random orderings and select the one
that leads to the most probable BN [Cooper 1992]. Due to
the huge number of orderings, this approach would be
most practical for BNs with a few variables.

In this experiment we assumed that there were no
missing values. Unfortunately in many real-life databases
this is not the case. Missing values can be handled
normatively as described in [Cooper 1994]. The
tractability of this method depends on the domain.

Finally, we parameterized our gold-standard BNs
randomly. There is a possibility that BNs that capture
real-life processes will deviate from such
parameterizations. With our current state of knowledge
however, it seems that this is a reasonable initial design
choice for an experiment.

Figure 2: BN Model (Graph Only) of the Variables
Relationships

We were also able to identify specific data attributes that
determine the expected accuracy of the algorithm, and to
build a model for predicting this accuracy. The procedure
strongly resembles the process of power and size analysis
used in classical statistics, the main difference being that
our model was empirically derived. It is important to note
that K2 utilizes a simple search method (one step greedy
search). In future work we expect to explore the
performance of BLN when alternative heuristic search
methods are used. Such search methods are likely to
diminish or eliminate the need for specification of a total
ordering of the variables. The ordering constraint also
can be dealt with by using statistical methods similar to
those used in the TETRAD II program [Spirtes 1992] to
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Appendix I

The following conditional (or prior) probabilities apply to
the BN of Figure 2. Note: for each value of the dependent
variable we present the conditional probabilities
co~nding to the values of the parent variables,
created so that the leftrnost parent changes values slower,
and the rightmost one faster. M_DIM stands for
ordinality. Also for the interpretation of the values see
Tables 1, 2 and 4.

(a) VAR NUM: it has no parents
VAR NUM value
1
2
3
4
5
6

p(VAR
0.07
0.16
0.26
0.22
0.15
0.14

(b) M ,D!M: it has no parents
M DIM value

1
2

p(M DIM)
0.46
0.54

(c) CASES: it has no parents

CASES value p(CASES)
1 0.04
2 0.18
3 0.23
4 0.55

(d) ARCS: it is determined by VAR NUM:
’~RCS p(ARCS I VAR_NUM)
value
1 0.63 0.53 0.05 0.05 0.07 0.08
2 0.13 0.33 0.86 0.21 0.07 0.08
3 0.11 0.07 0.05 0.68 0.43 0.08
4 0.13 0.07 0.05 0.05 0.43 0.77

(e) MI: it is determined b, CASES:
M1 value     "p(M1 [ CASES)
1
2
3
4
5
6

0.t3 0.11 0.05 0.02
0.38 0.11 0.05 0.02
0.13 0.50 0.19 0.20
0.10 0.06 0.29 0.09
0.13 0.06 0.19 0.16
0.13 0.t7 0.24 0.50

value
1
2
3
4
5

it is determined b~’ M~DIM and CASES:
p(M2 t M_DIM, CASES)

0.17 0.I7 0.10 0.17 0.10 0.53 0.360.74
0.17 0.17 0.10 0.08 0.20 0.20 0.40 0.09
0.17 0.17 0.40 0.58 0.50 0.13 0.16 0.09
0.17 0.33 0.30 0.08 0.10 0.07 0.04 0.04
0.33 0.17 0.10 0.08 0.10 0.07 0.04 0.04


