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Summary The main topic of this paper is modeling the expected value of experimenta-
tion (EVE) for discovering causal pathways in gene expression data. By experimentation
we mean both interventions (e.g., a gene knockout experiment) and observations
(e.g., passively observing the expression level of a ‘‘wild-type’’ gene). We introduce
a system called GEEVE (causal discovery in Gene Expression data using Expected Value of
Experimentation), which implements expected value of experimentation in discovering
causal pathways using gene expression data. GEEVE provides the following assistance,
which is intended to help biologists in their quest to discover gene-regulation pathways:

� Recommending which experiments to perform (with a focus on ‘‘knockout’’ experi-
ments) using an expected value of experimentation method.

� Recommending the number of measurements (observational and experimental) to
include in the experimental design, again using an EVE method.

� Providing a Bayesian analysis that combines prior knowledge with the results of
recent microarray experimental results to derive posterior probabilities of gene
regulation relationships.

In recommending which experiments to perform (and how many times to repeat
them) the EVE approach considers the biologist’s preferences for which genes to focus
the discovery process. Also, since exact EVE calculations are exponential in time, GEEVE
incorporates approximation methods. GEEVE is able to combine data from knockout
experiments with data from wild-type experiments to suggest additional experiments to
perform and then to analyze the results of those microarray experimental results. It
models the possibility that unmeasured (latent) variables may be responsible for some of
the statistical associations among the expression levels of the genes under study.

To evaluate the GEEVE system, we used a gene expression simulator to generate data
from specified models of gene regulation. The results show that the GEEVE system gives
better results than two recently published approaches (1) in learning the generating
models of gene regulation and (2) in recommending experiments to perform.
� 2004 Published by Elsevier B.V.
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1. Introduction

Most research on causal discovery using causal net-
works has been based on using passive observational
data [1—3]. There are limitations in learning causal
relationships from observational data only. For
example, if the generating process contains a latent
factor (confounder) that influences two variables, it
can be difficult, if not impossible, to learn the
causal relationships between those two variables
from observational data alone.

To uncover such causal relationships, a scientist
generally needs to design a study that involves
manipulating a variable (or variables) and then
observing the changes (if any) in other variables
of interest. In such an experimental study, one or
more variables are manipulated and the effects on
other variables are measured. On the other hand,
observational data result from passive (i.e., non-
interventional) measurement of some system, such
as a cell. In general, both observational and experi-
mental data may exist on a set of variables of
interest. Limited time and funds restrict the num-
ber of variables that can be manipulated and the
number of experimental repeats that can be col-
lected for the control and experimental groups. For
example, a molecular biologist who is interested in
discovering the causal pathway of the genes
involved in galactose metabolism first has to select
the genes he or she is interested in understanding at
a causal level. These genes are usually selected
based on previously published results or by the
molecular biologist’s personal interest. Many issues
are considered in determining the number of experi-
mental repeats to obtain for each variable in the
study design. Having more experimental repeats
will typically tighten the statistical confidence
intervals in the data analysis. Considering available
time, budget, and other constraints, the biologist
will make a decision about the number of experi-
mental repeats to obtain.

Developing causal analysis methods is a key focus
of several fields. In statistics, jointly with medicine,
issues related to randomized clinical trials (RCTs)
are studied, including methods for finding an opti-
mal number of cases using stopping rules [4—6]. In
molecular biology, developing techniques that gen-
erate efficient experimental designs for high
throughput methods, such as cDNA microarrays, is
gaining interest [7,8]. In artificial intelligence,
techniques using graphical models have been used
to model experimentation and have been applied to
suggest the next experiment for causal discovery
[9—11].

All these prior approaches have made contribu-
tions to efficient causal study design (see Section 2

for details). They are not, however, sensitive to
issues of limited resources and experimenter pre-
ferences. The research reported here is concerned
with developing and evaluating a decision-analytic
system that addresses these issues in helping
a biologist design and analyze studies of cellular
pathways using high throughput sources of data. In
particular, this paper concentrates on the design
and analysis of cDNA microarray studies for unco-
vering gene regulation pathways. The fundamental
methodology, however, is applicable to analyzing
other high throughput data sources, such as the
measurement of protein-levels, which is a rapidly
developing area of biology.

The GEEVE system uses ideas from different areas
of study. GEEVE uses causal Bayesian networks (see
Section 2.1) and incorporates an experimenter’s
preference (see Section 2.2) to give recommenda-
tions to the experimenter about designing a gene
expression experimental study (see Section 2.3). In
this section, we shortly provide background of gene
array chips and give an overview of the GEEVE
system.

1.1. Gene array chips

Three major gene-expression measurement tech-
nologies are currently available for measuring the
expression levels of many genes at once. One is
called a cDNA microarray, or simply DNA microarray
[12]; another is called an oligonucleotide array, or
GeneChip� [13]; and a third technique is called
Serial Analysis of Gene Expression (SAGE). We con-
centrate in this paper on the first two techniques,
since they are high throughput methods, whereas
SAGE is a more time consuming method. The DNA
microarray technique uses user-definable probes1 of
DNA microarray, and the oligonucleotide array uses
small oligonucleotide (usually 200 or 300 bases) as
factory-built probes.

1.2. Problem description

A gene expression study using DNA microarrays
usually involves two major steps. The first step
typically consists of performing initial experiments
to narrow the set of genes to study in more detail.
The experimenter can avoid this first step if he or
she already knows the specific set of genes of
interest. Since the functions of many genes are
not known, the first step is usually necessary.

1 According to the nomenclature recommended by B. Phim-
ister of Nature Genetics, a probe is the nucleic acid with known
sequence, whereas a target is the free nucleic acid sample
whose abundance level is being detected.
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A number of microarrays will be assigned to hybri-
dize with a pool of controlled cells and experi-
mental cells. By examining the genes that are
differentially expressed in these two groups of cells,
the experimenter can decide which genes to study
further. After choosing those genes, the experi-
menter has to produce an experimental design for
further study how those genes are functionally
related to each other.

2. GEEVE system

This chapter describes the issues related to the
implementation of the GEEVE system (causal dis-
covery in Gene Expression data using Expected
Value of Experimentation). Tong and Koller [11]
used a single-case approach to recommend to the
experimenter the best possible pairwise relation-
ship for further investigation. In gene expression
microarray studies, it may not be practical to per-
form one experiment at a time. Often it is more
efficient to repeat a given experiment multiple
times in parallel, rather than to repeat the experi-
ment sequentially over time.

Tong and Koller [11] and Ideker et al. [10] used
edge entropy loss functions to search for the next
best experiment to perform. This approach can be
useful when the experimenter is performing a first-
phase study to select the genes without any pre-
ference toward the relationships among the genes.
After the first-phase study, however, the experi-
menter will usually have some preference for which
genes to study in greater detail. As more gene
expression experiments (studies) are performed,
the experimenter will refine his or her preferences
about the relationships to study in more and more
detail. Consequently, a recommendation system
that incorporates the preferences of the experi-
menter seems desirable.

GEEVE allows for repeats of an experiment, and
as just mentioned it can be sensitive to an experi-
menter’s preferences for which genes to study.
These improvements ostensibly make GEEVE more
applicable to real-world design of gene expression
experiments. GEEVE also incorporates an efficient
causal discovery method that is based on an exten-
sion of a causal discovery algorithm [14].

The GEEVE system consists of two modules
called the causal Bayesian network update (CBNU)
module and the decision tree generation and eva-
luation (DTGE) module (Fig. 1). The CBNU module
uses an algorithm called Implicit Latent Variable
Scoring (ILVS) method [14] to causally analyze
the current microarray data in light of the user’s
prior beliefs about causal relationships among

the genes under study. The DTGE module evaluates
a decision tree that was generated based on the
results of the CBNU module and the experimenter’s
preferences, which are expressed with GEEVE as a
utility function. Finally (under assumptions) the
best possible experiments are recommended to
the experimenter. The experimenter then chooses
the next experiment to perform, which may or may
not be the one suggested by GEEVE. When the
results are available, they can be submitted to
the CBNU module for a new round of analysis.

2.1. Updating causal Bayesian networks

This chapter describes a new method to evaluate
causal Bayesian networks using a mixture of obser-
vational and experimental data. The algorithm
described in the current chapter is then incorpo-
rated into the GEEVE system.

A causal Bayesian network (or causal network for
short) is a Bayesian network in which each arc is
interpreted as a direct causal influence between a
parent node (variable) and a child node, relative
to the other nodes in the network [15]. Fig. 2
illustrates the structure of a hypothetical causal
Bayesian network structure containing five nodes
that represent genes. The probabilities associated
with this causal network structure are not shown.

Figure 1 The GEEVE system. The box with the thick line
represents the GEEVE system. Boxes in GEEVE represent
system modules. Boxes with wavy lines on the bottom
represent outputs from GEEVE. The experiments oval is
an object that is outside of GEEVE. The ovals on the
GEEVE border represent objects that communicate with
GEEVE from the outside.
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The causal network structure in Fig. 2 indicates,
for example, that the Gene1 can regulate (causally
influence) the expression level of the Gene3, which
in turn can regulate the expression level of the
Gene5. The causal Markov condition gives the con-
ditional independence relationships specified by a
causal Bayesian network:

A variable is independent of its non-descendants
(i.e., non-effects) given its parents (i.e., its direct
causes).

The causal Markov condition permits the joint
distribution of the n variables in a causal Bayesian
network to be factored as follows [15]:

Pðx1; x2; . . . ; xnjKÞ ¼
Yn

i¼1

Pðxijpi;KÞ (1)

where xi denotes a state of variable Xi, pi denotes a
joint state of the parents of Xi, and K denotes
background knowledge.

We introduce six equivalence classes (E1 through
E6) among the structures (Fig. 3). The causal net-
works in an equivalence class are statistically indis-
tinguishable for any observational and experimental

data on X and Y where H represents a latent vari-
able.

Using the previously published structure scoring
method [1,16], we introduced the ILVS method to
score the six hypotheses in Fig. 3 [14,17]. Local ILVS
Method (LIM) was introduced to score structures
with more than pairwise variables [14]. A high level
pseudo-code is given in Fig. 4. More detail informa-
tion of ILVS and LIM could be found at Yoo and
Cooper [18] and Yoo [19].

2.2. GEEVE utility model

GEEVE is capable of incorporating an experimen-
ter’s utility model [19]. In the research reported in
this paper, we did not explore this aspect of GEEVE,
because we empirically compare GEEVE’s perfor-
mance to other methods that do not allow modeling
utilities flexibly. Instead, we used the following
utility assumptions, where EXY

i denotes the node
pair X and Y with causal relationship Ei: (1) For all
pairs (X;Y), UðX;YÞ ¼ 0:5, which means that all gene
pairs are of equal interest; (2) UðEXY

i jEXY
j Þ ¼ 1 for all

i ¼ j, which that when the predicted structure EXY
i

matches the generating structure EXY
j , the utility

is assigned to be the highest possible value
(¼1.0); (3) UðEXY

i jEXY
j Þ ¼ 0:5 for all EXY

i and EXY
j that

have equivalent causal relationships with respect
to a latent confounder, that is, EXY

1 and EXY
4 , EXY

2
and EXY

5 , and EXY
3 and EXY

6 are equivalent causal
relationships with respect to latent confounder;
and otherwise (4) UðEXY

i jEXY
j Þ ¼ 0.

The GEEVE utility for reporting the relationship
EXY

i to the user (experimenter) is derived as follows.
The weights wij ¼ UðEXY

i jEXY
j Þ are used as a short-

hand notation. The following term is then derived:

Figure 2 A causal Bayesian network that represents a
portion of the gene-regulation pathway for galactose
metabolism in yeast.

Figure 3 Six local causal hypotheses.

Figure 4 A high level pseudo-code of LIM. Note that S is a local structure in which it does not include all modeled
variables (recall that the set O is limited to include only k variables).

172 C. Yoo, G.F. Cooper



qi ¼
P

jwij � PðEXY
j jD;KÞ. Finally, the experimenter’s

utility for discovering a novel and interesting causal
relationship is calculated as qi � UðX;YÞ.

2.3. Generating a decision tree

Based on the experimenter’s utility specification
and the causal Bayesian network output (generated
by LIM [14] through a local heuristic search and
model selection) the GEEVE system builds a decision
tree and evaluates it. GEEVE concentrates on pair-
wise relationships of genes and generates the
following decision tree shown in Fig. 5, where
Rj represents a pair of genes, np represents the
number of pairs among the genes, m represents a
maximum measurements that are obtained for an
experimental study, neh represents the experimen-
tal conditions (explained later in this section) to
impose for dataset simulation, tEi represents the
situation where the true structure is Ei, and qi is
defined as in Section 2.2.

For the decision tree shown in Fig. 5, assuming
that there are at most l states for each variable and
assuming there are k variables modeled in LIM’s
local structure (see Fig. 4), then the number of
possible datasets nd � lkm, which is exponential
in the number m of microarray experiments (cases).
LIM uses a simulation method [20] to make the
number of possible datasets manageable. LIM keeps
track of the highest scoring local structure given an
experimental condition and a dataset D. Using the
highest scored local structure, LIM generates pos-
sible experimental results such as D0

1, D0
2; . . . ;D

0
nd

[20].
The computation of the decision tree evaluation

is exponential in the number of microarray experi-
ments (cases). Therefore, we need an approxima-
tion method to evaluate the decision tree. Several
different approximation methods are available with
some assumptions [21,22].

Heckerman et al. [21] introduced a non-myopic
approximation method assuming that for a large
decision tree, the central limit theorem holds.
The method was non-myopic in the number of
chance nodes but not in the number of decision
nodes.

Chavez and Henrion [22] assumed additive
expected utility independence and used linear
regression to estimate the expected value of per-
fect information (EVPI) and expected value of infor-
mation (EVI). However, Heckerman et al. [21] and
Chavez and Henrion [22] approximations are not
suitable with large number of decision branches
because they assume binary decision nodes. Thus,
we use a random heuristic search to approximate
the expected value of experimentation (EVE), as
explained next.

GEEVE models possible experimental conditions
for node pair X and Y as (1) passively observing X and
Y, e.g., a wild-type experiment; (2) complete inter-
vention of X (or Y), e.g., a knockout experiment. If a
maximum number of experiments repeats that
experimenter can request is m, the number of
possible experimental conditions to search is
O(m3). Also the number of datasets nd that are
possibly generated by an experiment condition,
nd, is exponential in m. For an efficient search,
GEEVE defines operations on the number of micro-
array experiments to measure on gene X and Y. Let
set neh ¼ ðmO;mX ;mYÞ, represent the experimental
condition where the first element mO is the number
of measurements in which both X and Y are both
passively observed (e.g., a ‘‘wild-type’’ measure-
ment); the second element mX is the number of
measurements in which X is manipulated and Y is
observed; and the third element mY is the number of
measurements in which Y is manipulated and X is
observed. The operators used in GEEVE’s heuristic
greedy hill climbing search for the best setting of
the parameter vector neh ¼ ðmO;mX ;mYÞ are as
follows:

� MZ(neh, i): set the to ith element in neh to zero.
� DH(neh, i): decrease the ith element in neh by

half.
� DD(neh, i): double the ith element in neh.

Using these operators, GEEVE performs the
following heuristic search for the value of the
parameters (mO, mX, mY):

� Step 1: The initial parameter values that are tried
in the decision tree as follows:

fm � 2
3 m
� �

; 1
3 m
� �

; 1
3 m
� �

g; f0;m � 1
2 m
� �

; 1
2 m
� �

g;
fm � 1

2 m
� �

; 0; 1
2 m
� �

g; fm � 1
2 m
� �

; 1
2 m
� �

; 0g

{m, 0, 0}, {0, m, 0}, and {0, 0, m}. Choose the
experimental condition ne

h ¼ fm
O;m


X ;m


Yg that

has highest expected value.
� Step 2: Set neh to be ne

h.
� Step 3: Apply MZ(neh, i), DH(neh, i), and DD(neh, i)

for i ¼ 1, 2, 3.
Figure 5 Specifying the experimental condition decision
branch.
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� Step 4: Evaluate expected value for all experi-
mental conditions in Steps 2 and 3 and choose the
experimental condition ne0

h ¼ fm0
O;m

0
X ;m

0
Yg that

has highest expected value. If the expected
value of ne0

h is higher than ne
h then let ne

h be
ne0

h and repeat Step 2; otherwise randomly select
neh ¼ fmO;mX ;mYg where mO þ mX þ mY ¼ m
and go to Step 3 if the repetition is smaller than
some user-defined threshold.

The best experiment found by GEEVE when it
completes its heuristic evaluation of the decision
tree will be the experimental condition nemax ¼
arg maxh2f1;2;...;Oðm3Þgne

h on the gene pair Rj, where
h is the index of ne

h that yielded ne*.

3. Related work

The GEEVE system incorporates an experimenter’s
preferences into a decision model in order to give
recommendations about designing a gene-expres-
sion experimental study. The decision model it uses
is based on decision theory [23,24]. Many different
fields concentrate on study design for causal dis-
covery. Traditionally, in statistics and medicine,
research on causal discovery is actively pursued in
research on controlled trials [4,5,25]. In computer
science, causal discovery is also an active research
topic, especially in the machine learning commu-
nity [1—3,19,26,27]. In biology, recent microarray
technologies have fueled a field known as systems
biology, which seeks to discover causal relation-
ships among a large number of genes and other
cellular constituents [28,29]. In this section, we
will review work related to this paper, concentrat-
ing especially on the fields just mentioned.

3.1. Genetic pathway models

Before describing pathway models, we first place
them in the context of gene clustering methods,
which have been very popular the last few years.
Indeed most of the early work on gene expression
data analyses used clustering methods. Gene
expression levels that were measured by cDNA
microarray in the yeast cell-division cycle were
analyzed for the first time using a cluster analysis
[28]. A cluster analysis typically searches for groups
of genes that show similar expression pattern
among different experimental conditions. Other
analyses followed using similar cluster analyses
applied to microarray data [30—32]. Cluster and
classification analyses do not necessarily provide
causal information, which is at the heart of gene
pathway discovery. On the other hand, knowledge

of causal pathways can be used to produce a causal
clustering of the genes.

Tsang [33] and Dutilh [34] each give a review of
genetic networks. A review that is focused more on
modeling methods is given by de Jong [35]. A thor-
ough review based on biological context was pub-
lished by Smolen et al. [36], who suggested that
current microarray techniques are limited in deli-
neating intracellular signaling pathways. Smolen
et al. [36] argues that since microarray technology
is measuring an average expression level of a gene
among millions of cells, there is little we can learn
about gene-regulation pathways information from
the data. We will discuss this issue in Section 5.2
with respect to latent variable detection.

3.2. Experimentation recommendation
models

Computational models of scientific discovery were
actively studied in artificial intelligence (in conjunc-
tion with psychology) in the late 1980s [37]. In
molecular biology in particular, Karp [38] created
systems in bacterial gene regulation that could
describe the initial conditions of an experiment,
generate a hypothesis, and refine it. We will describe
additional systems in Sections 3.2.1 and 3.2.2 in
more detail because they will be used as points of
comparison when evaluating GEEVE in Section 4.

3.2.1. Active learning in Bayesian networks
An extension of supervised learning, active learning
was applied to learning causal Bayesian networks in
scientific discovery [11]. Tong and Koller used edge
entropy loss functions and a myopic search in order
to recommend the next best experiment to per-
form. Their main assumptions are: (1) discrete
variables only; (2) no missing data; and (2) no
modeling of latent (hidden) variables. They mod-
eled manipulation and selection using the manip-
ulation representation in Cooper and Yoo [39].

Tong and Koller applied their algorithm to three
Bayesian networks with 5, 8, and 16 nodes respec-
tively. Based on their simulations, they showed that
active learning performs better in finding BN struc-
tures than randomly choosing of the query nodes.

3.2.2. Entropy score and set covering in
Boolean networks
Ideker et al. [10] used binary networks to model the
perturbation on a gene network and used entropy
loss function to recommend the next best perturba-
tion to perform, where perturbation on a gene
means forcing the gene to take a fixed value.
They implemented two methods to infer a genetic
network built from a gene expression dataset.
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To implement the genetic network, they used a
deterministic Boolean model. This model is a sim-
plified version of Bayesian networks (see Section 3.1)
where all variables are binary and all conditional
distribution tables are simply truth tables.

Similar Boolean networks were used to model the
experiments involving the gene networks, and the
set-covering method was used to recommend the
next best experiment for more than one experi-
mental repeat [9]. Karp et al. used a Boolean circuit
model of a biological pathway [40] to model experi-
mentation.

4. Evaluation

This section describes an evaluation of the GEEVE
system. In the evaluation, we used a simulator to
generate gene expression data and compared the
performance of the GEEVE system with a system of
Tong and Koller [11] (call it TK system) and a system
of Ideker et al. [10] (call it ID system), which were
described in Section 2. Additionally, we compare
GEEVE with GEEVE base line system that restricts
the GEEVE system to recommend a case at a time
(call it GEEVE_BL system).

4.1. Simulator for the evaluation

Only a few gene expression simulation systems are
currently available [41—43]. Limited functions are
available in most of the systems because they are in
their early development stages. For example,
Tomita et al. [41] simulate a cell by developing
a computer program shell that can execute any
specified cell model. But the system is limited in
its (1) available cell models, (2) exporting the gene
expression levels to a file, and (3) modeling of
measurement errors.

We used the Scheines and Ramsey [42] simulator
system (which we will call the SR Simulator) to
generate gene expression data. The SR simulator
models genes within a cell and incorporates biolo-
gical variance, such as that due to signal loss or gene
mutation, as well as measurement error. The simu-
lator uses a user-defined number of cells in each
probe (we set each probe to contain 100,000 cells in
this study). It allows measurement at different time
points and uses the following so called Glass func-
tion [44] to update an expression level of a gene X:

eXt ¼ eXt�1 þ rate½�eXt�1

þ FXðcauses ofðXtÞnXt�1Þ� þ eX (2)

where Xt represents the gene X at time t and eXt

represents the gene expression level of the gene X

at time t, 0 < rate � 1, causes_of (Xt) are the direct
causes of Xt in the model, ‘‘/’’ the set difference
operator, eX an error term drawn from a given
probability distribution, and FX a binary function
specified by the user [44]. Binary functions have
been used to model natural phenomena including
gene causal pathway [45]. Also note that the model
used in this evaluation study contain only a one-
stage time-lag, an example of this is shown in Fig. 6,
i.e., if a gene has a causal relationship with another
gene, it means the relationship is modeled as in
Fig. 6.

A burn-in period is desirable in applying the SR
Simulator. In particular, for the simulated networks
discussed in this section (1) it is often after 100
time-lags that the most interesting interactions
start among the modeled genes; and (2) the simu-
lated system usually goes into a steady state after
300 time-lags. Therefore we used 100 time-lags for
a burn-in period for evaluation study reported here.

4.2. Simulated yeast galactose pathway

In the evaluation we used the SR simulator applied
to the yeast galactose metabolic pathways [29] that
includes nine galactose genes: Gal1, Gal2, Gal3,
Gal4, Gal5, Gal6, Gal7, Gal10, and Gal80. The
simulated causal pathway we used is shown in
Fig. 7; it only simulates the condition when galac-
tose is provided as a nutrient. The causal pathway
was generated based on Ideker et al. [29].

The noise term eX in Eq. (2) was estimated from
the cDNA microarray dataset provided in Ideker
et al. [29] and the rate parameter was estimated
as 0.5 by a yeast biologist at our university. FX in
Eq. (2) is defined in Table 1. The function was
assessed based on Ideker et al. [29].

4.3. Generated dataset

Initially, we simulated the baseline study, where
the experimenter collects an equal number of
experimental repeats in different experimental
conditions. A dataset of 30 initial cases were

Figure 6 A one-stage time-lag model. A:0 represents
the expression level of gene A at current time and A:1
represents the expression level of gene A at one time-
step before the current time.

An evaluation of a system that recommends microarray experiments 175



generated, three experimental repeats (cases) for
each of the following 10 experimental conditions:
a single wild-type experiment and nine knockout
experiments, where a given knockout experiment
corresponds to the deletion of one of the nine
genes in the simulator model. We generated these
initial datasets (and subsequent ones) using a t ¼
100 burn-in period (see Section 4.2). After TK, ID,
GEEVE_BL, and GEEVE analyzed the initial dataset,
the following steps were iteratively taken with each
system:

� Step 1: The system outputs additional knockout
experiments to perform.

� Step 2: All of these experiments are performed
(using the simulator).

� Step 3: The system analyzes the results of the
microarray experiments just performed (com-
bined with the results of any earlier microarray
experiments on the same genes under the same
experimental conditions).

� Step 4: If the total number of experiments per-
formed thus far is 35 then halt, else go to Step 1.

Let D denote the dataset before Step 1. Then
the dataset that is generated after Step 2
is D [ {results of experiments that a system
recommended}. Note that only GEEVE recom-
mends more than one experiment to perform at
a time.

The TK, ID, GEEVE_BL, and GEEVE algorithms
currently model using discrete variables only,
although each could be extended to model with
continuous variables as well. The following steps
were taken for discretization (i.e., binning) of the
simulated gene-expression data (generated from
Eq. (2)) that were then used by the algorithms:

(1) Let X
i denote the intensity for gene Xi, which

serves as an indicator of the expression level of
Xi in an experiment in which some gene (not
necessarily Xi) was knocked out. Similarly, let
rXi denote the intensity, which is an indicator
of the expression level of Xi when no genes
were manipulated (wild-type). The relative
intensity for gene Xi was calculated as
logðX

i =rX

i Þ.

Figure 7 Galactose simulation pathway model.

Table 1 Definition of FX that appears in Eq. (2)

GAL4 ¼ 0 GAL4 ¼ 1

GAL3 1 0

GAL4 ¼ 0 GAL4 ¼ 1

GAL80 0 1

GAL4 ¼ 0 GAL4 ¼ 1

GAL3 ¼ 0 GAL3 ¼ 1 GAL3 ¼ 0 GAL3 ¼ 1

G80a ¼ 0 G80a ¼ 1 G80a ¼ 0 G80a ¼ 1 G80a ¼ 0 G80a ¼ 1 G80a ¼ 0 G80a ¼ 1

Other genes
GOb 0 0 0 0 1 1 0 0

The cause is listed in the columns and the effect in the rows. 0 represents the gene is not expressed and 1 represents
the gene is expressed. For example, FX is defined as (1) if GAL4 is expressed then GAL3 is supressed and (2) if GAL4 is
not expressed then GAL3 is expressed.
a G80 ¼ Gal80.
b GO ¼ {Gal1, Gal2, Gal5, Gal6, Gal7, Gal10}.
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(2) Discretization was performed based on each
gene’s relative intensity of mean m and
standard deviation d over all relative intensi-
ties. All genes were assigned three states: 0
was assigned to any value less than m � d, 1
was assigned to any value greater than or equal
to m � d and less than m þ d, and 2 was
assigned to any value greater than or equal to
m þ d.

For the discretization for the ID system, in Step 2,
all genes were assigned two states: 0 was assigned
to any value less than m, and 1 was assigned to any
value greater than or equal to m.

4.4. Evaluation matrices

IK and ID do not incorporate experimenter’s pre-
ferences. To make the comparison of IK and ID with
GEEVE fair, IK and ID should have a preference
module similar to GEEVE. Thus, in this comparison
study, we use uniform preference on all gene pairs
and causal hypotheses, as described in Section 2.2.
The measurement of the performance of TK, ID,
GEEVE_BL and GEEVE was based on the two criteria
discussed next.

4.4.1. Prediction of the generating causal
structure
Let AUROC denote the area under the ROC curve for
a prediction that involves genes X and Y. For each
gene pair (X, Y), where X, Y 2 {Gal1, Gal2, Gal3,
Gal4, Gal5, Gal6, Gal7, Gal10, Gal80}, we calcu-
lated two AUROCs. One is for the prediction that X
and Y are independent given that they are indepen-
dent in the simulator’s generating model (true
positive rate) and given that they are not indepen-
dent (e.g., their is a causal relationship between
them) in the generating model (false positive rate).
Another AUROC is for the prediction of causal rela-
tionship R between X and Y, given that the causal
relationship between X and Y is R (true positive rate)
and given that the causal relationship between X
and Y is not R (false positive rate). For each algo-
rithm and for each of the two types of AUROC.
AUROC is calculated using each dataset in Step 3
of the previous section.

4.4.2. Predictive performance as a function of
the number of experiments performed
Using the cost function that was estimated from a
molecular biologist collaborator (detail function
descriptions are in Section 4.5), we calculated
the total cost of the experiments performed by
each system. For example, if it takes 2 h to process
a microarray chip and it costs US$ 50.00 h�1 for such

analysis, the total cost (excluding the material
costs) is US$ 100.00. As mentioned above, predic-
tive performance is measured using AUROC, which
is derived by using the generating relationships
as the ground truth. Finally, using the assessed
cost function in Section 4.5, we recorded the cost
that is associated with attaining a given AUROC and
use these factors to derive a unit ‘‘performance
accuracy over cost,’’ which is calculated by divid-
ing the AUROC by the experiment costs in dollars.
This unit represents an increased fraction of an
AUROC per dollar cost. We plot the AUROC over
cost as a function of the number of experiments
performed.

In analyzing a given set of data with a given
system, we ran the system for up to 2 h for the
following reason. A running time of less than 2 h
showed relatively high variance on AUROC to the
variance on AUROC of running time over 2 h.
Furthermore, a running time of 3—4 h showed simi-
lar variance on AUROC to that of 2 h running time.
We used a 500 MHz dual processor Linux machine to
set up the appropriate parameters for each system
to run approximately 2 h. For the entire experi-
ment, we used the Linux machine, a 400 MHz
Microsoft Windows 2000 machine, and a 266 MHz
Microsoft Windows NT machine. All programs were
compiled with gnu Cþþ on the Linux machine
and with Microsoft Visual Cþþ on the Windows
machines. The total running time was approxi-
mately as follows: 35 additional experiments �
2 h per system � 4 systems per experiment ¼ 280 h.

4.5. Results

Results of the predictive performance of each sys-
tem is shown in Fig. 8(a) and (b). The X-axis repre-
sents the number of experiments performed (using
simulation) and analyzed by the system. Recall that
except for GEEVE, all other systems recommend one
microarray experiment at a time. This is why the
GEEVE plots are disconnected in Fig. 8. For exam-
ple, in Fig. 8, GEEVE requests two microarray
experiments after it analyzes 15 microarray experi-
ments; after analyzing 17 microarray experiments,
it again requests two microarray experiments. Error
bars of the AUROC in the figure were calculated
using the bootstrap method described in Efron
[46]. In particular, for an AUROC curve for a given
system, that systems 36 predictions were randomly
selected with replacement and this procedure was
performed 2000 times. The error bars each repre-
sent a 95% confidence interval around a given
AUROC.

As shown in Fig. 8(a), there is no system that
dominates in predicting the correct independence
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relationships. Note that we have to consider the
cost to process a cDNA microarray chip. A large
portion of the cost is the technician’s time to
process the microarray chip. Processing one micro-
array chip at a time is much more costly than batch-
processing several microarray chips at a time. This
is because there are many steps to take to analyze a
cDNA microarray chip, and each step takes a long
time to complete.

Consider the following scenario for a given
experiment that involves a microarray: (1) perform
experiment x, (2) analyze the microarray chip
results of experiment x; (3) based on the results,
determine the next experiment x0 to perform; (4)
perform the experiment x0 with a microarray chip;
and (5) analyze the microarray chip results of
experiment x0. In this scenario, a technician ana-

lyzed two microarray chips in all. Now consider the
alternate scenario where the technician performs
experiments x and x0 together and analyzes the
resulting two microarray chips in a batch mode.

Typically, analyzing two chips together will take
less of the technician’s time than analyzing two
chips in series, particularly if x ¼ x0, that is, x0 is
simply a repeat of x. The downside, however, is that
in doing two experiments at the same time, we are
not able to use the results of the first experiment to
help tailor which experiment to perform second.

There are different suggested protocols to ana-
lyze a microarray chip [47]. It usually takes 16 h
(2 days) of a technician’s time to produce and
analyze one microarray chip. It will usually take
20 and 24 h for him or her to analyze two and three
cDNA microarray chips at once, respectively (4 h for

Figure 8 Area under ROC curve (AUROC) as a function of the number of experimental cases performed (via
simulation) and used to assess relationships among the variables. Each bar represents a 95% confidence interval. (a)
AUROC of independence relationships prediction. (b) AUROC of causal relationships prediction.
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Figure 9 AUROC per cost calculation. Each bar represents a 95% confidence interval. The X-axis represents the number of microarray experiments that were suggested
by an algorithm and then performed by way of simulation. (a) AUROC/cost of independence relationships prediction. The left graph shows the overall plot and the right
graph shows the left graph’s lower right plot in detail. (b) AUROC/cost of causal relationships prediction. The left graph shows the overall plot and the right graph shows
the left graph’s lower right plot in detail.
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each additional microarray chip). This is because it
usually takes 4 h to finish the first step, extracting
DNA. If the technician earns US$ 20 h�1, the costs
involved in analyzing two chips in the two different
scenarios are: (1) US$ 640 to analyze one chip at a
time [(16 h � 2) � US$ 20]; and (2) US$ 400 to
analyze two chips at once (20 h� US$ 20). Similarly,
the costs involved in analyzing three chips are: (1)
US$ 960 to analyze one chip at a time [(16 h � 3) �
US$ 20]; and (2) US$ 480 to analyze three chips at
once (24 h � US$ 20). We used these cost assump-
tions in the analyses that follow.

Under these cost assumptions, we can calculate
AUROC per dollar, which is shown in Fig. 9. It is clear
that under these cost assumptions, GEEVE outper-
forms the other systems in both causal and inde-
pendence predictions.

In summary, Fig. 8(b) shows that GEEVE consis-
tently perform better than the ID and TK systems in
correctly predicting causal relationships. Fig. 9(b)
shows that GEEVE and GEEVE_BL outperform the ID
and TK systems in predictive performance per dol-
lar. GEEVE outperforms GEEVE_BL in Figs. 8(b) and
9(b) because GEEVE recommends more than one
microarray experiment (case) at a time.

5. Conclusions

Systems biology emphasizes large scale discovery
of the interactions of genes, proteins, and other
cell elements. Systems biology is confronted with a
huge number of interactions, not the least of which
is the interaction of genes. There are challenges
in designing high throughput experiments, such as
cDNA microarrays, and for analyzing the high
volume of data generated by those experiments
in order to discover gene regulation networks.
Intrinsically, these issues are causal in nature. We
have introduced a new causal analysis method along
with a computer system that uses that method
to recommend the gene-regulation experiments to
perform.

Unlike clinical radomized controlled trials,
where an experimenter is interested in the causal
relationship of a handful variables (e.g., an experi-
menter is interested in a new drug and its treat-
ment effect) in systems biology an experimenter is
usually interested in the causal relationships among
thousands of entities, such as genes. Different
approaches are needed in systems biology for causal
discovery and experimental design recommenda-
tion. This paper has explored one such approach.
In the remainder of this section, we summarize the
contributions made by this paper and then discuss
open problems.

5.1. Local causal search with
experimentation recommendations

We developed a system called GEEVE (causal dis-
covery in Gene Expression data using Expected
Value of Experimentation) that incorporates an
experimenter’s preferences regarding which genes
to study in order to discover causal relationships
among those genes. Among the genes of interest,
GEEVE models their likely causal relationships,
based on prior biological knowledge and experimen-
tal data.

Experiments provide benefit in terms of informa-
tion, but they also have costs in terms of human
labor and the laboratory costs. Considering prefer-
ences, costs, and a current model of causal relation-
ships, GEEVE recommends the most cost-effective
experiment it can find in its search of the space of
experiments.

For evaluation, we modeled and simulated a
portion of the yeast galactose metabolic pathway.
Using the yeast galactose pathway simulator to
generate simulated microarray data, we showed
that GEEVE predictions (area under ROC curve)
were better (although not highly statistically
significantly so) than two other state-of-the-art
methods recently described in the literature. When
we applied the cost function that was assessed from
the biologists and calculated the area under ROC
curve as a function of experimental cost, GEEVE
showed performance that was statistically signifi-
cantly different than the other two recommendation
systems.

5.2. Future work and open issues

Regarding external experimental conditions, such
as nutrient conditions, they could be modeled as
exogenous variables in a causal Bayesian network.
Currently, GEEVE models only experiments that
involve wild-type gene levels and single gene
knockouts. In the future, more general experi-
ments, such as over-expression experiments, more
than one gene knockout and so forth, should be
modeled.

Regarding modeling the time course of gene
expression, and determining precisely when to sam-
ple cells during experimentation, temporal Baye-
sian networks appear a natural choice [48,49]. It
will be interesting to explore models that use both
continuous and discrete variables within temporal
Bayesian networks. Temporal Bayesian networks
also provide one approach to modeling gene regula-
tion feedback. The six pairwise causal hypotheses
used in this research could be extended to model
such feedback. This is an important issue for future
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research because feedback is widely observed in
many cellular pathways.

Currently, GEEVE only generates decision trees
based on the discovery of pairwise gene relation-
ships. More generally, Rj in Fig. 5 (Section 2.3)
should include more than pairwise relationships.
Doing so will allow GEEVE to (1) model beyond a
single gene perturbation experiments, such as a
knockout of two or more genes at a time; and (2)
incorporate (in the decision tree) the effects on
other genes besides genes (X, Y) when gene X (or Y)
is perturbed.

We have also introduced a causal discovery sys-
tem that can score latent structures. Since the most
closely related prior methods assume no latent
variables, there is no straightforward way to eval-
uate GEEVE’s prediction of latent structures with
these other methods. Also since cDNA microarray is
measuring the average expression level of millions
of cells, the variance that we observe in the levels
(when an experiment is repeated several times) is
due almost entirely to measurement error and not
to biological variation [50]. Biological variation is
needed to discover latent structure, certainly with
LIM, and we believe with any method. Measuring the
expression level of genes under various experimen-
tal conditions (e.g., measuring at different time
points or in different temperatures) can provide
biological variation among groups of cells; it is an
open question how helpful biological variation of
this particular variety will be in discovery of latent
structure.

Another way to obtain biological variation in gene
expression would be to measure gene expression at
the level of a single cell. Such measurements will
require new technology. We anticipate that such
methods will be developed within the next decade.
If so, the methods in this paper will be applicable to
suggesting when latent factors (such as unknown
proteins) may be influencing two or more specific
genes.

Ideker et al. [29] describe four steps in discover-
ing causal pathways among the genes: (1) gather
and formulate the current knowledge about the
genes and their pathways; (2) design and perform
experiments; (3) analyze the data from the experi-
ments; and (4) formulate new hypotheses to explain
the analysis results not predicted by Step 1 and
then repeat Steps 2, 3, and 4. There are many open
issues in how to complete this loop. The soundness
of microarray measurements needs to be studied
further, e.g., studying the relationship between
mRNA levels and protein expression levels, and
studying and quantifying the various sources of mea-
surement error related to detecting gene expres-
sion levels. Other open issues include detecting

genes and their promoter regions from sequence
information, compiling known gene regulatory
knowledge (and other cell-network knowledge) from
the literature, and standardizing causal pathway
representations.
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