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Abstract 

In recent years, researchers in decision analysis and arti­
ficial intelligence (AI) have used Bayesian belief networks 
to build models of expert opinion. Using standard meth­
ods drawn from the theory of computational complex­
ity, workers in the field have shown that the problem of 
probabilistic inference in belief networks is difficult and 
almost certainly intractable. KNET, a software environ­
ment for constructing knowledge-based systems within 
the axiomatic framework of decision theory, contains a 
randomized approximation scheme for probabilistic infer­
ence. The algorithm can, in many circumstances, per­
form efficient approximate inference in large and richly 
interconnected models of medical diagnosis. Unlike previ­
ously described stochastic algorithms for probabilistic in­
ference, the randomized approximation scheme computes 
a priori bounds on running time by analyzing the struc­
ture and contents of the belief network. 

In this article, we describe a randomized algorithm for 
probabilistic inference and analyze its performance math­
ematically. Then, we devote the major portion of the 
paper to a discussion of the algorithm's empirical behav­
ior. The results indicate that the generation of good trials 
(that is, trials whose distribution closely matches the true 
distribution) , rather than the computation of numerous 

mediocre trials, dominates the performance of stochastic 
simulation. 

Key words: probabilistic inference, belief networks, 

stochastic simulation, computational complexity theory, 

randomized algorithms. 

60 

1. Introduction 

P denotes the set of all decision problems that a 
deterministic Turing machine can answer in a pe­
riod of time bounded by a polynomial in the size of 
the problem description. NP is the set of all de­
cision problems that a nondeterministic Turing ma­
chine can resolve in polynomial time. Determinis­
tic machines pursue one path of computation at a 
time; nondeterministic machines can perform multi­
ple computations simultaneously. 

The hardest problems in NP, known as NP­
complete, probably do not admit polynomial·time 
deterministic algorithms (Garey and Johnson, 
1979 ). If any of the NP-complete problems admits a 
polynomial-time deterministic algorithm, then P = 

NP, and all problems in NP can be solved in poly­
nomial time. The vast majority of theoreticians be­
lieve, however, that NP properly contains P, and 
that polynomial-time algorithms for NP-complete 
problems do not exist. NP-hard problems are at 
least as difficult to answer as are the NP-complete 
problems, if not more so. 

Given truth assignments for a set E of random 
variables in a belief network, an algorithm for Proba­
bilistic Inference in Belief NETworks (PIBNET) com­
putes the posterior probabilities for the outcomes 
of a specified node X. PIBNET is hard for NP, by 
reduction from 3-satisfiability in the propositional 
calculus (Cooper, 1987). The classification of PIB­

NET as NP-hard has prompted a shift in focus away 
from deterministic algorithms and toward approxi­
mate methods, heuristics, and analyses of average-



case behavior. 

There now exists a number of algorithms for prob­
abilistic inference in belief networks: the message­
passing algorithm of Pearl (Pearl, 1986), the tri­
angulation method of Lauritzen and Spiegelhal­
ter (Lauritzen and Spiegelhalter, 1987), and the 
randomized approximation scheme (ras) described 
herein. Each algorithm has computational proper­
ties that render it attractive for inference on cer­
tain kinds of networks. The NP-hard classification 
suggests, however, that no algorithm can provide a 
definitive efficient solution for all inference problems. 

The ras, in particular, builds upon straight 
stochastic simulation as proposed by Pearl and oth­

By definition, an ras computes approximate an­

swers that, with correctness probability greater than 
1 - 6, differ from the true answer by a relative er­
ror of no more than E (Karp and Luby, 1983). In 
addition, an ras requires computing time that is a 
polynomial in 1/E, 1/fl, and the size of the input.2 
Modified versions of the ras guarantee, with high 
probability 1- 6, upper bounds on interval error a, 
to be distinguised from the relative error !.3 

In this paper, we briefly summarize the salient 
characteristics of BN-RAS and present an empirical 
investigation of its properties. In particular, we fo­
cus attention on the computational complexity of 
generating good trials. 

Methods and Procedures 

2.1 Approximate Probabilistic Inference 

ers (Pearl, 1987b; Pearl, 1987a). Stochastic simu­
lations generate trials, or instantiations of random 
variables governed by a joint probability distribu- 2. 
tion, and then use the frequencies of random out­
comes to approximate posterior probabilities. Two 
kinds of error can plague such simulations: The dis­
tribution of generated trials does not necessarily cor­
respond closely to the true distribution of outcomes, 

We now offer a complexity-theoretic treatment of ap­
proximate probabilistic inference. We use methods 
drawn from the analysis of ergodic Markov chains 
and randomized complexity theory to build an algo­
rithm that approximates the solutions of inference 
problems for many belief networks to within arbi­
trary precision. We slightly alter a previous simula­
tion scheme designed by Pearl (Pearl, 1987b; Pearl, 

and a paucity of trials can give rise to sampling er­
ror. We must focus not only on the generation of 
myriad trials, but also on the quality of those trials. 

Unlike previous methods of straight simulation, 
our randomized algorithm (known hereafter as BN­
RAS) gives precise a priori bounds for its running 
time as a function of relative or interval error.1 The 
ras does not necessarily run faster than previous sim­
ulation algorithms. Indeed, the algorithm itself pro­
poses only minor modifications to straight simula­
tion. Those modifications, however, permit a theo­
retical convergence analysis that does not apply to 
the original asymmetric methods of straight simula­
tion. 

2ln the case of belief networks, the size of the input is the 

length of a string that fully describes the nodes, their con-

nections, and their conditional probabilities, represented in 

unary notation. Unary notation ensures a running time that 

is a polynomial in the problem size; as the probabilities ap-

proach 0 and 1, the unary representations assume unbounded 

size, and the algorithm 's performance decreases dramatically. 

1 In the literature of theoretical computer science, our ras Note, in addition, that we have excluded deterministic rela­

would be classified as a fully polynomial randomized approx:- tionships (probabilities equal to o or 1) from the analysis. 

imation scheme (fpras) . Although the term is a standard one 3The interval error Ct is the maximum difference between 

in the study of algorithms, it may mislead those less familiar the true and the approximate probabilities, taken over all the 

with the nomenclature. We emphasize that our ras exhibits probabilities in the network. The relative error t is the maxi­

performance that varies linearly with the topological complex- mum difference between the true and the approximate proba­

ity of the network, even though the same algorithm degrades bilities, divided by the true probability. In general, it is much 

dramatically as the probabilities th emselves approach 0 and more difficult to guarantee a fixed relative error, especially as 

1. 
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the probabilities approach 0. 



1987a), known hereafter as the method of straight 
simulation, so as to render an analysis of its com­
putational characteristics. We have given the full 
derivation in (Chavez, 1989b; Chavez, 1989a), and 
present only the salient results here. 

Suppose that we wish to compute all posterior 
probabilities in the network to within an interval 
error 0!. Suppose, in addition, that we are willing 
to tolerate a small probability fJ that the algorithm 
fails to converge within the a bound. The detailed 
argument, based on Chebyshev's inequality and the 
scheme of Karp and Luby, reveals that 

(1) 

guarantees the (0!,6) convergence criteria, where N 
is the total number of trials. Each trial corresponds 
to the choice of a joint instantation for all the nodes 
in the belief network. 

We have predicated our analysis on the existence 
of a trial generator that accurately produces states 
of the network according to their true probabilities, 
contingent on the available evidence. The original 
straight-simulation generator depends on the initial 
state (that is, it lacks ergodicity). Moreover, the 
straight-simulation generator offers no guarantees 
about its convergence properties. We must, there­
fore, turn our attention to the study of modified state 
generators. 

Given any belief network, we show how to coll.­
struct a special Markov chain with the following two 
properties. First, states of the Markov chain corre­
spond to joint instantiations of all the nodes in the 
network; the Markov chain associated with a net­
work of n binary nodes, for example, has 2n dis­
tinct states. Second, the stationary distribution of 
the Markov chain is identical to the joint posterior­
probability distribution of the underlying belief net­
work. 

In addition, the constructed Markov chain has 
the properties of ergodicity and time reversibility. 
Ergodic chains are, by definition, aperiodic (with­
out cycles) and irreducible (with a nonzero transi­
tion probability between any pair of states). Time· 
reversible chains look the same whether the sim­
ulation flows forward or backward. Once again, 
(Chavez, 1989a) presents the details of the construc­
tion. 
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In the limit of infinity, after the Markov chain has 
reached its stationary distribution, that chain gen­
erates states according to their true probabilities. 
Obviously, we cannot afford to let the chain reach 
equilibrium at infinity. In practice, we wish to know 
how well the chain has converged after we have let 
it run for only a finite number t of transitions. De­
fine the relative pointwise distance ( r.p.d.) after t 
transitions, 

Ll(t) = _Ip.ax s; 3 , { lp_(t)- 11'"1} 
s,;E(M] 11'j 

where ��t) denotes the t-step transition probability 
from state i to j (with a total of M states) and 11'j 
denotes the stationary probability of state j. Let 
II = miniE[M) 11'i, the joint probability of the least 
likely joint state of all variables in the network. We 
wish to determine the number of transitions t needed 
to guarantee a deterministic upper bound on Ll(t). A 
Jerrum-Sinclair analysis of chain conductance (intu­
itively, the chain's tendency to flow around the state 
space (Jerrum and Sinclair, 1988)) and a combina­

toric path-counting argument show that the BN-RAS 

generator requires 

t 
> log 1 + log IT - log(l - P6/8) (2) 

transitions to guarantee a relative pointwise distance 
of[, where Po is the smallest transition probability 
in the Markov chain. 

Combining the convergence analysis with the 
scoring strategy in relation (1), BN-RAS computes 
posterior-probability estimators Y that satisfy the 
constraint 

�
r�l;� - Q � Y � (1 + !)Pr[ei�J +a (3) 

with probability greater than 1 - b. To do so, the 
algorithm must perform t transitions p er trial, with 

t = [4(1 + 1)3]· (12f -logbl + 1). log{+ log IT' 
30!2 log(l - p5f8) 

(4) 
where each transition corresponds to one step of the 
underlying Markov chain. We can then use those 
posterior-probability estimators to rank the leading 



I• Compute a transition p.m.t. •I 

void sample(this) 

node •this; 

{ 

} 

tor (sua = 0 .0, 

this->value = O; 

{ 

} 

this->value < this->nvalues; v++) 

I• compute P[this I parents] •I 

prod= cprob(this); 

I• multiply by P[child I this], 

for each child •I 

for (i = 0; i < this->nchildren; i++) 

prod •= 

cprob(matrix[this->children[i]]); 

sum += prod; 

this->dist[v] = sum; 

normalize dist; 

Figure 1: Pseudo-code that computes the Markov 

transition probabilities from a belief network. 

diagnoses. Thus, BN-RAS efficiently computes ap­
proximate inferences within the normative frame­
work of probability theory, so long as po is not too 
small. 

Conceptually, now, the ras has a simple descrip­
tion. Each of N trials produces a joint instantia­
ti�n of nodes in the belief network. To conduct each 
trial, we initialize all nodes to random values from 
a uniform distribution and we run the chain for t 
transitions. 4 We compute each transition proba­
bility with the pseudo-code given in Figure 1. The 

4The random initialization is not required for the analysis, 

but such an initialization can occasionally improve the perfor­

mance of the simulation. 
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t transitions per trial help to ensure mixing of the 
underlying Markov chain, and thereby facilitate the 

generation of good trials (that is, trials from a. dis­
tribution that approximates the true distribution of 
states to within a bounded relative error). The the­
oretical analysis, in short, gives worst-case formulae 
for N and t as a function of network parameters and 
error tolerance. 

We present a pseudo-code description of BN -RAS in 
Figure 2. In order to obtain the original straight sim­
ulation , we replace the routines do_transition() 
and next_trial () with the variants in Figure 3. 
Specifically, BN-RAS exhibits the following differ­
ences from straight simulation: (1) BN-RAS chooses 
a random state in the Markov chain before com­
puting ea.ch trial; (2) BN-RAS makes transitions in 
a manner that renders the Markov chain aperi­
odic, irreducible, and time-reversible; (3) BN-RAS 

makes many transitions before scoring a single trial, 
whereas straight simulation scores the result of ev­
ery transition. Those properties allow us to analyze 
the algorithmic complexity of BN-RAS in great detail. 
No general techniques exist, however, for analyz­
ing time-irreversible and non-ergodic Markov chains 
such as the chains used in straight simulation. 

The preceeding analysis of complexity clarifies 
the underlying computational properties of the al­
gorithm, but it says little about the method's per­
formance on examples drawn from the real world. 
We now describe the complexity analysis in greater 
detail, and answer questions about the algorithm's 
performance on two examples. We use the exact al­
gorithm of Lauritzen and Spiegelhalter (Lauritzen 
and Spiegelhalter, 1987) to compute the gold stan­
dard for our comparisons. 

With the analysis of BN-RAS in hand, we propose 
to address the following questions: 

• How does the error change as the number of 
transitions t per trial increases? (We have an 
interest in two error measures: the average er­
ror over all nodes, and the interval error for 
the node with the greatest discrepancy from the 
gold standard.) 

• How does the error change as the number of 
trials increases, with the number of transitions 
t per trial held constant? 



I• Perform one transition •I 
do_ transition() 
{ 

I• With probability 112, 
stay put (guarantees 
aperiodicity). 
Use ACM algorithm. •I 

p = drand_acmO; 
if (p <= 0.5) 

:return; 
else 

{ 
uniformly choose a node 'this'; 

I• Compute the transition p.m.f., 
and choose a value •I 

sample(this); 
this->value = choose(this->dist); 

} 
} 

I• Compute a trial •I 
next_ trial() 

{ 

} 

set all the nodes to uniform 
random values; 

for (d = 0; d < transitions; d++) 
do_ transition(); 

estimate() 
{ 

} 

compute number of trials, n; 
for (j = 1; j <= n; j++) 
{ 

} 

next state 0 ; 
score outcomes; 

Figure 2: The pseudo-code for BN-RAS. 
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I• Compute a transition probability, and 
assign a value to node i •I 

do_transition(i) 
{ 

} 

sample(matrix[i]); 
matrix[i]->value = 

choose(matrix[i]->dist); 

I• Compute a trial •I 
next_ trial() 
{ 

} 

static int i = 0; 

I• Don't re-initialize 
the nodes •I 

if (i == nnodes) 
i = 0; 

do_transition(i++); 

Figure 3: The pseudo-code for straight simulation. 

• We predicated the analysis of BN-RAS on a set of 

distribution-free, worst-case assumptions. Does 
the computation time required for reasonable 
convergence in specific cases undercut the ana­
lytic estimates? 

• BN-RAS throws away many of its generated tri­
als. Does the sampling of fewer trials reduce the 

efficiency of the approach? In other words, how 
does BN-RAS perform in comparison to straight 
simulation? 

We study each of those questions in turn, and dis­
play charts and graphs that illustrate our conclu­

sions. 

3. Results 

In the present experiments, we study two belief net­
works: a simple two-node network (Figure 4) for 
which straight simulation is known to perform poorly 
(Chin and Cooper, 1987), and a much more com­
plex network, DxNET, for alarm management in the 



intensive-care unit (Beinlich et al., 1988). 

0----® 
P(B I A) = .001 
P(B I -A} = .999 
P(A} = 1/2 

Figure 4: This two-node network poses severe con­
vergence problems for straight simulation. 

The two-node network specifically causes straight 
simulation to undergo pathological oscillation. 
DXNET, on the other hand, reflects an anesthesi­
ologist's clinical expertise and judgmental knowl­
edge. For our present purposes, we observe that, 
to guarantee f = 0.1, 1 = 0.1, and 8 = 0.1 for the 
two-node example, we require 2, 662,000 tiials, with 
316,911,596 transitions per trial; to guarantee an 
interval error a = 0.1 for the same network, we need 
only 1332 trials, with the same number of transi­
tions per trial. For DxNET, the numbers prove even 
more formidable. The worst-case bounds require 
13,307,782 trials, with 256,573,353,901 transitions 
per trial, to guarantee f = 0.1, 1 = 0.1, and 8 = 0.1; 
to ensure that a = 0.1, we need only 1332 trials, 
but we still require 256, 573,353,901 transitions per 
trial. 

Figure 5 illustrates the number of trials, based on 
relation (1 ), as a function of the interval error a for 
several values of the failure probability 6. With an 
error tolerance of a = 0.1, the algorithm requires 
less than 10,000 trials, for values of 6 > 0.1. As 
the error tolerance shrinks, however, the number of 
trials increases quadratically. Note, however, that 
relation (1) specifies a distribution-free upper bound 
on the number of trials. Depending on the underly­
ing probability distribution, fewer trials may suffice. 

Figure 6 illustrates the relationship between the 
number of transitions needed for sufficient mixing 
of the Markov chain, t, and the smallest transition 
probability, p0• The transition probabilities vary as 
the product of conditional probabilities at each local 
node group. The belief networks that knowledge en­
gineers build for realistic applications will typically 
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require small transition probabilities. Such prob­
abilities do not entail the approximation scheme's 
success or failure; rather, they suggest that the ana­
lytic bounds cannot guarantee efficient computation. 
Note, in particular, the logarithmic abscissa, and the 
relative unimportance of the 1 error term. For belief 
networks in which the smallest transition probability 
p0 2: 0.1, we expect that BN-RAS will yield an accept­
able, tractable computation for realistic values of a 

and li. As p0 a.pproaches 0, however, the number of 
transitions needed to guarantee the bounds, as indi­
cated in equation ( 4 ) , approaches infinity. 

Clearly, the analytic bounds do not always yield 
an efficient algorithm, even though they do predict a 
running timl' that varies only linearly with the num� 
her of nodes. The conditional probabilities that lie 
close to 0 and 1 require unrealistically large values 
oft to approximate the stationary distribution with 
great certainty. 

3.1 DxNet Performance Measurements 
and Time Complexity 

In this section, we study the performance of BN-RAS 

for the DxNET problem on a Sun-4 timesharing pro­
cessor running SunOS, a version of 4 .3bsd UNIX. 
We measured CPU time with the UNIX system call 
clock(), which returns the elasped processor time 
in microseconds. 

Figures 7 and 8 demonstrate that the CPU time 
increases linearly with the number of trials and the 
number of transitions per trial, as expected. Those 
figures serve as nomograms for translating N and t 
into realistic CPU-consumption figures on the Sun-4. 

Figures 9 illustrates the most crucial insight of this 
empirical study. The convergence depends not so 
much on the number of tabulated trials, but rather 
on the quality of those trials (as determined by the 
number of transitions per trial). In other words, 
if we had an ideal trial generator, we could expect 
very rapid convergence; inasmuch as the raw Markov 
chain reaches the stationary distribution only after 
many thousands of transitions, however, trial gen­
eration in DXNET poses the greatest difficulty. If 
we could somehow modify the Markov chain and 
thereby increase the rate at which it reaches the sta­
tionary distribution, or if we could compute an ini-
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Figure 7: This graph illustrates that the computa­
tion time on a Sun-4 increases linearly with the num­
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DxNet: Time vs. transitions 
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tial state from which the chain converges to the limit 
in just a few transitions, the rate of convergence of 
BN-RAS would greatly increase. 

The theoretical analysis suggests that the small­
est transition probability in the Markov chain lim­
its the rate of convergence in the worst case, as de­
scribed in equation (4). For chains with large tran­
sition probabilities, we expect rapid convergence. 
For other networks, there is yet hope: BN -RAS and 
straight simulation, in contrast to the exact meth­
ods, require time linear in the number of nodes and 
outcomes, in the worst case. As the indegree of 
nodes grows, the size of cliques increases exponen­
tially, and the Lauritzen-Spiegelhalter algorithm re­
quires exponential time; as the loop cutset increases 
in size, Pearl's message-passing algorithm degrades 
exponentially (Suermondt and Cooper, 1988). The 
analysis of BN-RAS, however, indicates that the lat­
ter remains insensitive to network topology in the 
worst case, and degrades only as the conductance 
falls. 

Two detailed graphs (Figures 10 and 11) make the 
point more cogently. Note the strong dependence 
of the error terms on t, and the absence of a dose 
relationship between the error and N. These data 
suggest that the amount of computation required to 
guarantee a certain interval error depends most crit­
ically on the smallest transition probability in the 
network, and on very little else. 

3.2 Comparison with Straight Simulation 

B N- RAS generates t · N total transitions of the Markov 
chain, but then discards (t - 1) · N of those states 
and scores only N trials. In addition, the state gen­
erator shuffles the network into a random configura­
tion at the beginning of each trial. We now compare 
the ras to straight simulation (Pearl, 1987b; Pearl, 
1987a), both for the two-node network and for the 
full DxNET. 

Figure 12 compares straight simulation to BN-RAS 
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Figure 9: This graph illustrates an intriguing result: 
With just a few trials (on the order of 100) and many 
transitions per trial (on the order of 5,000 to 20,000), 
we can achieve rapid convergence of the average error 
toward 0. 

DxNet: Average error vs. trials 
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for the worst case in which the Markov chain's be- Figure 10: This graph plots the average error over 

havior deteriorates when the conditional probabil- all nodes a.gainst the number N of trials, for different 
ities approach 0 and 1. By starting with a ran- values oft, the number of transitions per trial. Ob­
dom configuration of the network and enumerating serve that t almost completely determines the con­
the transitions in a fixed order , straight simulation vergence of the algorithm. 

spends most of its time looping in one state; after 
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ma.ny transitions, the simulation falls into the other 
state and stays there for many transitions. Until the 
simulation falls into the alternative state, that state 
remains invisible. Hence, for networks with low con­
ductance, straight simulations can become mired in 
states that serve as sinks for the Markov chain's tran­
sition probabilities (Chin and Cooper, 1987). 

BN-R.AS, on the other hand, randomizes the chain 
after t trials. We therefore expect the errors to con­
verge more uniformly toward 0, without oscillating. 
Indeed, Figure 12 illustrates that BN-R.AS converges 
almost immediately to the correct answer, and stays 
there. We observe, however, that randomization at 
the beginning of each trial is not, by any means, a 
consistently successful strategy for improving con­
vergence. 

For the full DxNET, straight simulation and BN­

R.AS exhibit nearly identical convergence properties. 
The randomization step at the beginning of each 
trial in BN-R.AS, and the temporally symmetric se­
lection of transitions from an ergodic and time­
reversible Markov chain, do not necessarily improve 
performance. Notice, however, that BN-RAS achieves 
the same performance as straight simulation, even 
though BN-R.AS throws away the vast majority of its 
trials. Clearly, the generation of good trials (by per­
forming many transitions) reduces error more dra­
matically than the scoring of many poor trials. 

4. Discussion and Conclusions 

Our investigations suggest that a precise analytic 
characterization of a randomized algorithm's prop­
erties can guide the search for more efficient approx­
imations. We have shown, in particular, that the 
number of transitions per trial, and not the gen­
eration of a sufficient number of trials, constrains 
the precision of Monte Carlo approximations. Our 
results demonstrate that, for belief networks with 
transition probabilities bounded away from 0 and 
1, randomized techniques offer acceptable perfor­
mance. The mere generation of copious trials is not, 
however, likely to ensure success. 

A randomized algorithm that provides a priori 
convergence criteria, coupled with an extensive em­
pirical analysis, can perform efficient probabilistic 
inference on large networks. In addition, we have 
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formally shown that the randomized algorithm re­
quires time that is linear in the problem size, and 
polynomial in the error criteria (namely, the suc­
cess probability {j and the interval error a). As the 
complexity of a belief network increases, randomized 
algorithms may offer the only tractable approach to 
probabilistic inference. 

We must, however, hasten to reiterate that the 
minimum transition probability p0 severely con­
strains the efficacy of randomized techniques. In 
addition, BN-RAS does not necessarily outperform 
straight simulation in raw computation. In contrast 
to straight simulation, howe ver, BN-RAS offers a de­

tailed convergence analysis and a priori bounds on 
running time. 

Finally, we outline a set of experiments in progress 
to characterize further the usefulness of randomized 
algorithms for probabilistic inference. 

• We shall study the performance of the algorithm 
on networks of various topologies, with a partic­
ular emphasis on inference problems that can­
not be solved efficiently by deterministic meth­
ods. Networks with large loop cutsets and large 
indegrees offer particularly severe tests of exact 
algorithms. We conjecture that, as long as the 
smallest transition probability stays the same, 
the ras should remain insensitive to variations 

in topological structure. 

• We shall study the algorithm's performance on 
networks of different sizes and roughly similar 
topology (of the same maximum in degree and 
cutset complexity), with the smallest transition 
probability held constant. We expect that the 
performance of BN-RAS should depend very lit-

ical Scientist Training Program grant GM07365 from 
the National Institutes of Health, and grant LM-
07033 from the National Library of Medicine. Com­
puter facilities were provided by the SUMEX-AIM 
resource under grant RR-00785 from the National 
Institutes of Health. 
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