
An Empirical Evaluation of a Randomized Algorithm for Probabil�stic
Inference

R. Martin Chavez and Gregory F. Cooper
Section on Medical Informatics

Stanford University School of Medicine
Stanford, California 94305

April1989
Revised June 1989

Abstract

In recent years, researchers in decision analysis and arti­
ficial intelligence (AI) have used Bayesian belief networks
to build models of expert opinion. Using standard meth­
ods drawn from the theory of computational complex­
ity, workers in the field have shown that the problem of
probabilistic inference in belief networks is difficult and
almost certainly intractable. KNET, a software environ­
ment for constructing knowledge-based systems within
the axiomatic framework of decision theory, contains a
randomized approximation scheme for probabilistic infer­
ence. The algorithm can, in many circumstances, per­
form efficient approximate inference in large and richly
interconnected models of medical diagnosis. Unlike previ­
ously described stochastic algorithms for probabilistic in­
ference, the randomized approximation scheme computes
a priori bounds on running time by analyzing the struc­
ture and contents of the belief network.

In this article, we describe a randomized algorithm for
probabilistic inference and analyze its performance math­
ematically. Then, we devote the major portion of the
paper to a discussion of the algorithm's empirical behav­
ior. The results indicate that the generation of good trials
(that is, trials whose distribution closely matches the true
distribution) , rather than the computation of numerous

mediocre trials, dominates the performance of stochastic
simulation.

Key words: probabilistic inference, belief networks,

stochastic simulation, computational complexity theory,

randomized algorithms.

60

1. Introduction

P denotes the set of all decision problems that a
deterministic Turing machine can answer in a pe­
riod of time bounded by a polynomial in the size of
the problem description. NP is the set of all de­
cision problems that a nondeterministic Turing ma­
chine can resolve in polynomial time. Determinis­
tic machines pursue one path of computation at a
time; nondeterministic machines can perform multi­
ple computations simultaneously.

The hardest problems in NP, known as NP­
complete, probably do not admit polynomial·time
deterministic algorithms (Garey and Johnson,
1979). If any of the NP-complete problems admits a
polynomial-time deterministic algorithm, then P =

NP, and all problems in NP can be solved in poly­
nomial time. The vast majority of theoreticians be­
lieve, however, that NP properly contains P, and
that polynomial-time algorithms for NP-complete
problems do not exist. NP-hard problems are at
least as difficult to answer as are the NP-complete
problems, if not more so.

Given truth assignments for a set E of random
variables in a belief network, an algorithm for Proba­
bilistic Inference in Belief NETworks (PIBNET) com­
putes the posterior probabilities for the outcomes
of a specified node X. PIBNET is hard for NP, by
reduction from 3-satisfiability in the propositional
calculus (Cooper, 1987). The classification of PIB­

NET as NP-hard has prompted a shift in focus away
from deterministic algorithms and toward approxi­
mate methods, heuristics, and analyses of average-

case behavior.

There now exists a number of algorithms for prob­
abilistic inference in belief networks: the message­
passing algorithm of Pearl (Pearl, 1986), the tri­
angulation method of Lauritzen and Spiegelhal­
ter (Lauritzen and Spiegelhalter, 1987), and the
randomized approximation scheme (ras) described
herein. Each algorithm has computational proper­
ties that render it attractive for inference on cer­
tain kinds of networks. The NP-hard classification
suggests, however, that no algorithm can provide a
definitive efficient solution for all inference problems.

The ras, in particular, builds upon straight
stochastic simulation as proposed by Pearl and oth­

By definition, an ras computes approximate an­

swers that, with correctness probability greater than
1 - 6, differ from the true answer by a relative er­
ror of no more than E (Karp and Luby, 1983). In
addition, an ras requires computing time that is a
polynomial in 1/E, 1/fl, and the size of the input.2
Modified versions of the ras guarantee, with high
probability 1- 6, upper bounds on interval error a,
to be distinguised from the relative error !.3

In this paper, we briefly summarize the salient
characteristics of BN-RAS and present an empirical
investigation of its properties. In particular, we fo­
cus attention on the computational complexity of
generating good trials.

Methods and Procedures

2.1 Approximate Probabilistic Inference

ers (Pearl, 1987b; Pearl, 1987a). Stochastic simu­
lations generate trials, or instantiations of random
variables governed by a joint probability distribu- 2.
tion, and then use the frequencies of random out­
comes to approximate posterior probabilities. Two
kinds of error can plague such simulations: The dis­
tribution of generated trials does not necessarily cor­
respond closely to the true distribution of outcomes,

We now offer a complexity-theoretic treatment of ap­
proximate probabilistic inference. We use methods
drawn from the analysis of ergodic Markov chains
and randomized complexity theory to build an algo­
rithm that approximates the solutions of inference
problems for many belief networks to within arbi­
trary precision. We slightly alter a previous simula­
tion scheme designed by Pearl (Pearl, 1987b; Pearl,

and a paucity of trials can give rise to sampling er­
ror. We must focus not only on the generation of
myriad trials, but also on the quality of those trials.

Unlike previous methods of straight simulation,
our randomized algorithm (known hereafter as BN­
RAS) gives precise a priori bounds for its running
time as a function of relative or interval error.1 The
ras does not necessarily run faster than previous sim­
ulation algorithms. Indeed, the algorithm itself pro­
poses only minor modifications to straight simula­
tion. Those modifications, however, permit a theo­
retical convergence analysis that does not apply to
the original asymmetric methods of straight simula­
tion.

2ln the case of belief networks, the size of the input is the

length of a string that fully describes the nodes, their con-

nections, and their conditional probabilities, represented in

unary notation. Unary notation ensures a running time that

is a polynomial in the problem size; as the probabilities ap-

proach 0 and 1, the unary representations assume unbounded

size, and the algorithm 's performance decreases dramatically.

1 In the literature of theoretical computer science, our ras Note, in addition, that we have excluded deterministic rela­

would be classified as a fully polynomial randomized approx:- tionships (probabilities equal to o or 1) from the analysis.

imation scheme (fpras) . Although the term is a standard one 3The interval error Ct is the maximum difference between

in the study of algorithms, it may mislead those less familiar the true and the approximate probabilities, taken over all the

with the nomenclature. We emphasize that our ras exhibits probabilities in the network. The relative error t is the maxi­

performance that varies linearly with the topological complex- mum difference between the true and the approximate proba­

ity of the network, even though the same algorithm degrades bilities, divided by the true probability. In general, it is much

dramatically as the probabilities th emselves approach 0 and more difficult to guarantee a fixed relative error, especially as

1.
61

the probabilities approach 0.

1987a), known hereafter as the method of straight
simulation, so as to render an analysis of its com­
putational characteristics. We have given the full
derivation in (Chavez, 1989b; Chavez, 1989a), and
present only the salient results here.

Suppose that we wish to compute all posterior
probabilities in the network to within an interval
error 0!. Suppose, in addition, that we are willing
to tolerate a small probability fJ that the algorithm
fails to converge within the a bound. The detailed
argument, based on Chebyshev's inequality and the
scheme of Karp and Luby, reveals that

(1)

guarantees the (0!,6) convergence criteria, where N
is the total number of trials. Each trial corresponds
to the choice of a joint instantation for all the nodes
in the belief network.

We have predicated our analysis on the existence
of a trial generator that accurately produces states
of the network according to their true probabilities,
contingent on the available evidence. The original
straight-simulation generator depends on the initial
state (that is, it lacks ergodicity). Moreover, the
straight-simulation generator offers no guarantees
about its convergence properties. We must, there­
fore, turn our attention to the study of modified state
generators.

Given any belief network, we show how to coll.­
struct a special Markov chain with the following two
properties. First, states of the Markov chain corre­
spond to joint instantiations of all the nodes in the
network; the Markov chain associated with a net­
work of n binary nodes, for example, has 2n dis­
tinct states. Second, the stationary distribution of
the Markov chain is identical to the joint posterior­
probability distribution of the underlying belief net­
work.

In addition, the constructed Markov chain has
the properties of ergodicity and time reversibility.
Ergodic chains are, by definition, aperiodic (with­
out cycles) and irreducible (with a nonzero transi­
tion probability between any pair of states). Time·
reversible chains look the same whether the sim­
ulation flows forward or backward. Once again,
(Chavez, 1989a) presents the details of the construc­
tion.

62

In the limit of infinity, after the Markov chain has
reached its stationary distribution, that chain gen­
erates states according to their true probabilities.
Obviously, we cannot afford to let the chain reach
equilibrium at infinity. In practice, we wish to know
how well the chain has converged after we have let
it run for only a finite number t of transitions. De­
fine the relative pointwise distance (r.p.d.) after t
transitions,

Ll(t) = _Ip.ax s; 3 , { lp_(t)- 11'"1}
s,;E(M] 11'j

where ��t) denotes the t-step transition probability
from state i to j (with a total of M states) and 11'j
denotes the stationary probability of state j. Let
II = miniE[M) 11'i, the joint probability of the least
likely joint state of all variables in the network. We
wish to determine the number of transitions t needed
to guarantee a deterministic upper bound on Ll(t). A
Jerrum-Sinclair analysis of chain conductance (intu­
itively, the chain's tendency to flow around the state
space (Jerrum and Sinclair, 1988)) and a combina­

toric path-counting argument show that the BN-RAS

generator requires

t
> log 1 + log IT - log(l - P6/8) (2)

transitions to guarantee a relative pointwise distance
of[, where Po is the smallest transition probability
in the Markov chain.

Combining the convergence analysis with the
scoring strategy in relation (1), BN-RAS computes
posterior-probability estimators Y that satisfy the
constraint

�
r�l;� - Q � Y � (1 + !)Pr[ei�J +a (3)

with probability greater than 1 - b. To do so, the
algorithm must perform t transitions p er trial, with

t = [4(1 + 1)3]· (12f -logbl + 1). log{+ log IT'
30!2 log(l - p5f8)

(4)
where each transition corresponds to one step of the
underlying Markov chain. We can then use those
posterior-probability estimators to rank the leading

I• Compute a transition p.m.t. •I

void sample(this)

node •this;

{

}

tor (sua = 0 .0,

this->value = O;

{

}

this->value < this->nvalues; v++)

I• compute P[this I parents] •I

prod= cprob(this);

I• multiply by P[child I this],

for each child •I

for (i = 0; i < this->nchildren; i++)

prod •=

cprob(matrix[this->children[i]]);

sum += prod;

this->dist[v] = sum;

normalize dist;

Figure 1: Pseudo-code that computes the Markov

transition probabilities from a belief network.

diagnoses. Thus, BN-RAS efficiently computes ap­
proximate inferences within the normative frame­
work of probability theory, so long as po is not too
small.

Conceptually, now, the ras has a simple descrip­
tion. Each of N trials produces a joint instantia­
ti�n of nodes in the belief network. To conduct each
trial, we initialize all nodes to random values from
a uniform distribution and we run the chain for t
transitions. 4 We compute each transition proba­
bility with the pseudo-code given in Figure 1. The

4The random initialization is not required for the analysis,

but such an initialization can occasionally improve the perfor­

mance of the simulation.

63

t transitions per trial help to ensure mixing of the
underlying Markov chain, and thereby facilitate the

generation of good trials (that is, trials from a. dis­
tribution that approximates the true distribution of
states to within a bounded relative error). The the­
oretical analysis, in short, gives worst-case formulae
for N and t as a function of network parameters and
error tolerance.

We present a pseudo-code description of BN -RAS in
Figure 2. In order to obtain the original straight sim­
ulation , we replace the routines do_transition()
and next_trial () with the variants in Figure 3.
Specifically, BN-RAS exhibits the following differ­
ences from straight simulation: (1) BN-RAS chooses
a random state in the Markov chain before com­
puting ea.ch trial; (2) BN-RAS makes transitions in
a manner that renders the Markov chain aperi­
odic, irreducible, and time-reversible; (3) BN-RAS

makes many transitions before scoring a single trial,
whereas straight simulation scores the result of ev­
ery transition. Those properties allow us to analyze
the algorithmic complexity of BN-RAS in great detail.
No general techniques exist, however, for analyz­
ing time-irreversible and non-ergodic Markov chains
such as the chains used in straight simulation.

The preceeding analysis of complexity clarifies
the underlying computational properties of the al­
gorithm, but it says little about the method's per­
formance on examples drawn from the real world.
We now describe the complexity analysis in greater
detail, and answer questions about the algorithm's
performance on two examples. We use the exact al­
gorithm of Lauritzen and Spiegelhalter (Lauritzen
and Spiegelhalter, 1987) to compute the gold stan­
dard for our comparisons.

With the analysis of BN-RAS in hand, we propose
to address the following questions:

• How does the error change as the number of
transitions t per trial increases? (We have an
interest in two error measures: the average er­
ror over all nodes, and the interval error for
the node with the greatest discrepancy from the
gold standard.)

• How does the error change as the number of
trials increases, with the number of transitions
t per trial held constant?

I• Perform one transition •I
do_ transition()
{

I• With probability 112,
stay put (guarantees
aperiodicity).
Use ACM algorithm. •I

p = drand_acmO;
if (p <= 0.5)

:return;
else

{
uniformly choose a node 'this';

I• Compute the transition p.m.f.,
and choose a value •I

sample(this);
this->value = choose(this->dist);

}
}

I• Compute a trial •I
next_ trial()

{

}

set all the nodes to uniform
random values;

for (d = 0; d < transitions; d++)
do_ transition();

estimate()
{

}

compute number of trials, n;
for (j = 1; j <= n; j++)
{

}

next state 0 ;
score outcomes;

Figure 2: The pseudo-code for BN-RAS.

64

I• Compute a transition probability, and
assign a value to node i •I

do_transition(i)
{

}

sample(matrix[i]);
matrix[i]->value =

choose(matrix[i]->dist);

I• Compute a trial •I
next_ trial()
{

}

static int i = 0;

I• Don't re-initialize
the nodes •I

if (i == nnodes)
i = 0;

do_transition(i++);

Figure 3: The pseudo-code for straight simulation.

• We predicated the analysis of BN-RAS on a set of

distribution-free, worst-case assumptions. Does
the computation time required for reasonable
convergence in specific cases undercut the ana­
lytic estimates?

• BN-RAS throws away many of its generated tri­
als. Does the sampling of fewer trials reduce the

efficiency of the approach? In other words, how
does BN-RAS perform in comparison to straight
simulation?

We study each of those questions in turn, and dis­
play charts and graphs that illustrate our conclu­

sions.

3. Results

In the present experiments, we study two belief net­
works: a simple two-node network (Figure 4) for
which straight simulation is known to perform poorly
(Chin and Cooper, 1987), and a much more com­
plex network, DxNET, for alarm management in the

intensive-care unit (Beinlich et al., 1988).

0----®
P(B I A) = .001
P(B I -A} = .999
P(A} = 1/2

Figure 4: This two-node network poses severe con­
vergence problems for straight simulation.

The two-node network specifically causes straight
simulation to undergo pathological oscillation.
DXNET, on the other hand, reflects an anesthesi­
ologist's clinical expertise and judgmental knowl­
edge. For our present purposes, we observe that,
to guarantee f = 0.1, 1 = 0.1, and 8 = 0.1 for the
two-node example, we require 2, 662,000 tiials, with
316,911,596 transitions per trial; to guarantee an
interval error a = 0.1 for the same network, we need
only 1332 trials, with the same number of transi­
tions per trial. For DxNET, the numbers prove even
more formidable. The worst-case bounds require
13,307,782 trials, with 256,573,353,901 transitions
per trial, to guarantee f = 0.1, 1 = 0.1, and 8 = 0.1;
to ensure that a = 0.1, we need only 1332 trials,
but we still require 256, 573,353,901 transitions per
trial.

Figure 5 illustrates the number of trials, based on
relation (1), as a function of the interval error a for
several values of the failure probability 6. With an
error tolerance of a = 0.1, the algorithm requires
less than 10,000 trials, for values of 6 > 0.1. As
the error tolerance shrinks, however, the number of
trials increases quadratically. Note, however, that
relation (1) specifies a distribution-free upper bound
on the number of trials. Depending on the underly­
ing probability distribution, fewer trials may suffice.

Figure 6 illustrates the relationship between the
number of transitions needed for sufficient mixing
of the Markov chain, t, and the smallest transition
probability, p0• The transition probabilities vary as
the product of conditional probabilities at each local
node group. The belief networks that knowledge en­
gineers build for realistic applications will typically

65

require small transition probabilities. Such prob­
abilities do not entail the approximation scheme's
success or failure; rather, they suggest that the ana­
lytic bounds cannot guarantee efficient computation.
Note, in particular, the logarithmic abscissa, and the
relative unimportance of the 1 error term. For belief
networks in which the smallest transition probability
p0 2: 0.1, we expect that BN-RAS will yield an accept­
able, tractable computation for realistic values of a

and li. As p0 a.pproaches 0, however, the number of
transitions needed to guarantee the bounds, as indi­
cated in equation (4) , approaches infinity.

Clearly, the analytic bounds do not always yield
an efficient algorithm, even though they do predict a
running timl' that varies only linearly with the num�
her of nodes. The conditional probabilities that lie
close to 0 and 1 require unrealistically large values
oft to approximate the stationary distribution with
great certainty.

3.1 DxNet Performance Measurements
and Time Complexity

In this section, we study the performance of BN-RAS

for the DxNET problem on a Sun-4 timesharing pro­
cessor running SunOS, a version of 4 .3bsd UNIX.
We measured CPU time with the UNIX system call
clock(), which returns the elasped processor time
in microseconds.

Figures 7 and 8 demonstrate that the CPU time
increases linearly with the number of trials and the
number of transitions per trial, as expected. Those
figures serve as nomograms for translating N and t
into realistic CPU-consumption figures on the Sun-4.

Figures 9 illustrates the most crucial insight of this
empirical study. The convergence depends not so
much on the number of tabulated trials, but rather
on the quality of those trials (as determined by the
number of transitions per trial). In other words,
if we had an ideal trial generator, we could expect
very rapid convergence; inasmuch as the raw Markov
chain reaches the stationary distribution only after
many thousands of transitions, however, trial gen­
eration in DXNET poses the greatest difficulty. If
we could somehow modify the Markov chain and
thereby increase the rate at which it reaches the sta­
tionary distribution, or if we could compute an ini-

Number of trials·vs. Interval error

40000

+ 6= O.Ql
Cll 6= O.Q2 .. 30000 -.::: .. 6=0.05 -

- 6=0.1 0 ...
6=0.2 CD 200000 E -a- 6=0.25 :I z 6=0.5

10000

o Uii1il!i��;�; �-r--�
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Interval error

Figure 5: This graph demonstrates the relationship
between the number of trials N needed to guarantee
an (a, 8) algorithm for interval error a and failure
probability 8.

Transitions required for mixing

2.009+6 -r----------.....,

.. -.::: -
II + y= O.Ol
a.. 1.009+6 y=0.05 ., c .. y=0.5 0
E
.,
c
I'll
�

'i)
"CC
e
8
I
CD E j::

DxNet Time Complexity

1500,-----------------�

1000

500

0

.....
.....
.....
.....

0 2000 4000 6000 8000 1 0000

Number of trials (N)

per trial
t. 100
t. 200
t. 500
t. 1000

Figure 7: This graph illustrates that the computa­
tion time on a Sun-4 increases linearly with the num­
ber of trials.

DxNet: Time vs. transitions

10000

8000 + N ·100 Cll
-g N =200
8 6000 .. N .. sao I N ·1000

� 4000 ... N = 2000

2000

0 10000 20000

Transitions par trial

Figure 6: This graph illustrates the crucial relation- Figure 8: This graph shows the relationship between
ship between Po and t, the number of transitions t, the number of transitions per trial, and the con­
needed to guarantee an acceptable relative pointwise comitant Sun-4 CPU usage.
distance.

66

tial state from which the chain converges to the limit
in just a few transitions, the rate of convergence of
BN-RAS would greatly increase.

The theoretical analysis suggests that the small­
est transition probability in the Markov chain lim­
its the rate of convergence in the worst case, as de­
scribed in equation (4). For chains with large tran­
sition probabilities, we expect rapid convergence.
For other networks, there is yet hope: BN -RAS and
straight simulation, in contrast to the exact meth­
ods, require time linear in the number of nodes and
outcomes, in the worst case. As the indegree of
nodes grows, the size of cliques increases exponen­
tially, and the Lauritzen-Spiegelhalter algorithm re­
quires exponential time; as the loop cutset increases
in size, Pearl's message-passing algorithm degrades
exponentially (Suermondt and Cooper, 1988). The
analysis of BN-RAS, however, indicates that the lat­
ter remains insensitive to network topology in the
worst case, and degrades only as the conductance
falls.

Two detailed graphs (Figures 10 and 11) make the
point more cogently. Note the strong dependence
of the error terms on t, and the absence of a dose
relationship between the error and N. These data
suggest that the amount of computation required to
guarantee a certain interval error depends most crit­
ically on the smallest transition probability in the
network, and on very little else.

3.2 Comparison with Straight Simulation

B N- RAS generates t · N total transitions of the Markov
chain, but then discards (t - 1) · N of those states
and scores only N trials. In addition, the state gen­
erator shuffles the network into a random configura­
tion at the beginning of each trial. We now compare
the ras to straight simulation (Pearl, 1987b; Pearl,
1987a), both for the two-node network and for the
full DxNET.

Figure 12 compares straight simulation to BN-RAS

til
Ql

,

DxNet: Average error vs. time

0.300 ----------...

g 0.200 .g.
_...
...
_...
...
-D-

0 10000 20000 30000

Time {seconds)

N = �00

N .. 200

N =500

N = 1000
N "'2000

N .. 5000

Figure 9: This graph illustrates an intriguing result:
With just a few trials (on the order of 100) and many
transitions per trial (on the order of 5,000 to 20,000),
we can achieve rapid convergence of the average error
toward 0.

DxNet: Average error vs. trials

0.300 "T"""----------.

Ill w "0 0
c � Transitions per trial
-ro o.2oo
t... re- t ·100
w r+ :> t. 500 0
'- � t 2 1000
0

f+-t... t. 5000 t... � 0.�00 f.- t "'20000
0'1 I'll
t... .. w
�

0.000 !;;:::.:::::....� J
0 2000 4000 6000 8000 1 0000

Number of trials CN)

for the worst case in which the Markov chain's be- Figure 10: This graph plots the average error over

havior deteriorates when the conditional probabil- all nodes a.gainst the number N of trials, for different
ities approach 0 and 1. By starting with a ran- values oft, the number of transitions per trial. Ob­
dom configuration of the network and enumerating serve that t almost completely determines the con­
the transitions in a fixed order , straight simulation vergence of the algorithm.

spends most of its time looping in one state; after

67

ma.ny transitions, the simulation falls into the other
state and stays there for many transitions. Until the
simulation falls into the alternative state, that state
remains invisible. Hence, for networks with low con­
ductance, straight simulations can become mired in
states that serve as sinks for the Markov chain's tran­
sition probabilities (Chin and Cooper, 1987).

BN-R.AS, on the other hand, randomizes the chain
after t trials. We therefore expect the errors to con­
verge more uniformly toward 0, without oscillating.
Indeed, Figure 12 illustrates that BN-R.AS converges
almost immediately to the correct answer, and stays
there. We observe, however, that randomization at
the beginning of each trial is not, by any means, a
consistently successful strategy for improving con­
vergence.

For the full DxNET, straight simulation and BN­

R.AS exhibit nearly identical convergence properties.
The randomization step at the beginning of each
trial in BN-R.AS, and the temporally symmetric se­
lection of transitions from an ergodic and time­
reversible Markov chain, do not necessarily improve
performance. Notice, however, that BN-RAS achieves
the same performance as straight simulation, even
though BN-R.AS throws away the vast majority of its
trials. Clearly, the generation of good trials (by per­
forming many transitions) reduces error more dra­
matically than the scoring of many poor trials.

4. Discussion and Conclusions

Our investigations suggest that a precise analytic
characterization of a randomized algorithm's prop­
erties can guide the search for more efficient approx­
imations. We have shown, in particular, that the
number of transitions per trial, and not the gen­
eration of a sufficient number of trials, constrains
the precision of Monte Carlo approximations. Our
results demonstrate that, for belief networks with
transition probabilities bounded away from 0 and
1, randomized techniques offer acceptable perfor­
mance. The mere generation of copious trials is not,
however, likely to ensure success.

A randomized algorithm that provides a priori
convergence criteria, coupled with an extensive em­
pirical analysis, can perform efficient probabilistic
inference on large networks. In addition, we have

68

DxNet: Average error vs. transitions

0.300 "T""----------,

=
"a g 0.200 -1!1- N - 100
ii N. 200 ...
: .. N - 500
0 N '"' 1000

2 � 0.100.
.. N • 2000
-o- N • 5000

0 10000 20000 30000

Transitions per trial

Figure 11: This graph plots the average error against
the number of transitions, for different N, the num­
ber of trials.

Straight simulation vs. BN-RAS
(two-node network)

0.6-----------..,

0.5
•
•
'g 0.4 r:::

"ii ... • 0.3 > 0 ... 0 ...
0.2 ...

•
•
Ol • .. 0.1 • > ca:

0.0

0 10 20

nme (seconds)

BN -RAS

Straight

Figure 12: This graph compares the average errors
for straight simulation and BN-RAS on the two-node
belief network.

formally shown that the randomized algorithm re­
quires time that is linear in the problem size, and
polynomial in the error criteria (namely, the suc­
cess probability {j and the interval error a). As the
complexity of a belief network increases, randomized
algorithms may offer the only tractable approach to
probabilistic inference.

We must, however, hasten to reiterate that the
minimum transition probability p0 severely con­
strains the efficacy of randomized techniques. In
addition, BN-RAS does not necessarily outperform
straight simulation in raw computation. In contrast
to straight simulation, howe ver, BN-RAS offers a de­

tailed convergence analysis and a priori bounds on
running time.

Finally, we outline a set of experiments in progress
to characterize further the usefulness of randomized
algorithms for probabilistic inference.

• We shall study the performance of the algorithm
on networks of various topologies, with a partic­
ular emphasis on inference problems that can­
not be solved efficiently by deterministic meth­
ods. Networks with large loop cutsets and large
indegrees offer particularly severe tests of exact
algorithms. We conjecture that, as long as the
smallest transition probability stays the same,
the ras should remain insensitive to variations

in topological structure.

• We shall study the algorithm's performance on
networks of different sizes and roughly similar
topology (of the same maximum in degree and
cutset complexity), with the smallest transition
probability held constant. We expect that the
performance of BN-RAS should depend very lit-

ical Scientist Training Program grant GM07365 from
the National Institutes of Health, and grant LM-
07033 from the National Library of Medicine. Com­
puter facilities were provided by the SUMEX-AIM
resource under grant RR-00785 from the National
Institutes of Health.

References

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and
G. F. Cooper. T he ALARM monitoring sys­
tem: A case study with two probabilistic infer­

ence techniques for belief networks. Technical
Report KSL-88-84, Medical Computer Science
Group, Knowledge Systems Laboratory, Stan­
ford U Diversity, Stanford, CA, December 1988.

R.M. Chavez. A fully polynomial randomized ap­
proximation scheme for the Bayesian inferenc­
ing problem. Technical Report KSL-88- 72,
Knowledge Systems Laboratory, Stanford Uni­
versity, Stanford, CA, April 1989.

R.M. Chavez. Hypermedia and randomized algo­
rithms for probabilistic expert systems. Ph.D.
thesis proposal, Knowledge Systems Labora­
tory, Stanford University, Stanford, CA, Jan­
uary 1989. To appear in Networks.

H. L. Chin and G. F. Cooper. Stochastic simula­
tion of Bayesian belief networks. In Proceed­
ings of the Third Workshop on Uncertainty in
Artificial Intelligence, pages 106-113, Seattle,
Washington, July 1987. American Association
for Artificial Intelligence.

tle on the size of the network. Clearly, we must
expand computational resources on the order of G.

the network's area so as to propagate an infer­
ence from one end to the other; it seems rea­
sonable to expect, however, that the transitions

F. Cooper. Probabilistic inference using belief
networks is NP-hard. Technical Report KSL-87-
27, Medical Computer Science Group, Knowl­
edge Systems Laboratory, Stanford University,
Stanford, CA, May 1987. per trial will dominate the running time.

5. Acknowledgments

T his work has been supported by grant IRI-8703710
from the National Science Foundation , grant P-

25514-EL from the U.S. Army Research Office, Med-
69

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP­
Completeness. W . H. Freeman and Company,
New York, 1979.

M. Jerrum and A. Sinclair. Conductance and the
rapid mixing property for Markov chains: The

approximation of the permanent resolved. In
Proceedings of the Twentieth ACM Symposium
on Theory of Computing, pages 23.5--244, 1988.

R. M. Karp and M. Luby. Monte-Carlo algorithms
for enumeration and reliability problems. In

Proceedings of the Twenty-fourth IEEE Sym­
posium on Foundations of Computer Science,
1983.

S. L. Lauritzen and D. J. Spiegelhalter. Fast manipu�
lation of probabilities with local representations
with applications to expert systems. Technical
Report R-87-7 , Institute of Electronic Systems,
Aalborg University, Aalborg, Denmark, March

1987.

J. Pearl . Fusion, propagation, and structuring in
belief networks. Artificial Intelligence, 29:241-
288, 1986.

J. Pearl. Addendum: Evidential reasoning using
stochastic simulation of causal models. Arti­
ficial Intelligence, 33:131, 1987.

J. Pearl. Evidential reasoning using stochastic sim­
ulation of causal models. Artificial Intelligence,
32:245-257, 1987.

H. J. Suermondt and G. F. Cooper. Updating proba­
bilities in multiply connected belief networks. In

Proceedings of the Fourth Workshop on Uncer­
tainty in Artificial Intel ligence, pages 335-343,

University of Minnesota, Minneapolis, MN, Au­
gust 1988. American Association for Artificial
Intelligence.

70

